IP Address Ranges by Country

This page displays the complete IPv4 address ranges organized by country. There are 249 countries listed below, and each link will bring you to a new page containing the respective IP address ranges.

If you are interested to learn more about the ranking of IP addresses allocated for each country, please visit IP Address Reports for details.

Afghanistan

Aland Islands

American Samoa

Antigua and Barbuda

Bolivia (Plurinational State of)

Bonaire, Sint Eustatius and Saba

Bosnia and Herzegovina

Bouvet Island

British Indian Ocean Territory

Brunei Darussalam

Burkina Faso

Cayman Islands

Central African Republic

Congo (Democratic Republic of the)

Cook Islands

Cote d'Ivoire

Dominican Republic

El Salvador

Equatorial Guinea

Falkland Islands (Malvinas)

Faroe Islands

French Guiana

French Polynesia

Guinea-Bissau

Iran (Islamic Republic of)

Isle of Man

Korea (Democratic People's Republic of)

Korea (Republic of)

Lao People's Democratic Republic

Liechtenstein

North Macedonia

Marshall Islands

Micronesia (Federated States of)

Moldova (Republic of)

Netherlands

New Caledonia

New Zealand

Norfolk Island

Northern Mariana Islands

Palestine, State of

Papua New Guinea

Philippines

Puerto Rico

Russian Federation

Saint Barthelemy

Saint Helena, Ascension and Tristan da Cunha

Saint Kitts and Nevis

Saint Lucia

Saint Martin (French Part)

Saint Pierre and Miquelon

Saint Vincent and the Grenadines

Sao Tome and Principe

Saudi Arabia

Sierra Leone

Sint Maarten (Dutch Part)

Solomon Islands

South Africa

South Georgia and the South Sandwich Islands

South Sudan

Svalbard and Jan Mayen

Switzerland

Syrian Arab Republic

Taiwan (Province of China)

Tanzania, United Republic of

Timor-Leste

Trinidad and Tobago

Turkmenistan

Turks and Caicos Islands

United Arab Emirates

United Kingdom of Great Britain and Northern Ireland

United States of America

United States Minor Outlying Islands

Venezuela (Bolivarian Republic of)

Virgin Islands (British)

Virgin Islands (U.S.)

Wallis and Futuna

Ready to Get Started?

Sign up now and you will be able to access ALL IP databases for FREE!

No hidden costs. No credit card required.

Sign Up Pop Out

Geolocate Your Visitors Location

Enhance your applications with essential geolocation data by using our FREE databases.

Map Options

map placeholder

IP Address by Country 2024

Every computer or other internet-enabled device (smart TV, cell phone, web server, etc.) on a network must have a unique identifier. Most devices and networks communicate using the TCP/IP protocol, in which each device is identified via a numerical label known as an Internet Protocol address, commonly referred to as an IP address. IP addresses can be either static, meaning a device has the same IP address at all times; or dynamic, meaning the IP address may change from time to time, such as when a device is powered down and restarted. IP addresses are also reusable, meaning if a device no longer requires access to the network, its IP address can be reallocated to a different device.

Top 10 Countries with the most IP (IPv4) Addresses:*

Types of ip address: ipv4 and ipv6 defined and differentiated.

Current IP addresses each follow one of two standards: IP Version 4 (IPv4) or IP Version 6 (IPv6). IPv4, the internet's original IP protocol, uses 32 binary bits to create a single unique address that is expressed by four numbers, each ranging from 0 to 255 and separated by decimals. For example: 104.221.95.92.

By comparison, the newer and more complex IPv6 standard uses 128 binary bits to create a single unique address that is expressed by eight groups of hexadecimal numbers (which include not only the numbers 0-9 but the letters A-F), each ranging from 0 to FFFF and separated by colons. For example: 2001:23F5:B415:2F61:02A2:8C4B:A375:8149.

Why are there two types of IP address?

IP addresses are unique and have a fixed length. Because of these constraints, the number of possible IP addresses that can exist is finite. There are 4,294,967,296 (Nearly 4.3 billion) IPv4 addresses, 600 million of which are reserved and cannot be used for public routing. This limitation caused little concern in the early days of the internet, because of the vast number of IPv4 addresses available. However, the growth of the internet and the proliferation of internet-enabled devices over the following decades made clear that eventually even four billion IP addresses would be too few.

Several new technologies were formulated to stave off the looming shortage of IPv4 addresses, including network address translation (NAT) and Classless Inter-Domain Routing (CIDR). The ultimate solution arrived with the launch of IPv6. While IPv4 was a 32-bit protocol limited to just under 4.3 billion addresses (2 to the power of 32), IPv6 is a 128-bit protocol with nearly 340 undecillion possible addresses (2 to the power of 128), a functionally infinite supply.

IPv4 and IPv6 networks are incompatible with one another. This means, for example, that a cell phone with an IPv4 address could not access a website stored on a web server that used only IPv6. However, the vast majority of modern devices and operating systems are capable of connecting to the internet via either protocol. At present, IPv4 is still the dominant protocol, thanks to this ongoing device-level support and the presence of more than 4 billion already-allocated IPv4 addresses. However, IPv6 is expected to overtake it at some point in the future.

Per-country allocations of IP addresses around the world

The Internet Assigned Numbers Authority (IANA) is the organization charged with distributing all non-reserved IP addresses to the world. This process is executed using a nested system in which increasingly smaller satellite agencies allocate the IPs to increasingly smaller territories. The IANA performs the first allocation, distributing IP addresses to Regional Internet Registries (RIRs) in five broad regions (which roughly correspond to the continents.

Regional Internet Registries perform the second round of allocations, doling out the IPs to each individual country's National Internet Registry (NIR). The NIRs then allocate the IPs to smaller Local Internet Registries (LIRs), which allocate them to Internet Service Providers (ISPs), which allocate them to individual users and devices. In-use IPs are classified as utilized . In countries that lack local registries, the national registries allocate directly to the ISPs.

Global ISP Allocation Regions (all data IANA 2022/09):

The number of addresses allocated to a given country does not necessarily correlate with that country's population numbers. Rather, it is more closely tied to each country's need for IP addresses. As a rule, countries that have high incomes , are more developed , or show a high level of innovation and technological advancement have more robust internet infrastructure and a larger number of smart devices, websites, and other internet-based businesses—which translates to greater need for IP addresses—than do low-income and middle-income countries that are still developing .

Countries with the largest (and smallest) allocations of IPv4 addresses

Of the more than 4 billion IPv4 addresses in existence, 1,541,605,760 (about 35.9% of the total number) are allocated to the United States . This is far and away the highest number allocated to any country. Using population metrics from 2012 (the year after the IANA allocated the final IPv4 addresses to various regional registries), this corresponds to roughly 4,911 IP addresses per 1,000 people.

China has the second-highest number of IPv4 addresses at 330,321,408, about 7.7% of the total number in existence. China is followed by Japan with 202,183,168 and the United Kingdom with 123,500,144. Germany has the fifth-highest number of IPv4 addresses with 118,132,104.

Vatican City , which has the smallest population of any sovereign state, has 17,920 IPv4 addresses. This equates to 21,435 IP addresses per 1,000 people (because Vatican City has fewer than 1,000 citizens).

What are bogons?

Factored into the 4.294 million existing IPv4 addresses are millions on bogon (short for "bogus logons") addresses, which are IP addresses that are either inaccurate or which have not yet been assigned by an ISP. Most Internet service providers and firewalls filter out bogons, which are typically created either on accident by misconfigured networks or deliberately by would-be hackers.

Finally, IP addresses are not to be confused with domain names , a similar-but-different identifier that can help pinpoint the country of origin of a website.

  • IPv4 allocation totals are final, as all possible IPv4 addresses have been assigned to various national NIRs. Although existing IPv4 addresses may be recycled on a local or national level, they will not be reallocated to other countries.
  • The % column indicates the percentage of the total global number of IPv4 addresses each country has been allocated.
  • IPv6 addresses are allocated in ""/32"" blocks which can include thousands, millions, or billions of individual addresses depending upon how they are implemented. As such, the totals shown indicate blocks allocated, not individual addresses.
  • IPv6 numbers shown are total allocations from all regions combined. For example, Albania has received 606 IPv6 allocations from RIPE NCC, but also 1 from APNIC, for a total of 607 allocations.
  • IPv6 address totals shown include only those blocks that had been assigned to individual countries' NIRs as of August 2022. For full IPv6 allocations per region, see the table in the body text.

Download Table Data

Enter your email below, and you'll receive this table's data in your inbox momentarily.

How can I tell what country an IP address is from?

Frequently asked questions.

  • Internet IP Address 2024 Report - IP2Locations
  • RIPE NCC IPv6 Allocations - IANA
  • LACNIC IPv6 Allocations - IANA
  • ARIN IPv6 Allocations - IANA
  • APNIC IPv6 Allocations - IANA
  • AFRINIC IPv6 Allocations - IANA
  • Number Resources - Internet Assigned Numbers Authority
  • IPv6 and IPv6 Addresses - IPCisco
  • List of countries by IPv4 Address Allocation - Wiki
  • Global Policy for Post Exhaustion IPv4 Allocation Mechanisms by the IANA | (Ratified 6 May 2012) - ICANN
  • IPv4 Address Exhaustion - Wiki
  • IPv6 deployment - Wiki
  • What Is an IP Address? - Avast
  • IPv4 and IPv6 address formats - IBM
  • Bogon - CyberHoot
  • Bogon Filtering - Wiki

Number Resources

We are responsible for global coordination of the Internet Protocol addressing systems, as well as the Autonomous System Numbers used for routing Internet traffic.

Currently there are two types of Internet Protocol (IP) addresses in active use: IP version 4 (IPv4) and IP version 6 (IPv6). IPv4 was initially deployed on 1 January 1983 and is still the most commonly used version. IPv4 addresses are 32-bit numbers often expressed as 4 octets in “dotted decimal” notation (for example, 192.0.2.53 ). Deployment of the IPv6 protocol began in 1999. IPv6 addresses are 128-bit numbers and are conventionally expressed using hexadecimal strings (for example, 2001:0db8:582:ae33::29 ).

Both IPv4 and IPv6 addresses are generally assigned in a hierarchical manner. Users are assigned IP addresses by Internet service providers (ISPs). ISPs obtain allocations of IP addresses from a local Internet registry (LIR) or National Internet Registry (NIR), or from their appropriate Regional Internet Registry (RIR):

Our primary role for IP addresses is to allocate pools of unallocated addresses to the RIRs according to their needs as described by global policy and to document protocol assignments made by the IETF . When an RIR requires more IP addresses for allocation or assignment within its region, we make an additional allocation to the RIR. We do not make allocations directly to ISPs or end users except in specific circumstances, such as allocations of multicast addresses or other protocol specific needs.

IP Address Allocations

Internet protocol version 4 (ipv4).

  • IPv4 Address Space
  • IPv4 Multicast Address Assignments
  • IPv4 Special Purpose Address Registry
  • IPv4 Recovered Address Space Registry
  • Bootstrap Service Registry for IPv4 Address Space

Internet Protocol Version 6 (IPv6)

  • IPv6 Address Space
  • IPv6 Global Unicast Allocations
  • IPv6 Parameters (Parameters described for IPv6, including header types, action codes, etc.)
  • IPv6 Anycast Address Allocations
  • IPv6 Multicast Address Allocations
  • IPv6 Sub-TLA Assignments (DEPRECATED)
  • IANA IPv6 Special Registry
  • Bootstrap Service Registry for IPv6 Address Space
  • Announcement of Worldwide Deployment of IPv6 (14 July 1999)
  • RIR Comparative Policy Overview

Autonomous System Number Allocations

  • Autonomous System Numbers
  • Special-Purpose AS Number Assignments
  • Bootstrap Service Registry for AS Number Space
  • Internet Number Resource Request Procedure

Regional Internet Registry Creation

  • Criteria for Establishment of New Regional Internet Registries (ICP-2) (4 June 2001)
  • IANA Report on Recognition of LACNIC as a Regional Internet Registry (7 November 2002)
  • IANA Report on Recognition of AfriNIC as a Regional Internet Registry (8 April 2005)

Technical Documentation

  • RFC 4632 — Classless Inter-domain Routing (CIDR): The Internet Address Assignment and Aggregation Plan
  • RFC 1918 — Address Allocation for Private Internets
  • RFC 5737 — IPv4 Address Blocks Reserved for Documentation
  • RFC 4291 — Internet Protocol Version 6 (IPv6) Addressing Architecture
  • RFC 3587 — IPv6 Global Unicast Address Format
  • RFC 6177 — IPv6 Address Assignment to End Sites
  • RFC 6890 — Special-Purpose IP Address Registries
  • RFC 7020 — The Internet Numbers Registry System
  • RFC 7249 — Internet Numbers Registries
  • Locally Served DNS Zones

sponsor logo

IP to Country Lookup

Free IP to Country lookup tool to map an IP address to a country. Find out the country code and country name of an IPv4 an IPv6 address. For example, the country of the IP address 66.249.90.77 is US (United States), of 113.160.112.242 is VN (Vietnam). Enter the IP below to find the country:

POPULAR TOOLS

Threat Intelligence APIs

Harden Windows 10/11

File Lines Manipulator

Track USB Events

Worldwide IP distribution

Explore by country.

Get insights on how ip ranges are distributed accross the world

Map visualization

See ip ranges over more than 200 countries

How-To Geek

How do ip addresses work.

Every device connected to a network---computer, tablet, camera, whatever---needs a unique identifier so that other devices know how to reach it.

Quick Links

What is an ip address, what's the difference between ipv4 and ipv6, how does a device get its ip address.

Every device connected to a network---computer, tablet, camera, whatever---needs a unique identifier so that other devices know how to reach it. In the world of TCP/IP networking, that identifier is the Internet Protocol (IP) address.

If you've worked with computers for any amount of time, you've likely been exposed to IP addresses---those numerical sequences that look something like 192.168.0.15. Most of the time, we don't have to deal with them directly, since our devices and networks take care of that stuff behind the scenes. When we do have to deal with them, we often just follow instructions about what numbers to put where. But, if you've ever wanted to dive a little deeper into what those numbers mean, this article is for you.

Related: 8 Common Network Utilities Explained

Why should you care? Well, understanding how IP addresses work is vital if you ever want to troubleshoot why your network isn't working right , or why a particular device isn't connecting the way you'd expect it to. And, if you ever need to set up something a little more advanced---like hosting a game server or media server to which friends from the internet can connect---you'll need to know something about IP addressing. Plus, it's kind of fascinating.

Note: We're going to be covering the basics of IP addressing in this article, the kind of stuff that people who use IP addresses, but never really thought much about them, might want to know. We're not going to be covering some of the more advanced, or professional, level stuff, like IP classes, classless routing, and custom subnetting...but we will point to some sources for further reading as we go along.

An IP address uniquely identifies a device on a network. You've seen these addresses before; they look something like 192.168.1.34.

An IP address is always a set of four numbers like that. Each number can range from 0 to 255. So, the full IP addressing range goes from 0.0.0.0 to 255.255.255.255.

The reason each number can only reach up to 255 is that each of the numbers is really an eight digit binary number (sometimes called an octet). In an octet, the number zero would be 00000000, while the number 255 would be 11111111, the maximum number the octet can reach. That IP address we mentioned before (192.168.1.34) in binary would look like this: 11000000.10101000.00000001.00100010.

Computers work with the binary format, but we humans find it much easier to work with the decimal format. Still, knowing that the addresses are actually binary numbers will help us understand why some things surrounding IP addresses work the way they do.

Don't worry, though! We're not going to be throwing a lot of binary or math at you in this article, so just bear with us a bit longer.

The Two Parts of An IP Address

A device's IP address actually consists of two separate parts:

  • Network ID: The network ID is a part of the IP address starting from the left that identifies the specific network on which the device is located. On a typical home network, where a device has the IP address 192.168.1.34, the 192.168.1 part of the address will be the network ID. It's custom to fill in the missing final part with a zero, so we might say that the network ID of the device is 192.168.1.0.
  • Host ID: The host ID is the part of the IP address not taken up by the network ID. It identifies a specific device (in the TCP/IP world, we call devices "hosts") on that network. Continuing our example of the IP address 192.168.1.34, the host ID would be 34---the host's unique ID on the 192.168.1.0 network.

On your home network, then, you might see several devices with IP address like 192.168.1.1, 192.168.1.2, 192.168.1 30, and 192.168.1.34. All of these are unique devices (with host IDs 1, 2, 30, and 34 in this case) on the same network (with the network ID 192.168.1.0).

To picture all this a little better, let's turn to an analogy. It's pretty similar to how street addresses work within a city. Take an address like 2013 Paradise Street. The street name is like the network ID, and the house number is like the host ID. Within a city, no two streets will be named the same, just like no two network IDs on the same network will be named the same. On a particular street, every house number is unique, just like all host iDs within a particular network ID are unique.

The Subnet Mask

So, how does your device determine which part of the IP address is the network ID and which part the host ID? For that, they use a second number that you'll always see in association with an IP address. That number is called the subnet mask.

On most simple networks (like the ones in homes or small businesses), you'll see subnet masks like 255.255.255.0, where all four numbers are either 255 or 0. The position of the changes from 255 to 0 indicate the division between the network and host ID. The 255s "mask out" the network ID from the equation.

Note: The basic subnet masks we're describing here are known as default subnet masks. Things get more complicated than this on bigger networks. People often use custom subnet masks (where the position of the break between zeros and ones shifts within an octet) to create multiple subnets on the same network. That's a little beyond the scope of this article, but if you're interested, Cisco has a pretty good guide on subnetting .

The Default Gateway Address

Related: Understanding Routers, Switches, and Network Hardware

In addition to the IP address itself and the associated subnet mask, you'll also see a default gateway address listed along with IP addressing information. Depending on the platform you're using, this address might be called something different. It's sometimes called the "router," "router address," default route," or just "gateway." These are all the same thing. It's the default IP address to which a device sends network data when that data is intended to go to a different network (one with a different network ID) than the one the device is on.

The simplest example of this is found in a typical home network.

If you have a home network with multiple devices, you likely have a router that's connected to the internet through a modem. That router might be a separate device, or it might be part of a modem/router combo unit supplied by your internet provider. The router sits between the computers and devices on your network and the more public-facing devices on the internet, passing (or routing) traffic back and forth.

Say you fire up your browser and head to www.howtogeek.com. Your computer sends a request to our site's IP address. Since our servers are on the internet rather than on your home network, that traffic is sent from your  PC to your router (the gateway), and your router forwards the request on to our server. The server sends the right information back to your router, which then routes the information back to the device that requested it, and you see our site pop up in your browser.

Typically, routers are configured by default to have their private IP address (their address on the local network) as the first host ID. So, for example, on a home network that uses 192.168.1.0 for a network ID, the router is usually going to be 192.168.1.1. Of course, like most things, you can configure that to be something different if you want.

Related: How to Find Your Router's IP Address on Any Computer, Smartphone, or Tablet

DNS Servers

There's one final piece of information you'll see assigned alongside a device's IP address, subnet mask, and default gateway address: the addresses of one or two default Domain Name System (DNS) servers. We humans work much better with names than numerical addresses. Typing www.howtogeek.com into your browser's address bar is much easier than remembering and typing our site's IP address.

DNS works kind of like a phone book, looking up human-readable things like website names, and converting those to IP addresses. DNS does this by storing all that information on a system of linked DNS servers across the internet. Your devices need to know the addresses of DNS servers to which to send their queries.

Related: What Is DNS, and Should I Use Another DNS Server?

On a typical small or home network, the DNS server IP addresses are often the same as the default gateway address. Devices send their DNS queries to your router, which then forwards the requests on to whatever DNS servers the router is configured to use. By default, these are usually whatever DNS servers your ISP provides, but you can change those to use different DNS servers if you want. Sometimes, you might have better success using DNS servers provided by third parties , like Google or OpenDNS.

You also may have noticed while browsing through settings a different type of IP address, called an IPv6 address. The types of IP addresses we've talked about so far are addresses used by IP version 4 (IPv4)---a protocol developed in the late 70s. They use the 32 binary bits we talked about (in four octets) to provide a total of 4.29 billion possible unique addresses. While that sounds like a lot, all the publicly available addresses were long ago assigned to businesses. Many of them are unused, but they are assigned and unavailable for general use.

In the mid-90s, worried about the potential shortage of IP addresses, the internet Engineering Task Force (IETF) designed IPv6. IPv6 uses a 128-bit address instead of the 32-bit address of IPv4, so the total number of unique addresses is measured in the undecillions---a number big enough that it's unlikely to ever run out.

Unlike the dotted decimal notation used in IPv4, IPv6 addresses are expressed as eight number groups, divided by colons. Each group has four hexadecimal digits that represents 16 binary digits (so, it's referred to as a hextet). A typical IPv6 address might look something like this:

2601:7c1:100:ef69:b5ed:ed57:dbc0:2c1e

The thing is, the shortage of IPv4 addresses that caused all the concern ended up being mitigated to a large extent by the increased use of private IP addresses behind routers. More and more people created their own private networks, using those private IP addresses that aren't exposed publicly.

So, even though IPv6 is still a major player and that transition will still happen, it never happened as fully as predicted---at least not yet. If you're interested in learning more, check out this history and timeline of IPv6 .

Now that you know the basics of how IP addresses work, let's talk about how devices get their IP addresses in the first place. There are really two types of IP assignments: dynamic and static.

Related: How to Find Any Device's IP Address, MAC Address, and Other Network Connection Details

A dynamic IP address is assigned automatically when a device connects to a network. The vast majority of networks today (including your home network) use something called Dynamic Host Configuration Protocol (DHCP) to make this happen. DHCP is built into your router. When a device connects to the network, it sends out a broadcast message requesting an IP address. DHCP intercepts this message, and then assigns an IP address to that device from a pool of available IP addresses.

There are certain private IP address ranges  routers will use for this purpose. Which is used depends on who made your router, or how you have set things up yourself. Those private IP ranges include:

  • 10.0.0.0 - 10.255.255.255: If you're a Comcast/Xfinity customer, the router provided by your ISP assigns addresses in this range. Some other ISPs also use these addresses on their routers, as does Apple on their AirPort routers.
  • 192.168.0.0 - 192.168.255.255: Most commercial routers are set up to assign IP addresses in this range. For example, most Linksys routers use the 192.168.1.0 network, while D-Link and Netgear both use the 198.168.0.0 range
  • 172.16.0.0 - 172.16.255.255: This range is rarely used by any commercial vendors by default.
  • 169.254.0.0 - 169.254.255.255: This is a special range used by a protocol named Automatic Private IP Addressing. If your computer (or other device) is set up to retrieve its IP address automatically, but cannot find a DHCP server, it assigns itself an address in this range. If you see one of these addresses, it tells you that your device could not reach the DHCP server when it came time to get an IP address, and you may have a networking issue or trouble with your router.

The thing about dynamic addresses is that they can sometimes change. DHCP servers lease IP addresses to devices, and when those leases are up, the devices must renew the lease. Sometimes, devices will get a different IP address from the pool of addresses the server can assign.

Most of the time, this is not a big deal, and everything will "just work". Occasionally, however, you might want to give a device an IP address that does not change. For example, maybe you have a device that you need to access manually, and you find it easier to remember an IP address than a name. Or maybe you have certain apps that can only connect to network devices using their IP address.

In those cases, you can assign a static IP address to those devices. There are a couple of ways to do this. You can  manually configure the device with a static IP address yourself, although this can sometimes be janky. The other, more elegant solution is to configure your router to assign static IP addresses to certain devices during what would normally be dynamic assignment by the DHCP server. That way, the IP address never changes, but you don't interrupt the DHCP process that keeps everything working smoothly.

Understanding IP Address Assignment: A Complete Guide

avatar

Introduction

In today's interconnected world, where almost every aspect of our lives relies on the internet, understanding IP address assignment is crucial for ensuring online security and efficient network management. An IP address serves as a unique identifier for devices connected to a network, allowing them to communicate with each other and access the vast resources available on the internet. Whether you're a technical professional, a network administrator, or simply an internet user, having a solid grasp of how IP addresses are assigned within the same network can greatly enhance your ability to troubleshoot connectivity issues and protect your data.

The Basics of IP Addresses

Before delving into the intricacies of IP address assignment in the same network, it's important to have a basic understanding of what an IP address is. In simple terms, an IP address is a numerical label assigned to each device connected to a computer network that uses the Internet Protocol for communication. It consists of four sets of numbers separated by periods (e.g., 192.168.0.1) and can be either IPv4 or IPv6 format.

IP Address Allocation Methods

There are several methods used for allocating IP addresses within a network. One commonly used method is Dynamic Host Configuration Protocol (DHCP). DHCP allows devices to obtain an IP address automatically from a central server, simplifying the process of managing large networks. Another method is static IP address assignment, where an administrator manually assigns specific addresses to devices within the network. This method provides more control but requires careful planning and documentation.

Considerations for Efficient IP Address Allocation

Efficient allocation of IP addresses is essential for optimizing network performance and avoiding conflicts. When assigning IP addresses, administrators need to consider factors such as subnetting, addressing schemes, and future scalability requirements. By carefully planning the allocation process and implementing best practices such as using private IP ranges and avoiding overlapping subnets, administrators can ensure smooth operation of their networks without running out of available addresses.

IP Address Assignment in the Same Network

When two routers are connected within the same network, they need to obtain unique IP addresses to communicate effectively. This can be achieved through various methods, such as using different subnets or configuring one router as a DHCP server and the other as a client. Understanding how IP address assignment works in this scenario is crucial for maintaining proper network functionality and avoiding conflicts.

Basics of IP Addresses

IP addresses are a fundamental aspect of computer networking that allows devices to communicate with each other over the internet. An IP address, short for Internet Protocol address, is a unique numerical label assigned to each device connected to a network. It serves as an identifier for both the source and destination of data packets transmitted across the network.

The structure of an IP address consists of four sets of numbers separated by periods (e.g., 192.168.0.1). Each set can range from 0 to 255, resulting in a total of approximately 4.3 billion possible unique combinations for IPv4 addresses. However, with the increasing number of devices connected to the internet, IPv6 addresses were introduced to provide a significantly larger pool of available addresses.

IPv4 addresses are still predominantly used today and are divided into different classes based on their range and purpose. Class A addresses have the first octet reserved for network identification, allowing for a large number of hosts within each network. Class B addresses reserve the first two octets for network identification and provide a balance between network size and number of hosts per network. Class C addresses allocate the first three octets for network identification and are commonly used in small networks.

With the depletion of available IPv4 addresses, IPv6 was developed to overcome this limitation by utilizing 128-bit addressing scheme, providing an enormous pool of potential IP addresses - approximately 3.4 x 10^38 unique combinations.

IPv6 addresses are represented in hexadecimal format separated by colons (e.g., 2001:0db8:85a3:0000:0000:8a2e:0370:7334). The longer length allows for more efficient routing and eliminates the need for Network Address Translation (NAT) due to its vast address space.

Understanding these basics is essential when it comes to assigning IP addresses in a network. Network administrators must consider various factors such as the number of devices, network topology, and security requirements when deciding on the IP address allocation method.

In the next section, we will explore different methods of IP address assignment, including Dynamic Host Configuration Protocol (DHCP) and static IP address assignment. These methods play a crucial role in efficiently managing IP addresses within a network and ensuring seamless communication between devices.

Methods of IP Address Assignment

IP address assignment is a crucial aspect of network management and plays a vital role in ensuring seamless connectivity and efficient data transfer. There are primarily two methods of assigning IP addresses in a network: dynamic IP address assignment using the Dynamic Host Configuration Protocol (DHCP) and static IP address assignment.

Dynamic IP Address Assignment using DHCP

Dynamic IP address assignment is the most commonly used method in modern networks. It involves the use of DHCP servers, which dynamically allocate IP addresses to devices on the network. When a device connects to the network, it sends a DHCP request to the DHCP server, which responds by assigning an available IP address from its pool.

One of the key benefits of dynamic IP address assignment is its simplicity and scalability. With dynamic allocation, network administrators don't have to manually configure each device's IP address. Instead, they can rely on the DHCP server to handle this task automatically. This significantly reduces administrative overhead and makes it easier to manage large networks with numerous devices.

Another advantage of dynamic allocation is that it allows for efficient utilization of available IP addresses. Since addresses are assigned on-demand, there is no wastage of unused addresses. This is particularly beneficial in scenarios where devices frequently connect and disconnect from the network, such as in public Wi-Fi hotspots or corporate environments with a high turnover rate.

However, dynamic allocation does have some drawbacks as well. One potential issue is that devices may receive different IP addresses each time they connect to the network. While this might not be an issue for most users, it can cause problems for certain applications or services that rely on consistent addressing.

Additionally, dynamic allocation introduces a dependency on the DHCP server. If the server goes down or becomes unreachable, devices will not be able to obtain an IP address and will be unable to connect to the network. To mitigate this risk, redundant DHCP servers can be deployed for high availability.

Static IP Address Assignment

Static IP address assignment involves manually configuring each device's IP address within the network. Unlike dynamic allocation, where addresses are assigned on-demand, static assignment requires administrators to assign a specific IP address to each device.

One of the main advantages of static IP address assignment is stability. Since devices have fixed addresses, there is no risk of them receiving different addresses each time they connect to the network. This can be beneficial for applications or services that require consistent addressing, such as servers hosting websites or databases.

Static assignment also provides greater control over network resources. Administrators can allocate specific IP addresses to devices based on their requirements or security considerations. For example, critical servers or network infrastructure devices can be assigned static addresses to ensure their availability and ease of management.

However, static IP address assignment has its limitations as well. It can be time-consuming and error-prone, especially in large networks with numerous devices. Any changes to the network topology or addition/removal of devices may require manual reconfiguration of IP addresses, which can be a tedious task.

Furthermore, static allocation can lead to inefficient utilization of available IP addresses. Each device is assigned a fixed address regardless of whether it is actively using the network or not. This can result in wastage of unused addresses and may pose challenges in scenarios where addressing space is limited.

In order to efficiently allocate IP addresses within a network, there are several important considerations that need to be taken into account. By carefully planning and managing the allocation process, network administrators can optimize their IP address usage and ensure smooth operation of their network.

One of the key factors to consider when assigning IP addresses is the size of the network. The number of devices that will be connected to the network determines the range of IP addresses that will be required. It is essential to accurately estimate the number of devices that will need an IP address in order to avoid running out of available addresses or wasting them unnecessarily.

Another consideration is the type of devices that will be connected to the network. Different devices have different requirements in terms of IP address assignment. For example, servers and other critical infrastructure typically require static IP addresses for stability and ease of access. On the other hand, client devices such as laptops and smartphones can often use dynamic IP addresses assigned by a DHCP server.

The physical layout of the network is also an important factor to consider. In larger networks with multiple subnets or VLANs, it may be necessary to segment IP address ranges accordingly. This allows for better organization and management of IP addresses, making it easier to troubleshoot issues and implement security measures.

Security is another crucial consideration when allocating IP addresses. Network administrators should implement measures such as firewalls and intrusion detection systems to protect against unauthorized access or malicious activities. Additionally, assigning unique IP addresses to each device enables better tracking and monitoring, facilitating quick identification and response in case of any security incidents.

Efficient utilization of IP address ranges can also be achieved through proper documentation and record-keeping. Maintaining an up-to-date inventory of all assigned IP addresses helps prevent conflicts or duplicate assignments. It also aids in identifying unused or underutilized portions of the address space, allowing for more efficient allocation in the future.

Furthermore, considering future growth and scalability is essential when allocating IP addresses. Network administrators should plan for potential expansion and allocate IP address ranges accordingly. This foresight ensures that there will be sufficient addresses available to accommodate new devices or additional network segments without disrupting the existing infrastructure.

In any network, the assignment of IP addresses is a crucial aspect that allows devices to communicate with each other effectively. When it comes to IP address assignment in the same network, there are specific considerations and methods to ensure efficient allocation. In this section, we will delve into how two routers in the same network obtain IP addresses and discuss subnetting and IP address range distribution.

To understand how two routers in the same network obtain IP addresses, it's essential to grasp the concept of subnetting. Subnetting involves dividing a larger network into smaller subnetworks or subnets. Each subnet has its own unique range of IP addresses that can be assigned to devices within that particular subnet. This division helps manage and organize large networks efficiently.

When it comes to assigning IP addresses within a subnet, there are various methods available. One common method is manual or static IP address assignment. In this approach, network administrators manually assign a specific IP address to each device within the network. Static IP addresses are typically used for devices that require consistent connectivity and need to be easily identifiable on the network.

Another widely used method for IP address assignment is Dynamic Host Configuration Protocol (DHCP). DHCP is a networking protocol that enables automatic allocation of IP addresses within a network. With DHCP, a server is responsible for assigning IP addresses dynamically as devices connect to the network. This dynamic allocation ensures efficient utilization of available IP addresses by temporarily assigning them to connected devices when needed.

When considering efficient allocation of IP addresses in the same network, several factors come into play. One important consideration is proper planning and design of subnets based on anticipated device count and future growth projections. By carefully analyzing these factors, administrators can allocate appropriate ranges of IP addresses for each subnet, minimizing wastage and ensuring scalability.

Additionally, implementing proper security measures is crucial when assigning IP addresses in the same network. Network administrators should consider implementing firewalls, access control lists (ACLs), and other security mechanisms to protect against unauthorized access and potential IP address conflicts.

Furthermore, monitoring and managing IP address usage is essential for efficient allocation. Regular audits can help identify any unused or underutilized IP addresses that can be reclaimed and allocated to devices as needed. This proactive approach ensures that IP addresses are utilized optimally within the network.

The proper assignment of IP addresses is crucial for maintaining network security and efficiency. Throughout this guide, we have covered the basics of IP addresses, explored different methods of IP address assignment, and discussed considerations for efficient allocation.

In conclusion, understanding IP address assignment in the same network is essential for network administrators and technical professionals. By following proper allocation methods such as DHCP or static IP assignment, organizations can ensure that each device on their network has a unique identifier. This not only enables effective communication and data transfer but also enhances network security by preventing unauthorized access.

Moreover, considering factors like subnetting, scalability, and future growth can help optimize IP address allocation within a network. Network administrators should carefully plan and allocate IP addresses to avoid conflicts or wastage of resources.

Overall, a well-managed IP address assignment process is vital for the smooth functioning of any network. It allows devices to connect seamlessly while ensuring security measures are in place. By adhering to best practices and staying updated with advancements in networking technology, organizations can effectively manage their IP address assignments.

In conclusion, this guide has provided a comprehensive overview of IP address assignment in the same network. We hope it has equipped you with the knowledge needed to make informed decisions regarding your network's IP address allocation. Remember that proper IP address assignment is not only important for connectivity but also plays a significant role in maintaining online security and optimizing network performance.

Enhance Online Security: The Ultimate Guide to Conceal Your IP Address

Alternative Methods to Conceal Your IP Address Without a VPN

Maintain Privacy: Learn How to Alter Your IP Address

The Significance of IP Address for Online Security and Privacy

Comprehensive Handbook on VPNs, IP Addresses, and Proxy Servers

  • Study Guides
  • Homework Questions

HAP 618 C2 Week 1 assignment

  • Computer Science

IMAGES

  1. How to Get the Country from IP Addresses (Geocoding)

    ip address country assignment

  2. ip-address-assignment

    ip address country assignment

  3. IP Address Assignment Tool : Pixelink Support

    ip address country assignment

  4. A Beginner's Guide to IP Addresses on Home Networks

    ip address country assignment

  5. Ip Map Of The World

    ip address country assignment

  6. Country to IP Address or ASN

    ip address country assignment

VIDEO

  1. VIDEO 03 : IWLAN IP Address Assignment

  2. how to assign ip address to outdoor cpe5210 router

  3. True or False? Your IP address gives your location? #shorts #iphone #android #starlink #vpn

  4. WPML Autodetect Redirect IP

  5. How to change IP address to other country

  6. How can I use another country IP address?

COMMENTS

  1. List of countries by IPv4 address allocation

    This is a list of countries by IPv4 address allocation, as of 2 April 2012.It includes 252 areas, including all United Nations member states, plus the Holy See, Kosovo and Taiwan.. There are 2 32 (over four billion) IP addresses in the IPv4 protocol. Of these, almost 600 million are reserved and cannot be used for public routing. The rest are allocated to countries by the Internet Assigned ...

  2. IP Address Ranges by Country

    There are 249 countries listed below, and each link will bring you to a new page containing the respective IP address ranges. If you are interested to learn more about the ranking of IP addresses allocated for each country, please visit IP Address Reports for details. Afghanistan. Aland Islands. Albania.

  3. IPv4 Address Space Allocation By Country

    162. 🇿🇼 Zimbabwe. 227,609. 189. Unspecified. 1,459,270. 2,723. Find the IP address assignment for a total of 251 countries here on ipaddress.com. Learn more about the IP address allocation for countries from "Afghanistan" to "Zimbabwe".

  4. IANA IPv4 Address Space Registry

    Administratively Scoped IP Multicast : Reserved for future use (formerly "Class E") . Reserved by protocol. For authoritative registration, see [IANA registry iana-ipv4-special-registry]. 255.255.255.255 is reserved for "limited broadcast" destination address and .

  5. IP Address Blocks by Country 2023

    The United States holds the largest share of IP addresses, with over 1.2 billion assigned - more than any other nation. Early network growth and limited state intervention in telecom contributed to this supersized allocation. China, Japan, Germany, the United Kingdom, and France round out the top IP address holders, reflecting large ...

  6. IP Address by Country 2024

    China is followed by Japan with 202,183,168 and the United Kingdom with 123,500,144. Germany has the fifth-highest number of IPv4 addresses with 118,132,104. Vatican City, which has the smallest population of any sovereign state, has 17,920 IPv4 addresses. This equates to 21,435 IP addresses per 1,000 people (because Vatican City has fewer than ...

  7. Number Resources

    We are responsible for global coordination of the Internet Protocol addressing systems, as well as the Autonomous System Numbers used for routing Internet traffic. Currently there are two types of Internet Protocol (IP) addresses in active use: IP version 4 (IPv4) and IP version 6 (IPv6). IPv4 was initially deployed on 1 January 1983 and is ...

  8. IP Address Lookup

    IP-based Geolocation is the mapping of an IP address or MAC address to the real-world geographic location of an Internet-connected computing or a mobile device. Geolocation involves mapping IP addresses to the country, region (city), latitude/longitude, ISP, and domain name among other useful things. 2.

  9. IP Address Allocation by Country

    IPv6 Allocation Excluding Reserved Addresses. Finally, to put things into size perspective, all the IPv4 address space is 2^32 = 4,294,967,296 IP addresses. Every IPv6 RIR has been assigned more than a /12. A single /12 has 2^52 = 4,503,599,627,370,496 /64s! Each /64 contains 2^64 IP addresses. Comparing 2^32 and 2^52 visual is meaningless, the ...

  10. IP address

    An Internet Protocol address (IP address) is a numerical label such as 192.0.2.1 that is assigned to a device connected to a computer network that uses the Internet Protocol for communication. IP addresses serve two main functions: network interface identification, and location addressing.. Internet Protocol version 4 (IPv4) defines an IP address as a 32-bit number.

  11. geolocation

    Because as far as I understand, countries have specific ranges and ip addresses assigned in those ranges simply match with that country name. And your script also does that, no? - Onur. ... IP_Address country 0 48.151.136.76 US 1 94.9.145.169 GB 2 58.94.157.121 JP 3 193.187.41.186 AT 4 125.96.20.172 CN Time: 80.53318452835083s <class ...

  12. IP to Country Lookup, Resolve IP to Country

    Free IP to Country lookup tool to map an IP address to a country. Find out the country code and country name of an IPv4 an IPv6 address. For example, the country of the IP address 66.249.90.77 is US (United States), of 113.160.112.242 is VN (Vietnam). Enter the IP below to find the country: Get IP Country.

  13. Worldwide IP ranges

    Get insights on how ip ranges are distributed accross the world. 🇦🇫 Afghanistan. 🇦🇱 Albania. 🇩🇿 Algeria. 🇦🇸 American Samoa. 🇦🇩 Andorra. 🇦🇴 Angola.

  14. IP Address Blocks By Country

    An IP address is assigned to an ISP or hosting provider that provides Internet services in a certain country. Further, ISPs and hosting services allocate IP addresses to their subscribers, private persons or companies. IP address blocks/ranges by country. This page displays the IPv4 address ranges organized by country.

  15. Instant IP Address Lookup

    Look up IP Address Location. If you can find out the IPv4 or IPv6 address of an Internet user, you can get an idea what part of the country or world they're in by using our IP Lookup tool. What to do: Enter the IP address you're curious about in the box below, then click "Get IP Details." Get IP Details.

  16. How are IP addresses assigned?

    When you're connected to a network, your computer or smart device will obtain an IP address either from your ISP or your router. There are 2 ways how you can assign an IP address to your device: (1) dynamically via DHCP or (2) statically by manually assigning an IP address yourself. In either case, you must use the IP address that is provided ...

  17. United States

    Do you want to know how many IP addresses are allocated and assigned for United States Country? Visit tools.tracemyip.org and search by country to find out the details of static and dynamic IP addresses for any country in the world. You can also lookup the hardware IP address of any host and see its location map, reverse DNS, and activity.

  18. List of assigned /8 IPv4 address blocks

    Each / 8 block contains 256 3 = 2 24 = 16,777,216 addresses, which covers the whole range of the last three delimited segments of an IP address. This means that 256 /8 address blocks fit into the entire IPv4 space. As IPv4 address exhaustion has advanced to its final stages, some organizations, such as Stanford University, formerly using 36.0.0 ...

  19. Major IP Addresses Blocks By Country

    In this section, you can find the list of all major IP address blocks allocated for each country. For countries in europe and in the middle east, the name of the company/Internet provider that own these IP blocks is also displayed. In order to show only the major IP blocks, only IP blocks with 4096 addresses or more were added to the list.

  20. What Is My IP Address

    My IP address information shows your IP location; city, region, country, ISP and location on a map. Many proxy servers, VPNs, and Tor exit nodes give themselves away. ... A public IP address is a unique numerical label assigned to each device connected to the Internet, allowing for the identification and communication between devices on a ...

  21. internationalization

    Looking at the wikipedia page on IP Addresses:. The Internet Assigned Numbers Authority (IANA) manages the IP address space allocations globally and delegates five regional Internet registries (RIRs) to allocate IP address blocks to local Internet registries (Internet service providers) and other entities.

  22. How Do IP Addresses Work?

    An IP address is always a set of four numbers like that. Each number can range from 0 to 255. So, the full IP addressing range goes from 0.0.0.0 to 255.255.255.255. The reason each number can only reach up to 255 is that each of the numbers is really an eight digit binary number (sometimes called an octet).

  23. Understanding IP Address Assignment: A Complete Guide

    In simple terms, an IP address is a numerical label assigned to each device connected to a computer network that uses the Internet Protocol for communication. It consists of four sets of numbers separated by periods (e.g., 192.168..1) and can be either IPv4 or IPv6 format. IP Address Allocation Methods.

  24. HAP 618 C2 Week 1 assignment (docx)

    Donia Hossain HAP 618 C2 Week 1 Assignment 1. My computers IP address is 192.168.1.157. This IP address is private. The MAC address of my computer is c8:69:cd:bb:37:92. 2. If one enters the wrong net mask in a local computer's network configuration than there will be issues with IP address, network communications, and routing issues. 3.