Reset password New user? Sign up

Existing user? Log in

Hungarian Maximum Matching Algorithm

Already have an account? Log in here.

The Hungarian matching algorithm , also called the Kuhn-Munkres algorithm, is a \(O\big(|V|^3\big)\) algorithm that can be used to find maximum-weight matchings in bipartite graphs , which is sometimes called the assignment problem . A bipartite graph can easily be represented by an adjacency matrix , where the weights of edges are the entries. Thinking about the graph in terms of an adjacency matrix is useful for the Hungarian algorithm.

A matching corresponds to a choice of 1s in the adjacency matrix, with at most one 1 in each row and in each column.

The Hungarian algorithm solves the following problem:

In a complete bipartite graph \(G\), find the maximum-weight matching. (Recall that a maximum-weight matching is also a perfect matching.)

This can also be adapted to find the minimum-weight matching.

Say you are having a party and you want a musician to perform, a chef to prepare food, and a cleaning service to help clean up after the party. There are three companies that provide each of these three services, but one company can only provide one service at a time (i.e. Company B cannot provide both the cleaners and the chef). You are deciding which company you should purchase each service from in order to minimize the cost of the party. You realize that is an example of the assignment problem, and set out to make a graph out of the following information: \(\quad\) Company\(\quad\) \(\quad\) Cost for Musician\(\quad\) \(\quad\) Cost for Chef\(\quad\) \(\quad\) Cost for Cleaners\(\quad\) \(\quad\) Company A\(\quad\) \(\quad\) $108\(\quad\) \(\quad\) $125\(\quad\) \(\quad\) $150\(\quad\) \(\quad\) Company B\(\quad\) \(\quad\) $150\(\quad\) \(\quad\) $135\(\quad\) \(\quad\) $175\(\quad\) \(\quad\) Company C\(\quad\) \(\quad\) $122\(\quad\) \(\quad\) $148\(\quad\) \(\quad\) $250\(\quad\) Can you model this table as a graph? What are the nodes? What are the edges? Show Answer The nodes are the companies and the services. The edges are weighted by the price.

What are some ways to solve the problem above? Since the table above can be thought of as a \(3 \times 3\) matrix, one could certainly solve this problem using brute force, checking every combination and seeing what yields the lowest price. However, there are \(n!\) combinations to check, and for large \(n\), this method becomes very inefficient very quickly.

The Hungarian Algorithm Using an Adjacency Matrix

The hungarian algorithm using a graph.

With the cost matrix from the example above in mind, the Hungarian algorithm operates on this key idea: if a number is added to or subtracted from all of the entries of any one row or column of a cost matrix, then an optimal assignment for the resulting cost matrix is also an optimal assignment for the original cost matrix.

The Hungarian Method [1] Subtract the smallest entry in each row from all the other entries in the row. This will make the smallest entry in the row now equal to 0. Subtract the smallest entry in each column from all the other entries in the column. This will make the smallest entry in the column now equal to 0. Draw lines through the row and columns that have the 0 entries such that the fewest lines possible are drawn. If there are \(n\) lines drawn, an optimal assignment of zeros is possible and the algorithm is finished. If the number of lines is less than \(n\), then the optimal number of zeroes is not yet reached. Go to the next step. Find the smallest entry not covered by any line. Subtract this entry from each row that isn’t crossed out, and then add it to each column that is crossed out. Then, go back to Step 3.
Solve for the optimal solution for the example in the introduction using the Hungarian algorithm described above. Here is the initial adjacency matrix: Subtract the smallest value in each row from the other values in the row: Now, subtract the smallest value in each column from all other values in the column: Draw lines through the row and columns that have the 0 entries such that the fewest possible lines are drawn: There are 2 lines drawn, and 2 is less than 3, so there is not yet the optimal number of zeroes. Find the smallest entry not covered by any line. Subtract this entry from each row that isn’t crossed out, and then add it to each column that is crossed out. Then, go back to Step 3. 2 is the smallest entry. First, subtract from the uncovered rows: Now add to the covered columns: Now go back to step 3, drawing lines through the rows and columns that have 0 entries: There are 3 lines (which is \(n\)), so we are done. The assignment will be where the 0's are in the matrix such that only one 0 per row and column is part of the assignment. Replace the original values: The Hungarian algorithm tells us that it is cheapest to go with the musician from company C, the chef from company B, and the cleaners from company A. We can verify this by brute force. 108 + 135 + 250 = 493 108 + 148 + 175 = 431 150 + 125 + 250 = 525 150 + 148 + 150 = 448 122 + 125 + 175 = 422 122 + 135 + 150 = 407. We can see that 407 is the lowest price and matches the assignment the Hungarian algorithm determined. \(_\square\)

The Hungarian algorithm can also be executed by manipulating the weights of the bipartite graph in order to find a stable, maximum (or minimum) weight matching. This can be done by finding a feasible labeling of a graph that is perfectly matched, where a perfect matching is denoted as every vertex having exactly one edge of the matching.

How do we know that this creates a maximum-weight matching?

A feasible labeling on a perfect match returns a maximum-weighted matching. Suppose each edge \(e\) in the graph \(G\) connects two vertices, and every vertex \(v\) is covered exactly once. With this, we have the following inequality: \[w(M’) = \sum_{e\ \epsilon\ E} w(e) \leq \sum_{e\ \epsilon\ E } \big(l(e_x) + l(e_y)\big) = \sum_{v\ \epsilon\ V} l(v),\] where \(M’\) is any perfect matching in \(G\) created by a random assignment of vertices, and \(l(x)\) is a numeric label to node \(x\). This means that \(\sum_{v\ \epsilon\ V}\ l(v)\) is an upper bound on the cost of any perfect matching. Now let \(M\) be a perfect match in \(G\), then \[w(M) = \sum_{e\ \epsilon\ E} w(e) = \sum_{v\ \epsilon\ V}\ l(v).\] So \(w(M’) \leq w(M)\) and \(M\) is optimal. \(_\square\)

Start the algorithm by assigning any weight to each individual node in order to form a feasible labeling of the graph \(G\). This labeling will be improved upon by finding augmenting paths for the assignment until the optimal one is found.

A feasible labeling is a labeling such that

\(l(x) + l(y) \geq w(x,y)\ \forall x \in X, y \in Y\), where \(X\) is the set of nodes on one side of the bipartite graph, \(Y\) is the other set of nodes, \(l(x)\) is the label of \(x\), etc., and \(w(x,y)\) is the weight of the edge between \(x\) and \(y\).

A simple feasible labeling is just to label a node with the number of the largest weight from an edge going into the node. This is certain to be a feasible labeling because if \(A\) is a node connected to \(B\), the label of \(A\) plus the label of \(B\) is greater than or equal to the weight \(w(x,y)\) for all \(y\) and \(x\).

A feasible labeling of nodes, where labels are in red [2] .

Imagine there are four soccer players and each can play a few positions in the field. The team manager has quantified their skill level playing each position to make assignments easier.

How can players be assigned to positions in order to maximize the amount of skill points they provide?

The algorithm starts by labeling all nodes on one side of the graph with the maximum weight. This can be done by finding the maximum-weighted edge and labeling the adjacent node with it. Additionally, match the graph with those edges. If a node has two maximum edges, don’t connect them.

Although Eva is the best suited to play defense, she can't play defense and mid at the same time!

If the matching is perfect, the algorithm is done as there is a perfect matching of maximum weights. Otherwise, there will be two nodes that are not connected to any other node, like Tom and Defense. If this is the case, begin iterating.

Improve the labeling by finding the non-zero label vertex without a match, and try to find the best assignment for it. Formally, the Hungarian matching algorithm can be executed as defined below:

The Hungarian Algorithm for Graphs [3] Given: the labeling \(l\), an equality graph \(G_l = (V, E_l)\), an initial matching \(M\) in \(G_l\), and an unmatched vertex \(u \in V\) and \(u \notin M\) Augmenting the matching A path is augmenting for \(M\) in \(G_l\) if it alternates between edges in the matching and edges not in the matching, and the first and last vertices are free vertices , or unmatched, in \(M\). We will keep track of a candidate augmenting path starting at the vertex \(u\). If the algorithm finds an unmatched vertex \(v\), add on to the existing augmenting path \(p\) by adding the \(u\) to \(v\) segment. Flip the matching by replacing the edges in \(M\) with the edges in the augmenting path that are not in \(M\) \((\)in other words, the edges in \(E_l - M).\) Improving the labeling \(S \subseteq X\) and \(T \subseteq Y,\) where \(S\) and \(T\) represent the candidate augmenting alternating path between the matching and the edges not in the matching. Let \(N_l(S)\) be the neighbors to each node that is in \(S\) along edges in \(E_l\) such that \(N_l(S) = \{v|\forall u \in S: (u,v) \in E_l\}\). If \(N_l(S) = T\), then we cannot increase the size of the alternating path (and therefore can't further augment), so we need to improve the labeling. Let \(\delta_l\) be the minimum of \(l(u) + l(v) - w(u,v)\) over all of the \(u \in S\) and \(v \notin T\). Improve the labeling \(l\) to \(l'\): If \(r \in S,\) then \(l'(r) = l(r) - \delta_l,\) If \(r \in T,\) then \(l'(r) = l(r) + \delta_l.\) If \(r \notin S\) and \(r \notin T,\) then \(l'(r) = l(r).\) \(l'\) is a valid labeling and \(E_l \subset E_{l'}.\) Putting it all together: The Hungarian Algorithm Start with some matching \(M\), a valid labeling \(l\), where \(l\) is defined as the labelling \(\forall x \in X, y \in Y| l(y) = 0, l(x) = \text{ max}_{y \in Y}(w\big(x, y)\big)\). Do these steps until a perfect matching is found \((\)when \(M\) is perfect\():\) (a) Look for an augmenting path in \(M.\) (b) If an augmenting path does not exist, improve the labeling and then go back to step (a).

Each step will increase the size of the matching \(M\) or it will increase the size of the set of labeled edges, \(E_l\). This means that the process will eventually terminate since there are only so many edges in the graph \(G\). [4]

When the process terminates, \(M\) will be a perfect matching. By the Kuhn-Munkres theorem , this means that the matching is a maximum-weight matching.

The algorithm defined above can be implemented in the soccer scenario. First, the conflicting node is identified, implying that there is an alternating tree that must be reconfigured.

There is an alternating path between defense, Eva, mid, and Tom.

To find the best appropriate node, find the minimum \(\delta_l\), as defined in step 4 above, where \(l_u\) is the label for player \(u,\) \(l_v\) is the label for position \(v,\) and \(w_{u, v}\) is the weight on that edge.

The \(\delta_l\) of each unmatched node is computed, where the minimum is found to be a value of 2, between Tom playing mid \((8 + 0 – 6 = 2).\)

The labels are then augmented and the new edges are graphed in the example. Notice that defense and mid went down by 2 points, whereas Eva’s skillset got back two points. However, this is expected as Eva can't play in both positions at once.

Augmenting path leads to relabeling of nodes, which gives rise to the maximum-weighted path.

These new edges complete the perfect matching of the graph, which implies that a maximum-weighted graph has been found and the algorithm can terminate.

The complexity of the algorithm will be analyzed using the graph-based technique as a reference, yet the result is the same as for the matrix-based one.

Algorithm analysis [3] At each \(a\) or \(b\) step, the algorithm adds one edge to the matching and this happens \(O\big(|V|\big)\) times. It takes \(O\big(|V|\big)\) time to find the right vertex for the augmenting (if there is one at all), and it is \(O\big(|V|\big)\) time to flip the matching. Improving the labeling takes \(O\big(|V|\big)\) time to find \(\delta_l\) and to update the labelling accordingly. We might have to improve the labeling up to \(O\big(|V|\big)\) times if there is no augmenting path. This makes for a total of \(O\big(|V|^2\big)\) time. In all, there are \(O\big(|V|\big)\) iterations each taking \(O\big(|V|\big)\) work, leading to a total running time of \(O\big(|V|^3\big)\).
  • Matching Algorithms
  • Bruff, D. The Assignment Problem and the Hungarian Method . Retrieved June 26, 2016, from http://www.math.harvard.edu/archive/20_spring_05/handouts/assignment_overheads.pdf
  • Golin, M. Bipartite Matching & the Hungarian Method . Retrieved Retrieved June 26th, 2016, from http://www.cse.ust.hk/~golin/COMP572/Notes/Matching.pdf
  • Grinman, A. The Hungarian Algorithm for Weighted Bipartite Graphs . Retrieved June 26, 2016, from http://math.mit.edu/~rpeng/18434/hungarianAlgorithm.pdf
  • Golin, M. Bipartite Matching & the Hungarian Method . Retrieved June 26, 2016, from http://www.cse.ust.hk/~golin/COMP572/Notes/Matching.pdf

Problem Loading...

Note Loading...

Set Loading...

HungarianAlgorithm.com

Index     Assignment problem     Hungarian algorithm     Solve online    

Solve an assignment problem online

Fill in the cost matrix of an assignment problem and click on 'Solve'. The optimal assignment will be determined and a step by step explanation of the hungarian algorithm will be given.

Fill in the cost matrix ( random cost matrix ):

Don't show the steps of the Hungarian algorithm Maximize the total cost

HungarianAlgorithm.com © 2013-2024

Hungarian Method

Class Registration Banner

The Hungarian method is a computational optimization technique that addresses the assignment problem in polynomial time and foreshadows following primal-dual alternatives. In 1955, Harold Kuhn used the term “Hungarian method” to honour two Hungarian mathematicians, Dénes Kőnig and Jenő Egerváry. Let’s go through the steps of the Hungarian method with the help of a solved example.

Hungarian Method to Solve Assignment Problems

The Hungarian method is a simple way to solve assignment problems. Let us first discuss the assignment problems before moving on to learning the Hungarian method.

What is an Assignment Problem?

A transportation problem is a type of assignment problem. The goal is to allocate an equal amount of resources to the same number of activities. As a result, the overall cost of allocation is minimised or the total profit is maximised.

Because available resources such as workers, machines, and other resources have varying degrees of efficiency for executing different activities, and hence the cost, profit, or loss of conducting such activities varies.

Assume we have ‘n’ jobs to do on ‘m’ machines (i.e., one job to one machine). Our goal is to assign jobs to machines for the least amount of money possible (or maximum profit). Based on the notion that each machine can accomplish each task, but at variable levels of efficiency.

Hungarian Method Steps

Check to see if the number of rows and columns are equal; if they are, the assignment problem is considered to be balanced. Then go to step 1. If it is not balanced, it should be balanced before the algorithm is applied.

Step 1 – In the given cost matrix, subtract the least cost element of each row from all the entries in that row. Make sure that each row has at least one zero.

Step 2 – In the resultant cost matrix produced in step 1, subtract the least cost element in each column from all the components in that column, ensuring that each column contains at least one zero.

Step 3 – Assign zeros

  • Analyse the rows one by one until you find a row with precisely one unmarked zero. Encircle this lonely unmarked zero and assign it a task. All other zeros in the column of this circular zero should be crossed out because they will not be used in any future assignments. Continue in this manner until you’ve gone through all of the rows.
  • Examine the columns one by one until you find one with precisely one unmarked zero. Encircle this single unmarked zero and cross any other zero in its row to make an assignment to it. Continue until you’ve gone through all of the columns.

Step 4 – Perform the Optimal Test

  • The present assignment is optimal if each row and column has exactly one encircled zero.
  • The present assignment is not optimal if at least one row or column is missing an assignment (i.e., if at least one row or column is missing one encircled zero). Continue to step 5. Subtract the least cost element from all the entries in each column of the final cost matrix created in step 1 and ensure that each column has at least one zero.

Step 5 – Draw the least number of straight lines to cover all of the zeros as follows:

(a) Highlight the rows that aren’t assigned.

(b) Label the columns with zeros in marked rows (if they haven’t already been marked).

(c) Highlight the rows that have assignments in indicated columns (if they haven’t previously been marked).

(d) Continue with (b) and (c) until no further marking is needed.

(f) Simply draw the lines through all rows and columns that are not marked. If the number of these lines equals the order of the matrix, then the solution is optimal; otherwise, it is not.

Step 6 – Find the lowest cost factor that is not covered by the straight lines. Subtract this least-cost component from all the uncovered elements and add it to all the elements that are at the intersection of these straight lines, but leave the rest of the elements alone.

Step 7 – Continue with steps 1 – 6 until you’ve found the highest suitable assignment.

Hungarian Method Example

Use the Hungarian method to solve the given assignment problem stated in the table. The entries in the matrix represent each man’s processing time in hours.

\(\begin{array}{l}\begin{bmatrix} & I & II & III & IV & V \\1 & 20 & 15 & 18 & 20 & 25 \\2 & 18 & 20 & 12 & 14 & 15 \\3 & 21 & 23 & 25 & 27 & 25 \\4 & 17 & 18 & 21 & 23 & 20 \\5 & 18 & 18 & 16 & 19 & 20 \\\end{bmatrix}\end{array} \)

With 5 jobs and 5 men, the stated problem is balanced.

\(\begin{array}{l}A = \begin{bmatrix}20 & 15 & 18 & 20 & 25 \\18 & 20 & 12 & 14 & 15 \\21 & 23 & 25 & 27 & 25 \\17 & 18 & 21 & 23 & 20 \\18 & 18 & 16 & 19 & 20 \\\end{bmatrix}\end{array} \)

Subtract the lowest cost element in each row from all of the elements in the given cost matrix’s row. Make sure that each row has at least one zero.

\(\begin{array}{l}A = \begin{bmatrix}5 & 0 & 3 & 5 & 10 \\6 & 8 & 0 & 2 & 3 \\0 & 2 & 4 & 6 & 4 \\0 & 1 & 4 & 6 & 3 \\2 & 2 & 0 & 3 & 4 \\\end{bmatrix}\end{array} \)

Subtract the least cost element in each Column from all of the components in the given cost matrix’s Column. Check to see if each column has at least one zero.

\(\begin{array}{l}A = \begin{bmatrix}5 & 0 & 3 & 3 & 7 \\6 & 8 & 0 & 0 & 0 \\0 & 2 & 4 & 4 & 1 \\0 & 1 & 4 & 4 & 0 \\2 & 2 & 0 & 1 & 1 \\\end{bmatrix}\end{array} \)

When the zeros are assigned, we get the following:

Hungarian Method

The present assignment is optimal because each row and column contain precisely one encircled zero.

Where 1 to II, 2 to IV, 3 to I, 4 to V, and 5 to III are the best assignments.

Hence, z = 15 + 14 + 21 + 20 + 16 = 86 hours is the optimal time.

Practice Question on Hungarian Method

Use the Hungarian method to solve the following assignment problem shown in table. The matrix entries represent the time it takes for each job to be processed by each machine in hours.

\(\begin{array}{l}\begin{bmatrix}J/M & I & II & III & IV & V \\1 & 9 & 22 & 58 & 11 & 19 \\2 & 43 & 78 & 72 & 50 & 63 \\3 & 41 & 28 & 91 & 37 & 45 \\4 & 74 & 42 & 27 & 49 & 39 \\5 & 36 & 11 & 57 & 22 & 25 \\\end{bmatrix}\end{array} \)

Stay tuned to BYJU’S – The Learning App and download the app to explore all Maths-related topics.

Frequently Asked Questions on Hungarian Method

What is hungarian method.

The Hungarian method is defined as a combinatorial optimization technique that solves the assignment problems in polynomial time and foreshadowed subsequent primal–dual approaches.

What are the steps involved in Hungarian method?

The following is a quick overview of the Hungarian method: Step 1: Subtract the row minima. Step 2: Subtract the column minimums. Step 3: Use a limited number of lines to cover all zeros. Step 4: Add some more zeros to the equation.

What is the purpose of the Hungarian method?

When workers are assigned to certain activities based on cost, the Hungarian method is beneficial for identifying minimum costs.

MATHS Related Links

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

optimal assignment problem matrix

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

Hungarian Method: Assignment Problem

Hungarian Method is an efficient method for solving assignment problems .

This method is based on the following principle:

  • If a constant is added to, or subtracted from, every element of a row and/or a column of the given cost matrix of an assignment problem, the resulting assignment problem has the same optimal solution as the original problem.

Hungarian Algorithm

The objective of this section is to examine a computational method - an algorithm - for deriving solutions to the assignment problems. The following steps summarize the approach:

Steps in Hungarian Method

1. Identify the minimum element in each row and subtract it from every element of that row.

2. Identify the minimum element in each column and subtract it from every element of that column.

3. Make the assignments for the reduced matrix obtained from steps 1 and 2 in the following way:

  • For every zero that becomes assigned, cross out (X) all other zeros in the same row and the same column.
  • If for a row and a column, there are two or more zeros and one cannot be chosen by inspection, then you are at liberty to choose the cell arbitrarily for assignment.

4. An optimal assignment is found, if the number of assigned cells equals the number of rows (and columns). In case you have chosen a zero cell arbitrarily, there may be alternate optimal solutions. If no optimal solution is found, go to step 5.

5. Draw the minimum number of vertical and horizontal lines necessary to cover all the zeros in the reduced matrix obtained from step 3 by adopting the following procedure:

  • Mark all the rows that do not have assignments.
  • Mark all the columns (not already marked) which have zeros in the marked rows.
  • Mark all the rows (not already marked) that have assignments in marked columns.
  • Repeat steps 5 (i) to (iii) until no more rows or columns can be marked.
  • Draw straight lines through all unmarked rows and marked columns.

You can also draw the minimum number of lines by inspection.

6. Select the smallest element from all the uncovered elements. Subtract this smallest element from all the uncovered elements and add it to the elements, which lie at the intersection of two lines. Thus, we obtain another reduced matrix for fresh assignment.

7. Go to step 3 and repeat the procedure until you arrive at an optimal assignment.

For the time being we assume that number of jobs is equal to number of machines or persons. Later in the chapter, we will remove this restrictive assumption and consider a special case where no. of facilities and tasks are not equal.

Share This Article

Operations Research Simplified Back Next

Goal programming Linear programming Simplex Method Transportation Problem

  • DSA Tutorial
  • Data Structures
  • Linked List
  • Dynamic Programming
  • Binary Tree
  • Binary Search Tree
  • Divide & Conquer
  • Mathematical
  • Backtracking
  • Branch and Bound
  • Pattern Searching

Job Assignment Problem using Branch And Bound

Let there be N workers and N jobs. Any worker can be assigned to perform any job, incurring some cost that may vary depending on the work-job assignment. It is required to perform all jobs by assigning exactly one worker to each job and exactly one job to each agent in such a way that the total cost of the assignment is minimized.

jobassignment

Let us explore all approaches for this problem.

Solution 1: Brute Force  

We generate n! possible job assignments and for each such assignment, we compute its total cost and return the less expensive assignment. Since the solution is a permutation of the n jobs, its complexity is O(n!).

Solution 2: Hungarian Algorithm  

The optimal assignment can be found using the Hungarian algorithm. The Hungarian algorithm has worst case run-time complexity of O(n^3).

Solution 3: DFS/BFS on state space tree  

A state space tree is a N-ary tree with property that any path from root to leaf node holds one of many solutions to given problem. We can perform depth-first search on state space tree and but successive moves can take us away from the goal rather than bringing closer. The search of state space tree follows leftmost path from the root regardless of initial state. An answer node may never be found in this approach. We can also perform a Breadth-first search on state space tree. But no matter what the initial state is, the algorithm attempts the same sequence of moves like DFS.

Solution 4: Finding Optimal Solution using Branch and Bound  

The selection rule for the next node in BFS and DFS is “blind”. i.e. the selection rule does not give any preference to a node that has a very good chance of getting the search to an answer node quickly. The search for an optimal solution can often be speeded by using an “intelligent” ranking function, also called an approximate cost function to avoid searching in sub-trees that do not contain an optimal solution. It is similar to BFS-like search but with one major optimization. Instead of following FIFO order, we choose a live node with least cost. We may not get optimal solution by following node with least promising cost, but it will provide very good chance of getting the search to an answer node quickly.

There are two approaches to calculate the cost function:  

  • For each worker, we choose job with minimum cost from list of unassigned jobs (take minimum entry from each row).
  • For each job, we choose a worker with lowest cost for that job from list of unassigned workers (take minimum entry from each column).

In this article, the first approach is followed.

Let’s take below example and try to calculate promising cost when Job 2 is assigned to worker A. 

jobassignment2

Since Job 2 is assigned to worker A (marked in green), cost becomes 2 and Job 2 and worker A becomes unavailable (marked in red). 

jobassignment3

Now we assign job 3 to worker B as it has minimum cost from list of unassigned jobs. Cost becomes 2 + 3 = 5 and Job 3 and worker B also becomes unavailable. 

jobassignment4

Finally, job 1 gets assigned to worker C as it has minimum cost among unassigned jobs and job 4 gets assigned to worker D as it is only Job left. Total cost becomes 2 + 3 + 5 + 4 = 14. 

jobassignment5

Below diagram shows complete search space diagram showing optimal solution path in green. 

jobassignment6

Complete Algorithm:  

Below is the implementation of the above approach:

Time Complexity: O(M*N). This is because the algorithm uses a double for loop to iterate through the M x N matrix.  Auxiliary Space: O(M+N). This is because it uses two arrays of size M and N to track the applicants and jobs.

Please Login to comment...

Similar reads, improve your coding skills with practice.

 alt=

What kind of Experience do you want to share?

The MBA Institute

Maximisation in an Assignment Problem: Optimizing Assignments for Maximum Benefit

Table of Contents

This blog will explain how to solve assignment problems using optimization techniques to achieve maximum results. Learn the basics, step-by-step approach, and real-world applications of maximizing assignment problems.

In an assignment problem, the goal is to assign n tasks to n agents in such a way that the overall cost or benefit is minimized or maximized. The maximization problem arises when the objective is to maximize the overall benefit rather than minimize the cost.

Understanding Maximisation in an Assignment Problem

The maximization problem can be solved using the Hungarian algorithm, which is a special case of the transportation problem. The algorithm involves converting the assignment problem into a matrix, finding the minimum value in each row, and subtracting it from all the elements in that row. Similarly, we find the minimum value in each column and subtract it from all the elements in that column. This is known as matrix reduction.

Next, we cover all zeros in the matrix using the minimum number of lines. A line covers a row or column that contains a zero. If the minimum number of lines is n, an optimal solution has been found. Otherwise, we continue with the next step.

In step three, we add the minimum uncovered value to each element covered by two lines, and subtract it from each uncovered element. Then, we return to step two and repeat until an optimal solution is found.

Solving Maximisation in an Assignment Problem

The above approach provides a step-by-step process to maximize an assignment problem. Here are the steps in summary:

  • Convert the assignment problem into a matrix.
  • Reduce the matrix by subtracting the minimum value in each row and column.
  • Cover all zeros in the matrix with the minimum number of lines.
  • Add the minimum uncovered value to each element covered by two lines and subtract it from each uncovered element.
  • Repeat from step two until an optimal solution is found.

Real-World Applications

Maximization in an Assignment Problem has numerous real-world applications. For example, it can be used to optimize employee allocation to projects, to allocate tasks in a manufacturing process, or to assign jobs to machines for maximum productivity. By using optimization techniques to maximize the benefits of an assignment problem, businesses can save time, money, and resources.

This blog has provided an overview of Maximisation in an Assignment Problem, explained how to solve it using the Hungarian algorithm, and discussed real-world applications. By following the step-by-step approach, you can optimize your assignments for maximum benefit.

How useful was this post?

Click on a star to rate it!

Average rating 5 / 5. Vote count: 3

No votes so far! Be the first to rate this post.

We are sorry that this post was not useful for you! 😔

Let us improve this post!

Tell us how we can improve this post?

Operations Research

1 Operations Research-An Overview

  • History of O.R.
  • Approach, Techniques and Tools
  • Phases and Processes of O.R. Study
  • Typical Applications of O.R
  • Limitations of Operations Research
  • Models in Operations Research
  • O.R. in real world

2 Linear Programming: Formulation and Graphical Method

  • General formulation of Linear Programming Problem
  • Optimisation Models
  • Basics of Graphic Method
  • Important steps to draw graph
  • Multiple, Unbounded Solution and Infeasible Problems
  • Solving Linear Programming Graphically Using Computer
  • Application of Linear Programming in Business and Industry

3 Linear Programming-Simplex Method

  • Principle of Simplex Method
  • Computational aspect of Simplex Method
  • Simplex Method with several Decision Variables
  • Two Phase and M-method
  • Multiple Solution, Unbounded Solution and Infeasible Problem
  • Sensitivity Analysis
  • Dual Linear Programming Problem

4 Transportation Problem

  • Basic Feasible Solution of a Transportation Problem
  • Modified Distribution Method
  • Stepping Stone Method
  • Unbalanced Transportation Problem
  • Degenerate Transportation Problem
  • Transhipment Problem
  • Maximisation in a Transportation Problem

5 Assignment Problem

  • Solution of the Assignment Problem
  • Unbalanced Assignment Problem
  • Problem with some Infeasible Assignments
  • Maximisation in an Assignment Problem
  • Crew Assignment Problem

6 Application of Excel Solver to Solve LPP

  • Building Excel model for solving LP: An Illustrative Example

7 Goal Programming

  • Concepts of goal programming
  • Goal programming model formulation
  • Graphical method of goal programming
  • The simplex method of goal programming
  • Using Excel Solver to Solve Goal Programming Models
  • Application areas of goal programming

8 Integer Programming

  • Some Integer Programming Formulation Techniques
  • Binary Representation of General Integer Variables
  • Unimodularity
  • Cutting Plane Method
  • Branch and Bound Method
  • Solver Solution

9 Dynamic Programming

  • Dynamic Programming Methodology: An Example
  • Definitions and Notations
  • Dynamic Programming Applications

10 Non-Linear Programming

  • Solution of a Non-linear Programming Problem
  • Convex and Concave Functions
  • Kuhn-Tucker Conditions for Constrained Optimisation
  • Quadratic Programming
  • Separable Programming
  • NLP Models with Solver

11 Introduction to game theory and its Applications

  • Important terms in Game Theory
  • Saddle points
  • Mixed strategies: Games without saddle points
  • 2 x n games
  • Exploiting an opponent’s mistakes

12 Monte Carlo Simulation

  • Reasons for using simulation
  • Monte Carlo simulation
  • Limitations of simulation
  • Steps in the simulation process
  • Some practical applications of simulation
  • Two typical examples of hand-computed simulation
  • Computer simulation

13 Queueing Models

  • Characteristics of a queueing model
  • Notations and Symbols
  • Statistical methods in queueing
  • The M/M/I System
  • The M/M/C System
  • The M/Ek/I System
  • Decision problems in queueing

Procedure, Example Solved Problem | Operations Research - Solution of assignment problems (Hungarian Method) | 12th Business Maths and Statistics : Chapter 10 : Operations Research

Chapter: 12th business maths and statistics : chapter 10 : operations research.

Solution of assignment problems (Hungarian Method)

First check whether the number of rows is equal to the numbers of columns, if it is so, the assignment problem is said to be balanced.

Step :1 Choose the least element in each row and subtract it from all the elements of that row.

Step :2 Choose the least element in each column and subtract it from all the elements of that column. Step 2 has to be performed from the table obtained in step 1.

Step:3 Check whether there is atleast one zero in each row and each column and make an assignment as follows.

optimal assignment problem matrix

Step :4 If each row and each column contains exactly one assignment, then the solution is optimal.

Example 10.7

Solve the following assignment problem. Cell values represent cost of assigning job A, B, C and D to the machines I, II, III and IV.

optimal assignment problem matrix

Here the number of rows and columns are equal.

∴ The given assignment problem is balanced. Now let us find the solution.

Step 1: Select a smallest element in each row and subtract this from all the elements in its row.

optimal assignment problem matrix

Look for atleast one zero in each row and each column.Otherwise go to step 2.

Step 2: Select the smallest element in each column and subtract this from all the elements in its column.

optimal assignment problem matrix

Since each row and column contains atleast one zero, assignments can be made.

Step 3 (Assignment):

optimal assignment problem matrix

Thus all the four assignments have been made. The optimal assignment schedule and total cost is

optimal assignment problem matrix

The optimal assignment (minimum) cost

Example 10.8

Consider the problem of assigning five jobs to five persons. The assignment costs are given as follows. Determine the optimum assignment schedule.

optimal assignment problem matrix

∴ The given assignment problem is balanced.

Now let us find the solution.

The cost matrix of the given assignment problem is

optimal assignment problem matrix

Column 3 contains no zero. Go to Step 2.

optimal assignment problem matrix

Thus all the five assignments have been made. The Optimal assignment schedule and total cost is

optimal assignment problem matrix

The optimal assignment (minimum) cost = ` 9

Example 10.9

Solve the following assignment problem.

optimal assignment problem matrix

Since the number of columns is less than the number of rows, given assignment problem is unbalanced one. To balance it , introduce a dummy column with all the entries zero. The revised assignment problem is

optimal assignment problem matrix

Here only 3 tasks can be assigned to 3 men.

Step 1: is not necessary, since each row contains zero entry. Go to Step 2.

optimal assignment problem matrix

Step 3 (Assignment) :

optimal assignment problem matrix

Since each row and each columncontains exactly one assignment,all the three men have been assigned a task. But task S is not assigned to any Man. The optimal assignment schedule and total cost is

optimal assignment problem matrix

The optimal assignment (minimum) cost = ₹ 35

Related Topics

Privacy Policy , Terms and Conditions , DMCA Policy and Compliant

Copyright © 2018-2023 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.

Quadratic assignment problem

Author: Thomas Kueny, Eric Miller, Natasha Rice, Joseph Szczerba, David Wittmann (SysEn 5800 Fall 2020)

  • 1 Introduction
  • 2.1 Koopmans-Beckman Mathematical Formulation
  • 2.2.1 Parameters
  • 2.3.1 Optimization Problem
  • 2.4 Computational Complexity
  • 2.5 Algorithmic Discussions
  • 2.6 Branch and Bound Procedures
  • 2.7 Linearizations
  • 3.1 QAP with 3 Facilities
  • 4.1 Inter-plant Transportation Problem
  • 4.2 The Backboard Wiring Problem
  • 4.3 Hospital Layout
  • 4.4 Exam Scheduling System
  • 5 Conclusion
  • 6 References

Introduction

The Quadratic Assignment Problem (QAP), discovered by Koopmans and Beckmann in 1957 [1] , is a mathematical optimization module created to describe the location of invisible economic activities. An NP-Complete problem, this model can be applied to many other optimization problems outside of the field of economics. It has been used to optimize backboards, inter-plant transportation, hospital transportation, exam scheduling, along with many other applications not described within this page.

Theory, Methodology, and/or Algorithmic Discussions

Koopmans-beckman mathematical formulation.

Economists Koopmans and Beckman began their investigation of the QAP to ascertain the optimal method of locating important economic resources in a given area. The Koopmans-Beckman formulation of the QAP aims to achieve the objective of assigning facilities to locations in order to minimize the overall cost. Below is the Koopmans-Beckman formulation of the QAP as described by neos-guide.org.

Quadratic Assignment Problem Formulation

{\displaystyle F=(F_{ij})}

Inner Product

{\displaystyle A,B}

Note: The true objective cost function only requires summing entries above the diagonal in the matrix comprised of elements

{\displaystyle F_{i,j}(X_{\phi }DX_{\phi }^{T})_{i,j}}

Since this matrix is symmetric with zeroes on the diagonal, dividing by 2 removes the double count of each element to give the correct cost value. See the Numerical Example section for an example of this note.

Optimization Problem

With all of this information, the QAP can be summarized as:

{\displaystyle \min _{X\in P}\langle F,XDX^{T}\rangle }

Computational Complexity

QAP belongs to the classification of problems known as NP-complete, thus being a computationally complex problem. QAP’s NP-completeness was proven by Sahni and Gonzalez in 1976, who states that of all combinatorial optimization problems, QAP is the “hardest of the hard”. [2]

Algorithmic Discussions

While an algorithm that can solve QAP in polynomial time is unlikely to exist, there are three primary methods for acquiring the optimal solution to a QAP problem:

  • Dynamic Program
  • Cutting Plane

Branch and Bound Procedures

The third method has been proven to be the most effective in solving QAP, although when n > 15, QAP begins to become virtually unsolvable.

The Branch and Bound method was first proposed by Ailsa Land and Alison Doig in 1960 and is the most commonly used tool for solving NP-hard optimization problems.

A branch-and-bound algorithm consists of a systematic enumeration of candidate solutions by means of state space search: the set of candidate solutions is thought of as forming a rooted tree with the full set at the root. The algorithm explores branches of this tree, which represent subsets of the solution set. Before one lists all of the candidate solutions of a branch, the branch is checked against upper and lower estimated bounds on the optimal solution, and the branch is eliminated if it cannot produce a better solution than the best one found so far by the algorithm.

Linearizations

The first attempts to solve the QAP eliminated the quadratic term in the objective function of

{\displaystyle min\sum _{i=1}^{n}\sum _{j=1}^{n}c{_{\phi (i)\phi (j)}}+\sum _{i=1}^{n}b{_{\phi (i)}}}

in order to transform the problem into a (mixed) 0-1 linear program. The objective function is usually linearized by introducing new variables and new linear (and binary) constraints. Then existing methods for (mixed) linear integer programming (MILP) can be applied. The very large number of new variables and constraints, however, usually poses an obstacle for efficiently solving the resulting linear integer programs. MILP formulations provide LP relaxations of the problem which can be used to compute lower bounds.

Numerical Example

Qap with 3 facilities.

{\displaystyle D={\begin{bmatrix}0&5&6\\5&0&3.6\\6&3.6&0\end{bmatrix}}}

Cost for Each Permutation in
Permutation Cost
(123) 91.4
99.8
98.4
86.5
103.3
90

{\displaystyle \phi _{4}=(13)}

Applications

Inter-plant transportation problem.

The QAP was first introduced by Koopmans and Beckmann to address how economic decisions could be made to optimize the transportation costs of goods between both manufacturing plants and locations. [1] Factoring in the location of each of the manufacturing plants as well as the volume of goods between locations to maximize revenue is what distinguishes this from other linear programming assignment problems like the Knapsack Problem.

The Backboard Wiring Problem

As the QAP is focused on minimizing the cost of traveling from one location to another, it is an ideal approach to determining the placement of components in many modern electronics. Leon Steinberg proposed a QAP solution to optimize the layout of elements on a blackboard by minimizing the total amount of wiring required. [4]

When defining the problem Steinberg states that we have a set of n elements

{\displaystyle E=\left\{E_{1},E_{2},...,E_{n}\right\}}

as well as a set of r points

{\displaystyle P_{1},P_{2},...,P_{r}}

In his paper he derives the below formula:

{\displaystyle min\sum _{1\leq i\leq j\leq n}^{}C_{ij}(d_{s(i)s(j))})}

In his paper Steinberg a backboard with a 9 by 4 array, allowing for 36 potential positions for the 34 components that needed to be placed on the backboard. For the calculation, he selected a random initial placement of s1 and chose a random family of 25 unconnected sets.

The initial placement of components is shown below:

optimal assignment problem matrix

After the initial placement of elements, it took an additional 35 iterations to get us to our final optimized backboard layout. Leading to a total of 59 iterations and a final wire length of 4,969.440.

optimal assignment problem matrix

Hospital Layout

Building new hospitals was a common event in 1977 when Alealid N Elshafei wrote his paper on "Hospital Layouts as a Quadratic Assignment Problem". [5] With the high initial cost to construct the hospital and to staff it, it is important to ensure that it is operating as efficiently as possible. Elshafei's paper was commissioned to create an optimization formula to locate clinics within a building in such a way that minimizes the total distance that a patient travels within the hospital throughout the year. When doing a study of a major hospital in Cairo he determined that the Outpatient ward was acting as a bottleneck in the hospital and focused his efforts on optimizing the 17 departments there.

Elshafei identified the following QAP to determine where clinics should be placed:

{\displaystyle min\sum _{i,j}\sum _{k,q}f_{ik}d_{jq}y_{ij}y_{kq}}

For the Cairo hospital with 17 clinics, and one receiving and recording room bringing us to a total of 18 facilities. By running the above optimization Elshafei was able to get the total distance per year down to 11,281,887 from a distance of 13,973,298 based on the original hospital layout.

Exam Scheduling System

The scheduling system uses matrices for Exams, Time Slots, and Rooms with the goal of reducing the rate of schedule conflicts. To accomplish this goal, the “examination with the highest cross faculty student is been prioritized in the schedule after which the examination with the highest number of cross-program is considered and finally with the highest number of repeating student, at each stage group with the highest number of student are prioritized.” [6]

{\displaystyle n!}

  • ↑ 1.0 1.1 1.2 Koopmans, T., & Beckmann, M. (1957). Assignment Problems and the Location of Economic Activities. Econometrica, 25(1), 53-76. doi:10.2307/1907742
  • ↑ 2.0 2.1 Quadratic Assignment Problem. (2020). Retrieved December 14, 2020, from https://neos-guide.org/content/quadratic-assignment-problem
  • ↑ 3.0 3.1 3.2 Burkard, R. E., Çela, E., Pardalos, P. M., & Pitsoulis, L. S. (2013). The Quadratic Assignment Problem. https://www.opt.math.tugraz.at/~cela/papers/qap_bericht.pdf .
  • ↑ 4.0 4.1 Leon Steinberg. The Backboard Wiring Problem: A Placement Algorithm. SIAM Review . 1961;3(1):37.
  • ↑ 5.0 5.1 Alwalid N. Elshafei. Hospital Layout as a Quadratic Assignment Problem. Operational Research Quarterly (1970-1977) . 1977;28(1):167. doi:10.2307/300878
  • ↑ 6.0 6.1 Muktar, D., & Ahmad, Z.M. (2014). Examination Scheduling System Based On Quadratic Assignment.

Navigation menu

arXiv's Accessibility Forum starts next month!

Help | Advanced Search

Computer Science > Data Structures and Algorithms

Title: optimal sketching for residual error estimation for matrix and vector norms.

Abstract: We study the problem of residual error estimation for matrix and vector norms using a linear sketch. Such estimates can be used, for example, to quickly assess how useful a more expensive low-rank approximation computation will be. The matrix case concerns the Frobenius norm and the task is to approximate the $k$-residual $\|A - A_k\|_F$ of the input matrix $A$ within a $(1+\epsilon)$-factor, where $A_k$ is the optimal rank-$k$ approximation. We provide a tight bound of $\Theta(k^2/\epsilon^4)$ on the size of bilinear sketches, which have the form of a matrix product $SAT$. This improves the previous $O(k^2/\epsilon^6)$ upper bound in (Andoni et al. SODA 2013) and gives the first non-trivial lower bound, to the best of our knowledge. In our algorithm, our sketching matrices $S$ and $T$ can both be sparse matrices, allowing for a very fast update time. We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work. For the vector case, we consider the $\ell_p$-norm for $p>2$, where the task is to approximate the $k$-residual $\|x - x_k\|_p$ up to a constant factor, where $x_k$ is the optimal $k$-sparse approximation to $x$. Such vector norms are frequently studied in the data stream literature and are useful for finding frequent items or so-called heavy hitters. We establish an upper bound of $O(k^{2/p}n^{1-2/p}\operatorname{poly}(\log n))$ for constant $\epsilon$ on the dimension of a linear sketch for this problem. Our algorithm can be extended to the $\ell_p$ sparse recovery problem with the same sketching dimension, which seems to be the first such bound for $p > 2$. We also show an $\Omega(k^{2/p}n^{1-2/p})$ lower bound for the sparse recovery problem, which is tight up to a $\mathrm{poly}(\log n)$ factor.
Comments: Published as a conference paper at ICLR 2024
Subjects: Data Structures and Algorithms (cs.DS); Machine Learning (cs.LG)
Cite as: [cs.DS]
  (or [cs.DS] for this version)
  Focus to learn more arXiv-issued DOI via DataCite

Submission history

Access paper:.

  • HTML (experimental)
  • Other Formats

license icon

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

IMAGES

  1. PPT

    optimal assignment problem matrix

  2. Problem Solving Matrix PowerPoint Presentation Slides

    optimal assignment problem matrix

  3. The Problem Prioritization Matrix

    optimal assignment problem matrix

  4. Solved Find the optimal solution for the assignment problem

    optimal assignment problem matrix

  5. Problem Solving Matrix

    optimal assignment problem matrix

  6. Find the optimal solution for the assignment problem with the following

    optimal assignment problem matrix

COMMENTS

  1. Hungarian Algorithm for Assignment Problem

    The Hungarian algorithm, aka Munkres assignment algorithm, utilizes the following theorem for polynomial runtime complexity (worst case O(n 3)) and guaranteed optimality: If a number is added to or subtracted from all of the entries of any one row or column of a cost matrix, then an optimal assignment for the resulting cost matrix is also an ...

  2. Hungarian algorithm

    The Hungarian method is a combinatorial optimization algorithm that solves the assignment problem in polynomial time and which anticipated later primal-dual methods.It was developed and published in 1955 by Harold Kuhn, who gave it the name "Hungarian method" because the algorithm was largely based on the earlier works of two Hungarian mathematicians, Dénes Kőnig and Jenő Egerváry.

  3. Hungarian Maximum Matching Algorithm

    The Hungarian matching algorithm, also called the Kuhn-Munkres algorithm, is a \(O\big(|V|^3\big)\) algorithm that can be used to find maximum-weight matchings in bipartite graphs, which is sometimes called the assignment problem.A bipartite graph can easily be represented by an adjacency matrix, where the weights of edges are the entries.Thinking about the graph in terms of an adjacency ...

  4. Assignment problem

    The formal definition of the assignment problem (or linear assignment problem) is . Given two sets, A and T, together with a weight function C : A × T → R.Find a bijection f : A → T such that the cost function: (, ())is minimized. Usually the weight function is viewed as a square real-valued matrix C, so that the cost function is written down as: , The problem is "linear" because the cost ...

  5. An Assignment Problem solved using the Hungarian Algorithm

    The matrix below shows the cost of assigning a certain worker to a certain job. The objective is to minimize the total cost of the assignment. Below we will explain the Hungarian algorithm using this example. Note that a general description of the algorithm can be found here. Step 1: Subtract row minima.

  6. Optimum Assignment and the Hungarian Algorithm

    The matrix version is much easier to understand, but it does not provide the required insight. ... in the hope that it helps others trying to learn this wonderful algorithm to solve the problem of optimum assignment. The optimal assignment problem is to find a one-to-one match from a set of nodes to another set of nodes, where the edge between ...

  7. Hungarian Algorithm for Assignment Problem

    The Quadratic Assignment Problem (QAP) is an optimization problem that deals with assigning a set of facilities to a set of locations, considering the pairwise distances and flows between them. The problem is to find the assignment that minimizes the total cost or distance, taking into account both the distances and the flows. The distance matrix a

  8. PDF 7.13 Assignment Problem

    Equivalent Assignment Problem c(x, y) 00312 01015 43330 00110 12204 cp(x, y) 3891510 41071614 913111910 813122013 175119 8 13 11 19 13 5 4 3 0 8 9 + 8 - 13 10 Reduced costs. For x # X, y # Y, define cp(x, y) = p(x) + c(x, y) - p(y). Observation 1. Finding a min cost perfect matching with reduced costs

  9. PDF The Assignment Problem and the Hungarian Method

    zero entries of the cost matrix are covered and the minimum number of such lines is used. Step 4. Test for Optimality: (i) If the minimum number of covering lines is n, an optimal assignment of zeros is possible and we are finished. (ii) If the minimum number of covering lines is less than n, an optimal assignment of zeros is not yet possible.

  10. PDF The Hungarian method for the assignment problem

    one can always construct an optimal assignment by a successsion of transfers followed by additional assignments until this is no longer possible. qualification matrix Q = (4. ) is given, where qil = 1 if individual i qualifies for job j and 9.. = 0 otherwise. If an assignment (not necessarily optimal) of certain qualified individuals to

  11. PDF 6 The Optimal Assignment Problem

    Kuhn gave the following algorithm for solving the optimal assignment problem in 1954. He called it the Hungarian method since it was inspired by Egerv ary's proof of Theorem 6.9. Suppose N is a network obtained from Km;m by giving each edge e an integer weight w(e). The algorithm iteratively constructs a

  12. Solve the assignment problem online

    Solve an assignment problem online. Fill in the cost matrix of an assignment problem and click on 'Solve'. The optimal assignment will be determined and a step by step explanation of the hungarian algorithm will be given. Fill in the cost matrix (random cost matrix):

  13. Assignment Problem and Hungarian Algorithm

    Converting this problem to a formal mathematical definition we can form the following equations: - cost matrix, where cij - cost of worker i to perform job j. - resulting binary matrix, where xij = 1 if and only if ith worker is assigned to jth job. - one worker to one job assignment. - one job to one worker assignment. - total cost ...

  14. PDF On Approximation Methods for the Assignment Problem*

    The true optimal assignment for this new matrix is obtained, thereby desig- nating which (independent) sub-blocks of assignments are to be taken. Since the sub-blocks of assignments are independent in themselves, a feasible assignment for the NXN matrix is determined. 2.2. Row/Column-Scan Method.

  15. PDF 17 The Assignment Problem

    Then X∗ solves the assignment problem specified by C since z(X∗)=0and z(X) ≥ 0 for any other solution X.ByExample5,X∗ is also an optimal solution to the assignment problem specified by C.NotethatX∗ corresponds to the permutation 132. The method used to obtain an optimal solution to the assignment problem specified by C

  16. Hungarian Method

    The Hungarian method is a computational optimization technique that addresses the assignment problem in polynomial time and foreshadows following primal-dual alternatives. In 1955, Harold Kuhn used the term "Hungarian method" to honour two Hungarian mathematicians, Dénes Kőnig and Jenő Egerváry. Let's go through the steps of the Hungarian method with the help of a solved example.

  17. Hungarian Method, Assignment Problem, Hungarian Algorithm

    Hungarian Method is an efficient method for solving assignment problems. This method is based on the following principle: If a constant is added to, or subtracted from, every element of a row and/or a column of the given cost matrix of an assignment problem, the resulting assignment problem has the same optimal solution as the original problem.

  18. How to Solve the Assignment Problem: A Complete Guide

    Step 1: Set up the cost matrix. The first step in solving the assignment problem is to set up the cost matrix, which represents the cost of assigning a task to an agent. The matrix should be square and have the same number of rows and columns as the number of tasks and agents, respectively.

  19. Job Assignment Problem using Branch And Bound

    Solution 1: Brute Force. We generate n! possible job assignments and for each such assignment, we compute its total cost and return the less expensive assignment. Since the solution is a permutation of the n jobs, its complexity is O (n!). Solution 2: Hungarian Algorithm. The optimal assignment can be found using the Hungarian algorithm.

  20. Maximisation in an Assignment Problem: Optimizing Assignments for

    Convert the assignment problem into a matrix. Reduce the matrix by subtracting the minimum value in each row and column. ... Repeat from step two until an optimal solution is found. Real-World Applications. Maximization in an Assignment Problem has numerous real-world applications. For example, it can be used to optimize employee allocation to ...

  21. Solution of assignment problems (Hungarian Method)

    The optimal assignment schedule and total cost is. The optimal assignment (minimum) cost = ₹ 38. Example 10.8. Consider the problem of assigning five jobs to five persons. The assignment costs are given as follows. ... The cost matrix of the given assignment problem is. Column 3 contains no zero. Go to Step 2.

  22. Quadratic assignment problem

    For the optimal solution = (), the calculation is as follows: = [] [] [] = [], (), = [] Looking at the figure of the optimal solution, the flow distance values are repeated in this matrix which is why the sum of all elements must be divided by 2. This gives , = so the minimum cost is 86.5.. Optimal Solution for the example with facility/location pairings listed.

  23. PDF The Assignment Problem and Primal-Dual Algorithms

    a column of C, we will not change the optimal solu. ion.Observation 2. Consider an assignment problem with cost matrix C. If C 0, and there exists an assignmen. which only assigns i to j if cij = 0, then this assigment is optimal.These two observations give us an idea for an algorithm: we subtract the minimu.

  24. [2408.08494] Optimal Sketching for Residual Error Estimation for Matrix

    arXivLabs: experimental projects with community collaborators. arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.