what are three common impediments to problem solving

6 Common Problem Solving Barriers and How Can Managers Beat them?

What is the meaning of barriers to problem solving, what are the 6 barriers to problem solving, examples of barriers to problem solving, how to overcome problem solving barriers at work tips for managers, problem solving barriers faqs.

Other Related Blogs

Lack of motivation

Lack of knowledge, lack of resources, emotional barriers, cultural and societal barriers, fear of failure.

  • Lack of motivation: A person who lacks motivation may struggle to complete tasks on time or produce quality work. For example, an employee who is disengaged from their job may procrastinate on essential tasks or show up late to work.
  • Lack of knowledge : Employees who lack knowledge or training may be unable to perform their duties effectively. For example, a new employee unfamiliar with the company’s software systems may struggle to complete tasks on their computer.
  • Lack of resources: Employees may be unable to complete their work due to a lack of resources, such as equipment or technology. For example, a graphic designer who doesn’t have access to the latest design software may struggle to produce high-quality designs.
  • Emotional barriers: Emotional barriers can affect an employee’s ability to perform their job effectively. For example, an employee dealing with a personal issue, such as a divorce, may have trouble focusing on their work and meeting deadlines.
  • Cultural and societal barriers: Cultural and societal barriers can affect an employee’s ability to work effectively. For example, an employee from a different culture may struggle to communicate effectively with colleagues or may feel uncomfortable in a work environment that is not inclusive.
  • Fear of failure : Employees who fear failure may avoid taking on new challenges or may not take risks that could benefit the company. For example, an employee afraid of making mistakes may not take on a leadership role or hesitate to make decisions that could impact the company’s bottom line.
  • Identify and Define the Problem: Define the problem and understand its root cause. This will help you identify the obstacles that are preventing effective problem solving.
  • C ollaborate and Communicate: Work with others to gather information, generate new ideas, and share perspectives. Effective communication can help overcome misunderstandings and promote creative problem solving.
  • Use Creative Problem Solving Techniques: Consider using creative problem solving techniques such as brainstorming, mind mapping, or SWOT analysis to explore new ideas and generate innovative solutions.
  • Embrace Flexibility: Be open to new ideas and approaches. Embracing flexibility can help you overcome fixed mindsets and encourage creativity in problem solving.
  • Invest in Resources: Ensure that you have access to the necessary resources, such as time, money, or personnel, to effectively solve complex problems.
  • Emphasize Continuous Learning: Encourage continuous learning and improvement by seeking feedback, evaluating outcomes, and reflecting on the problem solving process. This can help you identify improvement areas and promote a continuous improvement culture.

How good are you in jumping over problem-solving barriers?

Find out now with the free problem-solving assessment for managers and leaders.

What are the factors affecting problem solving?

What are the five key obstacles to problem solving, can habits be a barrier to problem solving, how do you overcome barriers in problem solving.

Goal setting at work

5 Secrets Of Solid Goal Setting At Work You Can’t Miss

Understanding the world of goal setting coach to reach new heights, master collaborative goal-setting for effective team management (with examples), management by objectives (mbo): 5 pros and cons managers need to know.

conflict mediation

Top 15 Tips for Effective Conflict Mediation at Work

Top 10 games for negotiation skills to make you a better leader, manager effectiveness: a complete guide for managers in 2023, 5 proven ways managers can build collaboration in a team.

what are three common impediments to problem solving

Eller Executive Education | Home

Barriers to Effective Problem Solving

man staring at whiteboard

Learning how to effectively solve problems is difficult and takes time and continual adaptation. There are several common barriers to successful CPS, including:

  • Confirmation Bias: The tendency to only search for or interpret information that confirms a person’s existing ideas. People misinterpret or disregard data that doesn’t align with their beliefs.
  • Mental Set: People’s inclination to solve problems using the same tactics they have used to solve problems in the past. While this can sometimes be a useful strategy (see Analogical Thinking in a later section), it often limits inventiveness and creativity.
  • Functional Fixedness: This is another form of narrow thinking, where people become “stuck” thinking in a certain way and are unable to be flexible or change perspective.
  • Unnecessary Constraints: When people are overwhelmed with a problem, they can invent and impose additional limits on solution avenues. To avoid doing this, maintain a structured, level-headed approach to evaluating causes, effects, and potential solutions.
  • Groupthink: Be wary of the tendency for group members to agree with each other — this might be out of conflict avoidance, path of least resistance, or fear of speaking up. While this agreeableness might make meetings run smoothly, it can actually stunt creativity and idea generation, therefore limiting the success of your chosen solution.
  • Irrelevant Information: The tendency to pile on multiple problems and factors that may not even be related to the challenge at hand. This can cloud the team’s ability to find direct, targeted solutions.
  • Paradigm Blindness : This is found in people who are unwilling to adapt or change their worldview, outlook on a particular problem, or typical way of processing information. This can erode the effectiveness of problem solving techniques because they are not aware of the narrowness of their thinking, and therefore cannot think or act outside of their comfort zone.

According to Jaffa, the primary barrier of effective problem solving is rigidity. “The most common things people say are, ‘We’ve never done it before,’ or ‘We’ve always done it this way.’” While these feelings are natural, Jaffa explains that this rigid thinking actually precludes teams from identifying creative, inventive solutions that result in the greatest benefit. “The biggest barrier to creative problem solving is a lack of awareness – and commitment to – training employees in state-of-the-art creative problem-solving techniques,” Mattimore explains. “We teach our clients how to use ideation techniques (as many as two-dozen different creative thinking techniques) to help them generate more and better ideas. Ideation techniques use specific and customized stimuli, or ‘thought triggers’ to inspire new thinking and new ideas.” MacLeod adds that ineffective or rushed leadership is another common culprit. “We're always in a rush to fix quickly,” she says. “Sometimes leaders just solve problems themselves, making unilateral decisions to save time. But the investment is well worth it — leaders will have less on their plates if they can teach and eventually trust the team to resolve. Teams feel empowered and engagement and investment increases.”

Image Courtesy of Pexels.  

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Problem-Solving Strategies and Obstacles

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

what are three common impediments to problem solving

Sean is a fact-checker and researcher with experience in sociology, field research, and data analytics.

what are three common impediments to problem solving

JGI / Jamie Grill / Getty Images

  • Application
  • Improvement

From deciding what to eat for dinner to considering whether it's the right time to buy a house, problem-solving is a large part of our daily lives. Learn some of the problem-solving strategies that exist and how to use them in real life, along with ways to overcome obstacles that are making it harder to resolve the issues you face.

What Is Problem-Solving?

In cognitive psychology , the term 'problem-solving' refers to the mental process that people go through to discover, analyze, and solve problems.

A problem exists when there is a goal that we want to achieve but the process by which we will achieve it is not obvious to us. Put another way, there is something that we want to occur in our life, yet we are not immediately certain how to make it happen.

Maybe you want a better relationship with your spouse or another family member but you're not sure how to improve it. Or you want to start a business but are unsure what steps to take. Problem-solving helps you figure out how to achieve these desires.

The problem-solving process involves:

  • Discovery of the problem
  • Deciding to tackle the issue
  • Seeking to understand the problem more fully
  • Researching available options or solutions
  • Taking action to resolve the issue

Before problem-solving can occur, it is important to first understand the exact nature of the problem itself. If your understanding of the issue is faulty, your attempts to resolve it will also be incorrect or flawed.

Problem-Solving Mental Processes

Several mental processes are at work during problem-solving. Among them are:

  • Perceptually recognizing the problem
  • Representing the problem in memory
  • Considering relevant information that applies to the problem
  • Identifying different aspects of the problem
  • Labeling and describing the problem

Problem-Solving Strategies

There are many ways to go about solving a problem. Some of these strategies might be used on their own, or you may decide to employ multiple approaches when working to figure out and fix a problem.

An algorithm is a step-by-step procedure that, by following certain "rules" produces a solution. Algorithms are commonly used in mathematics to solve division or multiplication problems. But they can be used in other fields as well.

In psychology, algorithms can be used to help identify individuals with a greater risk of mental health issues. For instance, research suggests that certain algorithms might help us recognize children with an elevated risk of suicide or self-harm.

One benefit of algorithms is that they guarantee an accurate answer. However, they aren't always the best approach to problem-solving, in part because detecting patterns can be incredibly time-consuming.

There are also concerns when machine learning is involved—also known as artificial intelligence (AI)—such as whether they can accurately predict human behaviors.

Heuristics are shortcut strategies that people can use to solve a problem at hand. These "rule of thumb" approaches allow you to simplify complex problems, reducing the total number of possible solutions to a more manageable set.

If you find yourself sitting in a traffic jam, for example, you may quickly consider other routes, taking one to get moving once again. When shopping for a new car, you might think back to a prior experience when negotiating got you a lower price, then employ the same tactics.

While heuristics may be helpful when facing smaller issues, major decisions shouldn't necessarily be made using a shortcut approach. Heuristics also don't guarantee an effective solution, such as when trying to drive around a traffic jam only to find yourself on an equally crowded route.

Trial and Error

A trial-and-error approach to problem-solving involves trying a number of potential solutions to a particular issue, then ruling out those that do not work. If you're not sure whether to buy a shirt in blue or green, for instance, you may try on each before deciding which one to purchase.

This can be a good strategy to use if you have a limited number of solutions available. But if there are many different choices available, narrowing down the possible options using another problem-solving technique can be helpful before attempting trial and error.

In some cases, the solution to a problem can appear as a sudden insight. You are facing an issue in a relationship or your career when, out of nowhere, the solution appears in your mind and you know exactly what to do.

Insight can occur when the problem in front of you is similar to an issue that you've dealt with in the past. Although, you may not recognize what is occurring since the underlying mental processes that lead to insight often happen outside of conscious awareness .

Research indicates that insight is most likely to occur during times when you are alone—such as when going on a walk by yourself, when you're in the shower, or when lying in bed after waking up.

How to Apply Problem-Solving Strategies in Real Life

If you're facing a problem, you can implement one or more of these strategies to find a potential solution. Here's how to use them in real life:

  • Create a flow chart . If you have time, you can take advantage of the algorithm approach to problem-solving by sitting down and making a flow chart of each potential solution, its consequences, and what happens next.
  • Recall your past experiences . When a problem needs to be solved fairly quickly, heuristics may be a better approach. Think back to when you faced a similar issue, then use your knowledge and experience to choose the best option possible.
  • Start trying potential solutions . If your options are limited, start trying them one by one to see which solution is best for achieving your desired goal. If a particular solution doesn't work, move on to the next.
  • Take some time alone . Since insight is often achieved when you're alone, carve out time to be by yourself for a while. The answer to your problem may come to you, seemingly out of the blue, if you spend some time away from others.

Obstacles to Problem-Solving

Problem-solving is not a flawless process as there are a number of obstacles that can interfere with our ability to solve a problem quickly and efficiently. These obstacles include:

  • Assumptions: When dealing with a problem, people can make assumptions about the constraints and obstacles that prevent certain solutions. Thus, they may not even try some potential options.
  • Functional fixedness : This term refers to the tendency to view problems only in their customary manner. Functional fixedness prevents people from fully seeing all of the different options that might be available to find a solution.
  • Irrelevant or misleading information: When trying to solve a problem, it's important to distinguish between information that is relevant to the issue and irrelevant data that can lead to faulty solutions. The more complex the problem, the easier it is to focus on misleading or irrelevant information.
  • Mental set: A mental set is a tendency to only use solutions that have worked in the past rather than looking for alternative ideas. A mental set can work as a heuristic, making it a useful problem-solving tool. However, mental sets can also lead to inflexibility, making it more difficult to find effective solutions.

How to Improve Your Problem-Solving Skills

In the end, if your goal is to become a better problem-solver, it's helpful to remember that this is a process. Thus, if you want to improve your problem-solving skills, following these steps can help lead you to your solution:

  • Recognize that a problem exists . If you are facing a problem, there are generally signs. For instance, if you have a mental illness , you may experience excessive fear or sadness, mood changes, and changes in sleeping or eating habits. Recognizing these signs can help you realize that an issue exists.
  • Decide to solve the problem . Make a conscious decision to solve the issue at hand. Commit to yourself that you will go through the steps necessary to find a solution.
  • Seek to fully understand the issue . Analyze the problem you face, looking at it from all sides. If your problem is relationship-related, for instance, ask yourself how the other person may be interpreting the issue. You might also consider how your actions might be contributing to the situation.
  • Research potential options . Using the problem-solving strategies mentioned, research potential solutions. Make a list of options, then consider each one individually. What are some pros and cons of taking the available routes? What would you need to do to make them happen?
  • Take action . Select the best solution possible and take action. Action is one of the steps required for change . So, go through the motions needed to resolve the issue.
  • Try another option, if needed . If the solution you chose didn't work, don't give up. Either go through the problem-solving process again or simply try another option.

You can find a way to solve your problems as long as you keep working toward this goal—even if the best solution is simply to let go because no other good solution exists.

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. doi:10.3389/fnhum.2018.00261

Dunbar K. Problem solving . A Companion to Cognitive Science . 2017. doi:10.1002/9781405164535.ch20

Stewart SL, Celebre A, Hirdes JP, Poss JW. Risk of suicide and self-harm in kids: The development of an algorithm to identify high-risk individuals within the children's mental health system . Child Psychiat Human Develop . 2020;51:913-924. doi:10.1007/s10578-020-00968-9

Rosenbusch H, Soldner F, Evans AM, Zeelenberg M. Supervised machine learning methods in psychology: A practical introduction with annotated R code . Soc Personal Psychol Compass . 2021;15(2):e12579. doi:10.1111/spc3.12579

Mishra S. Decision-making under risk: Integrating perspectives from biology, economics, and psychology . Personal Soc Psychol Rev . 2014;18(3):280-307. doi:10.1177/1088868314530517

Csikszentmihalyi M, Sawyer K. Creative insight: The social dimension of a solitary moment . In: The Systems Model of Creativity . 2015:73-98. doi:10.1007/978-94-017-9085-7_7

Chrysikou EG, Motyka K, Nigro C, Yang SI, Thompson-Schill SL. Functional fixedness in creative thinking tasks depends on stimulus modality .  Psychol Aesthet Creat Arts . 2016;10(4):425‐435. doi:10.1037/aca0000050

Huang F, Tang S, Hu Z. Unconditional perseveration of the short-term mental set in chunk decomposition .  Front Psychol . 2018;9:2568. doi:10.3389/fpsyg.2018.02568

National Alliance on Mental Illness. Warning signs and symptoms .

Mayer RE. Thinking, problem solving, cognition, 2nd ed .

Schooler JW, Ohlsson S, Brooks K. Thoughts beyond words: When language overshadows insight. J Experiment Psychol: General . 1993;122:166-183. doi:10.1037/0096-3445.2.166

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Logo for University of Central Florida Pressbooks

Thinking and Intelligence

Pitfalls to Problem Solving

Learning objectives.

  • Explain some common roadblocks to effective problem solving

Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A mental set is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.  Functional fixedness is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. During the Apollo 13 mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

Link to Learning

Check out this Apollo 13 scene where the group of NASA engineers are given the task of overcoming functional fixedness.

Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An anchoring bias occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

The confirmation bias is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis. This bias proves that first impressions do matter and that we tend to look for information to confirm our initial judgments of others.

You can view the transcript for “Confirmation Bias: Your Brain is So Judgmental” here (opens in new window) .

Hindsight bias leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did. Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the availability heuristic is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision . To use a common example, would you guess there are more murders or more suicides in America each year? When asked, most people would guess there are more murders. In truth, there are twice as many suicides as there are murders each year. However, murders seem more common because we hear a lot more about murders on an average day. Unless someone we know or someone famous takes their own life, it does not make the news. Murders, on the other hand, we see in the news every day. This leads to the erroneous assumption that the easier it is to think of instances of something, the more often that thing occurs.

Watch the following video for an example of the availability heuristic.

You can view the transcript for “Availability Heuristic: Are Planes More Dangerous Than Cars?” here (opens in new window) .

Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in Table 2 below.

Learn more about heuristics and common biases through the article, “ 8 Common Thinking Mistakes Our Brains Make Every Day and How to Prevent Them ” by  Belle Beth Cooper.

You can also watch this clever music video explaining these and other cognitive biases.

Think It Over

Which type of bias do you recognize in your own decision making processes? How has this bias affected how you’ve made decisions in the past and how can you use your awareness of it to improve your decisions making skills in the future?

CC licensed content, Original

  • Modification, adaptation, and original content. Provided by : Lumen Learning. License : CC BY: Attribution

CC licensed content, Shared previously

  • Problem Solving. Authored by : OpenStax College. Located at : https://openstax.org/books/psychology-2e/pages/7-3-problem-solving . License : Public Domain: No Known Copyright . License Terms : Download for free at https://openstax.org/books/psychology-2e/pages/1-introduction
  • More information on heuristics. Authored by : Dr. Scott Roberts, Dr. Ryan Curtis, Samantha Levy, and Dr. Dylan Selterman. Provided by : University of Maryland. Located at : http://openpsyc.blogspot.com/2014/07/heuristics.html . Project : OpenPSYC. License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike

continually using an old solution to a problem without results

inability to see an object as useful for any other use other than the one for which it was intended

faulty heuristic in which you fixate on a single aspect of a problem to find a solution

seeking out information that supports our stereotypes while ignoring information that is inconsistent with our stereotypes

belief that the event just experienced was predictable, even though it really wasn’t

faulty heuristic in which you stereotype someone or something without a valid basis for your judgment

faulty heuristic in which you make a decision based on information readily available to you

General Psychology Copyright © by OpenStax and Lumen Learning is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

7.3 Problem-Solving

Learning objectives.

By the end of this section, you will be able to:

  • Describe problem solving strategies
  • Define algorithm and heuristic
  • Explain some common roadblocks to effective problem solving

   People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

The study of human and animal problem solving processes has provided much insight toward the understanding of our conscious experience and led to advancements in computer science and artificial intelligence. Essentially much of cognitive science today represents studies of how we consciously and unconsciously make decisions and solve problems. For instance, when encountered with a large amount of information, how do we go about making decisions about the most efficient way of sorting and analyzing all the information in order to find what you are looking for as in visual search paradigms in cognitive psychology. Or in a situation where a piece of machinery is not working properly, how do we go about organizing how to address the issue and understand what the cause of the problem might be. How do we sort the procedures that will be needed and focus attention on what is important in order to solve problems efficiently. Within this section we will discuss some of these issues and examine processes related to human, animal and computer problem solving.

PROBLEM-SOLVING STRATEGIES

   When people are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

Problems themselves can be classified into two different categories known as ill-defined and well-defined problems (Schacter, 2009). Ill-defined problems represent issues that do not have clear goals, solution paths, or expected solutions whereas well-defined problems have specific goals, clearly defined solutions, and clear expected solutions. Problem solving often incorporates pragmatics (logical reasoning) and semantics (interpretation of meanings behind the problem), and also in many cases require abstract thinking and creativity in order to find novel solutions. Within psychology, problem solving refers to a motivational drive for reading a definite “goal” from a present situation or condition that is either not moving toward that goal, is distant from it, or requires more complex logical analysis for finding a missing description of conditions or steps toward that goal. Processes relating to problem solving include problem finding also known as problem analysis, problem shaping where the organization of the problem occurs, generating alternative strategies, implementation of attempted solutions, and verification of the selected solution. Various methods of studying problem solving exist within the field of psychology including introspection, behavior analysis and behaviorism, simulation, computer modeling, and experimentation.

A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them (table below). For example, a well-known strategy is trial and error. The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

   Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backwards is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

Further problem solving strategies have been identified (listed below) that incorporate flexible and creative thinking in order to reach solutions efficiently.

Additional Problem Solving Strategies :

  • Abstraction – refers to solving the problem within a model of the situation before applying it to reality.
  • Analogy – is using a solution that solves a similar problem.
  • Brainstorming – refers to collecting an analyzing a large amount of solutions, especially within a group of people, to combine the solutions and developing them until an optimal solution is reached.
  • Divide and conquer – breaking down large complex problems into smaller more manageable problems.
  • Hypothesis testing – method used in experimentation where an assumption about what would happen in response to manipulating an independent variable is made, and analysis of the affects of the manipulation are made and compared to the original hypothesis.
  • Lateral thinking – approaching problems indirectly and creatively by viewing the problem in a new and unusual light.
  • Means-ends analysis – choosing and analyzing an action at a series of smaller steps to move closer to the goal.
  • Method of focal objects – putting seemingly non-matching characteristics of different procedures together to make something new that will get you closer to the goal.
  • Morphological analysis – analyzing the outputs of and interactions of many pieces that together make up a whole system.
  • Proof – trying to prove that a problem cannot be solved. Where the proof fails becomes the starting point or solving the problem.
  • Reduction – adapting the problem to be as similar problems where a solution exists.
  • Research – using existing knowledge or solutions to similar problems to solve the problem.
  • Root cause analysis – trying to identify the cause of the problem.

The strategies listed above outline a short summary of methods we use in working toward solutions and also demonstrate how the mind works when being faced with barriers preventing goals to be reached.

One example of means-end analysis can be found by using the Tower of Hanoi paradigm . This paradigm can be modeled as a word problems as demonstrated by the Missionary-Cannibal Problem :

Missionary-Cannibal Problem

Three missionaries and three cannibals are on one side of a river and need to cross to the other side. The only means of crossing is a boat, and the boat can only hold two people at a time. Your goal is to devise a set of moves that will transport all six of the people across the river, being in mind the following constraint: The number of cannibals can never exceed the number of missionaries in any location. Remember that someone will have to also row that boat back across each time.

Hint : At one point in your solution, you will have to send more people back to the original side than you just sent to the destination.

The actual Tower of Hanoi problem consists of three rods sitting vertically on a base with a number of disks of different sizes that can slide onto any rod. The puzzle starts with the disks in a neat stack in ascending order of size on one rod, the smallest at the top making a conical shape. The objective of the puzzle is to move the entire stack to another rod obeying the following rules:

  • 1. Only one disk can be moved at a time.
  • 2. Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack or on an empty rod.
  • 3. No disc may be placed on top of a smaller disk.

what are three common impediments to problem solving

  Figure 7.02. Steps for solving the Tower of Hanoi in the minimum number of moves when there are 3 disks.

what are three common impediments to problem solving

Figure 7.03. Graphical representation of nodes (circles) and moves (lines) of Tower of Hanoi.

The Tower of Hanoi is a frequently used psychological technique to study problem solving and procedure analysis. A variation of the Tower of Hanoi known as the Tower of London has been developed which has been an important tool in the neuropsychological diagnosis of executive function disorders and their treatment.

GESTALT PSYCHOLOGY AND PROBLEM SOLVING

As you may recall from the sensation and perception chapter, Gestalt psychology describes whole patterns, forms and configurations of perception and cognition such as closure, good continuation, and figure-ground. In addition to patterns of perception, Wolfgang Kohler, a German Gestalt psychologist traveled to the Spanish island of Tenerife in order to study animals behavior and problem solving in the anthropoid ape.

As an interesting side note to Kohler’s studies of chimp problem solving, Dr. Ronald Ley, professor of psychology at State University of New York provides evidence in his book A Whisper of Espionage  (1990) suggesting that while collecting data for what would later be his book  The Mentality of Apes (1925) on Tenerife in the Canary Islands between 1914 and 1920, Kohler was additionally an active spy for the German government alerting Germany to ships that were sailing around the Canary Islands. Ley suggests his investigations in England, Germany and elsewhere in Europe confirm that Kohler had served in the German military by building, maintaining and operating a concealed radio that contributed to Germany’s war effort acting as a strategic outpost in the Canary Islands that could monitor naval military activity approaching the north African coast.

While trapped on the island over the course of World War 1, Kohler applied Gestalt principles to animal perception in order to understand how they solve problems. He recognized that the apes on the islands also perceive relations between stimuli and the environment in Gestalt patterns and understand these patterns as wholes as opposed to pieces that make up a whole. Kohler based his theories of animal intelligence on the ability to understand relations between stimuli, and spent much of his time while trapped on the island investigation what he described as  insight , the sudden perception of useful or proper relations. In order to study insight in animals, Kohler would present problems to chimpanzee’s by hanging some banana’s or some kind of food so it was suspended higher than the apes could reach. Within the room, Kohler would arrange a variety of boxes, sticks or other tools the chimpanzees could use by combining in patterns or organizing in a way that would allow them to obtain the food (Kohler & Winter, 1925).

While viewing the chimpanzee’s, Kohler noticed one chimp that was more efficient at solving problems than some of the others. The chimp, named Sultan, was able to use long poles to reach through bars and organize objects in specific patterns to obtain food or other desirables that were originally out of reach. In order to study insight within these chimps, Kohler would remove objects from the room to systematically make the food more difficult to obtain. As the story goes, after removing many of the objects Sultan was used to using to obtain the food, he sat down ad sulked for a while, and then suddenly got up going over to two poles lying on the ground. Without hesitation Sultan put one pole inside the end of the other creating a longer pole that he could use to obtain the food demonstrating an ideal example of what Kohler described as insight. In another situation, Sultan discovered how to stand on a box to reach a banana that was suspended from the rafters illustrating Sultan’s perception of relations and the importance of insight in problem solving.

Grande (another chimp in the group studied by Kohler) builds a three-box structure to reach the bananas, while Sultan watches from the ground.  Insight , sometimes referred to as an “Ah-ha” experience, was the term Kohler used for the sudden perception of useful relations among objects during problem solving (Kohler, 1927; Radvansky & Ashcraft, 2013).

Solving puzzles.

   Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below (see figure) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

How long did it take you to solve this sudoku puzzle? (You can see the answer at the end of this section.)

   Here is another popular type of puzzle (figure below) that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

Did you figure it out? (The answer is at the end of this section.) Once you understand how to crack this puzzle, you won’t forget.

   Take a look at the “Puzzling Scales” logic puzzle below (figure below). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

A puzzle involving a scale is shown. At the top of the figure it reads: “Sam Loyds Puzzling Scales.” The first row of the puzzle shows a balanced scale with 3 blocks and a top on the left and 12 marbles on the right. Below this row it reads: “Since the scales now balance.” The next row of the puzzle shows a balanced scale with just the top on the left, and 1 block and 8 marbles on the right. Below this row it reads: “And balance when arranged this way.” The third row shows an unbalanced scale with the top on the left side, which is much lower than the right side. The right side is empty. Below this row it reads: “Then how many marbles will it require to balance with that top?”

What steps did you take to solve this puzzle? You can read the solution at the end of this section.

Pitfalls to problem solving.

   Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A mental set is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.

Functional fixedness is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. During the Apollo 13 mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

   Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An anchoring bias occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

The confirmation bias is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis. Hindsight bias leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did. Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the availability heuristic is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision . Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in the table below.

Were you able to determine how many marbles are needed to balance the scales in the figure below? You need nine. Were you able to solve the problems in the figures above? Here are the answers.

The first puzzle is a Sudoku grid of 16 squares (4 rows of 4 squares) is shown. Half of the numbers were supplied to start the puzzle and are colored blue, and half have been filled in as the puzzle’s solution and are colored red. The numbers in each row of the grid, left to right, are as follows. Row 1: blue 3, red 1, red 4, blue 2. Row 2: red 2, blue 4, blue 1, red 3. Row 3: red 1, blue 3, blue 2, red 4. Row 4: blue 4, red 2, red 3, blue 1.The second puzzle consists of 9 dots arranged in 3 rows of 3 inside of a square. The solution, four straight lines made without lifting the pencil, is shown in a red line with arrows indicating the direction of movement. In order to solve the puzzle, the lines must extend beyond the borders of the box. The four connecting lines are drawn as follows. Line 1 begins at the top left dot, proceeds through the middle and right dots of the top row, and extends to the right beyond the border of the square. Line 2 extends from the end of line 1, through the right dot of the horizontally centered row, through the middle dot of the bottom row, and beyond the square’s border ending in the space beneath the left dot of the bottom row. Line 3 extends from the end of line 2 upwards through the left dots of the bottom, middle, and top rows. Line 4 extends from the end of line 3 through the middle dot in the middle row and ends at the right dot of the bottom row.

   Many different strategies exist for solving problems. Typical strategies include trial and error, applying algorithms, and using heuristics. To solve a large, complicated problem, it often helps to break the problem into smaller steps that can be accomplished individually, leading to an overall solution. Roadblocks to problem solving include a mental set, functional fixedness, and various biases that can cloud decision making skills.

References:

Openstax Psychology text by Kathryn Dumper, William Jenkins, Arlene Lacombe, Marilyn Lovett and Marion Perlmutter licensed under CC BY v4.0. https://openstax.org/details/books/psychology

Review Questions:

1. A specific formula for solving a problem is called ________.

a. an algorithm

b. a heuristic

c. a mental set

d. trial and error

2. Solving the Tower of Hanoi problem tends to utilize a  ________ strategy of problem solving.

a. divide and conquer

b. means-end analysis

d. experiment

3. A mental shortcut in the form of a general problem-solving framework is called ________.

4. Which type of bias involves becoming fixated on a single trait of a problem?

a. anchoring bias

b. confirmation bias

c. representative bias

d. availability bias

5. Which type of bias involves relying on a false stereotype to make a decision?

6. Wolfgang Kohler analyzed behavior of chimpanzees by applying Gestalt principles to describe ________.

a. social adjustment

b. student load payment options

c. emotional learning

d. insight learning

7. ________ is a type of mental set where you cannot perceive an object being used for something other than what it was designed for.

a. functional fixedness

c. working memory

Critical Thinking Questions:

1. What is functional fixedness and how can overcoming it help you solve problems?

2. How does an algorithm save you time and energy when solving a problem?

Personal Application Question:

1. Which type of bias do you recognize in your own decision making processes? How has this bias affected how you’ve made decisions in the past and how can you use your awareness of it to improve your decisions making skills in the future?

anchoring bias

availability heuristic

confirmation bias

functional fixedness

hindsight bias

problem-solving strategy

representative bias

trial and error

working backwards

Answers to Exercises

algorithm:  problem-solving strategy characterized by a specific set of instructions

anchoring bias:  faulty heuristic in which you fixate on a single aspect of a problem to find a solution

availability heuristic:  faulty heuristic in which you make a decision based on information readily available to you

confirmation bias:  faulty heuristic in which you focus on information that confirms your beliefs

functional fixedness:  inability to see an object as useful for any other use other than the one for which it was intended

heuristic:  mental shortcut that saves time when solving a problem

hindsight bias:  belief that the event just experienced was predictable, even though it really wasn’t

mental set:  continually using an old solution to a problem without results

problem-solving strategy:  method for solving problems

representative bias:  faulty heuristic in which you stereotype someone or something without a valid basis for your judgment

trial and error:  problem-solving strategy in which multiple solutions are attempted until the correct one is found

working backwards:  heuristic in which you begin to solve a problem by focusing on the end result

Creative Commons License

Share This Book

  • Increase Font Size

Book cover

Cracked it! pp 15–34 Cite as

The Five Pitfalls of Problem Solving

  • Bernard Garrette 4 ,
  • Corey Phelps 5 &
  • Olivier Sibony 4  
  • First Online: 09 June 2018

11k Accesses

In practice, intuitive problem solving can go badly wrong. This chapter discusses its five specific pitfalls, based on real-life cases. First, a flawed problem definition almost invariably leads to irrelevant solutions. Second, most problem solvers start with a hypothetical solution in mind, which they tend to confirm instead of systematically challenging it. Third, picking the wrong framework when analyzing facts and data can be extremely misleading. Fourth, framing the problem space too narrowly hinders creativity and precludes the discovery of innovative solutions. Fifth, the ability to convince decision-makers is a double-edged sword: overselling the wrong solution might be even more harmful than underselling the right one. The 4S method presented in Chap. 3 helps overcome these five pitfalls.

This is a preview of subscription content, log in via an institution .

Buying options

  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Witt, S. (2015). How Music Got Free: The End of an Industry, the Turn of the Century, and the Patient Zero of Piracy. New York: Viking.

Yunus , M. (2007). Creating a World Without Poverty: Social Business and the Future of Capitalism. New York: Public Affairs.

Garrette, B., & Karnani, A. (2010). Challenges in Marketing Socially Useful Goods to the Poor. California Management Review , 52 (4), 29–47.

UNICEF. (2017). Undernutrition Contributes to Nearly Half of All Deaths in Children under 5 and Is Widespread in Asia and Africa . Retrieved from http://data.unicef.org/topic/nutrition/malnutrition/# .

World Health Organization. (2016). Maternal, Newborn, Child and Adolescent Health . Retrieved from http://www.who.int/maternal_child_adolescent/topics/child/malnutrition/en/ .

“Lisa” is a composite of several situations. Identifying details have been changed.

Burke, K. (1935). Permanence and Change: An Anatomy of Purpose . New York: New Republic Inc.

Kaplan, A. (1964). The Conduct of Inquiry: Methodology for Behavioral Science . San Francisco: Chandler Publishing Co.

Maslow, A.H. (1966). The Psychology of Science . New York: Harper & Row. p. 15.

Sources for the JC Penney story include: Reingold, J. (2014, March 20). How to Fail in Business While Really, Really Trying. Fortune.com . Retrieved from http://fortune.com/2014/03/20/how-to-fail-in-business-while-really-really-trying/ .

Reingold, J. (2012, March 7). Ron Johnson: Retail’s New Radical. Fortune.com . Retrieved from http://fortune.com/2012/03/07/ron-johnson-retails-new-radical/ .

Martin, S. (2011, May 19). How the Apple Stores Model of Retail Defied the Odds. USA Today . Retrieved from https://usatoday30.usatoday.com/tech/news/2011-05-18-apple-retail-stores_n.htm .

Yudkin , J. (1972). Pure, White, and Deadly: How Sugar Is Killing Us and What We Can Do to Stop It . London: Penguin Books, reprint 2012.

Leslie, I. (2016, April 7). The Sugar Conspiracy. The Guardian . Retrieved from https://www.theguardian.com/society/2016/apr/07/the-sugar-conspiracy-robert-lustig-john-yudkin .

Lustig , R. (2009). Sugar: The Bitter Truth. University of California Television. Retrieved from https://www.youtube.com/watch?v=dBnniua6-oM .

Lustig , R. (2013, April 29). Still Believe a ‘Calorie Is a Calorie’? The Huffington Post. Retrieved from https://www.huffingtonpost.com/robert-lustig-md/sugar-toxic_b_2759564.html .

Leslie, I. (2016, April 7). op. cit.

Lustig , R. (2012). Fat Chance: The Hidden Truth about Sugar, Obesity, and Disease, London: 4th Estate.

Author information

Authors and affiliations.

HEC Paris School of Management, Jouy-en-Josas, France

Bernard Garrette & Olivier Sibony

Desautels Faculty of Management, McGill University, Montreal, QC, Canada

Corey Phelps

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter.

Garrette, B., Phelps, C., Sibony, O. (2018). The Five Pitfalls of Problem Solving. In: Cracked it!. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-319-89375-4_2

Download citation

DOI : https://doi.org/10.1007/978-3-319-89375-4_2

Published : 09 June 2018

Publisher Name : Palgrave Macmillan, Cham

Print ISBN : 978-3-319-89374-7

Online ISBN : 978-3-319-89375-4

eBook Packages : Business and Management Business and Management (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Learn more

How it works

Transform your enterprise with the scalable mindsets, skills, & behavior change that drive performance.

Explore how BetterUp connects to your core business systems.

We pair AI with the latest in human-centered coaching to drive powerful, lasting learning and behavior change.

Build leaders that accelerate team performance and engagement.

Unlock performance potential at scale with AI-powered curated growth journeys.

Build resilience, well-being and agility to drive performance across your entire enterprise.

Transform your business, starting with your sales leaders.

Unlock business impact from the top with executive coaching.

Foster a culture of inclusion and belonging.

Accelerate the performance and potential of your agencies and employees.

See how innovative organizations use BetterUp to build a thriving workforce.

Discover how BetterUp measurably impacts key business outcomes for organizations like yours.

A demo is the first step to transforming your business. Meet with us to develop a plan for attaining your goals.

Request a demo

  • What is coaching?

Learn how 1:1 coaching works, who its for, and if it's right for you.

Accelerate your personal and professional growth with the expert guidance of a BetterUp Coach.

Types of Coaching

Navigate career transitions, accelerate your professional growth, and achieve your career goals with expert coaching.

Enhance your communication skills for better personal and professional relationships, with tailored coaching that focuses on your needs.

Find balance, resilience, and well-being in all areas of your life with holistic coaching designed to empower you.

Discover your perfect match : Take our 5-minute assessment and let us pair you with one of our top Coaches tailored just for you.

Find your Coach

Best practices, research, and tools to fuel individual and business growth.

View on-demand BetterUp events and learn about upcoming live discussions.

The latest insights and ideas for building a high-performing workplace.

  • BetterUp Briefing

The online magazine that helps you understand tomorrow's workforce trends, today.

Innovative research featured in peer-reviewed journals, press, and more.

Founded in 2022 to deepen the understanding of the intersection of well-being, purpose, and performance

We're on a mission to help everyone live with clarity, purpose, and passion.

Join us and create impactful change.

Read the buzz about BetterUp.

Meet the leadership that's passionate about empowering your workforce.

For Business

For Individuals

10 Problem-solving strategies to turn challenges on their head

Find my Coach

Boost your productivity

Maximize your time and productivity with strategies from our expert coaches.

team-working-around-table-problem-solving-strategies

Jump to section

What is an example of problem-solving?

What are the 5 steps to problem-solving, 10 effective problem-solving strategies, what skills do efficient problem solvers have, how to improve your problem-solving skills.

Problems come in all shapes and sizes — from workplace conflict to budget cuts.

Creative problem-solving is one of the most in-demand skills in all roles and industries. It can boost an organization’s human capital and give it a competitive edge. 

Problem-solving strategies are ways of approaching problems that can help you look beyond the obvious answers and find the best solution to your problem . 

Let’s take a look at a five-step problem-solving process and how to combine it with proven problem-solving strategies. This will give you the tools and skills to solve even your most complex problems.

Good problem-solving is an essential part of the decision-making process . To see what a problem-solving process might look like in real life, let’s take a common problem for SaaS brands — decreasing customer churn rates.

To solve this problem, the company must first identify it. In this case, the problem is that the churn rate is too high. 

Next, they need to identify the root causes of the problem. This could be anything from their customer service experience to their email marketing campaigns. If there are several problems, they will need a separate problem-solving process for each one. 

Let’s say the problem is with email marketing — they’re not nurturing existing customers. Now that they’ve identified the problem, they can start using problem-solving strategies to look for solutions. 

This might look like coming up with special offers, discounts, or bonuses for existing customers. They need to find ways to remind them to use their products and services while providing added value. This will encourage customers to keep paying their monthly subscriptions.

They might also want to add incentives, such as access to a premium service at no extra cost after 12 months of membership. They could publish blog posts that help their customers solve common problems and share them as an email newsletter.

The company should set targets and a time frame in which to achieve them. This will allow leaders to measure progress and identify which actions yield the best results.

team-meeting-problem-solving-strategies

Perhaps you’ve got a problem you need to tackle. Or maybe you want to be prepared the next time one arises. Either way, it’s a good idea to get familiar with the five steps of problem-solving. 

Use this step-by-step problem-solving method with the strategies in the following section to find possible solutions to your problem.

1. Identify the problem

The first step is to know which problem you need to solve. Then, you need to find the root cause of the problem. 

The best course of action is to gather as much data as possible, speak to the people involved, and separate facts from opinions. 

Once this is done, formulate a statement that describes the problem. Use rational persuasion to make sure your team agrees .

2. Break the problem down 

Identifying the problem allows you to see which steps need to be taken to solve it. 

First, break the problem down into achievable blocks. Then, use strategic planning to set a time frame in which to solve the problem and establish a timeline for the completion of each stage.

3. Generate potential solutions

At this stage, the aim isn’t to evaluate possible solutions but to generate as many ideas as possible. 

Encourage your team to use creative thinking and be patient — the best solution may not be the first or most obvious one.

Use one or more of the different strategies in the following section to help come up with solutions — the more creative, the better.

4. Evaluate the possible solutions

Once you’ve generated potential solutions, narrow them down to a shortlist. Then, evaluate the options on your shortlist. 

There are usually many factors to consider. So when evaluating a solution, ask yourself the following questions:

  • Will my team be on board with the proposition?
  • Does the solution align with organizational goals ?
  • Is the solution likely to achieve the desired outcomes?
  • Is the solution realistic and possible with current resources and constraints?
  • Will the solution solve the problem without causing additional unintended problems?

woman-helping-her-colleague-problem-solving-strategies

5. Implement and monitor the solutions

Once you’ve identified your solution and got buy-in from your team, it’s time to implement it. 

But the work doesn’t stop there. You need to monitor your solution to see whether it actually solves your problem. 

Request regular feedback from the team members involved and have a monitoring and evaluation plan in place to measure progress.

If the solution doesn’t achieve your desired results, start this step-by-step process again.

There are many different ways to approach problem-solving. Each is suitable for different types of problems. 

The most appropriate problem-solving techniques will depend on your specific problem. You may need to experiment with several strategies before you find a workable solution.

Here are 10 effective problem-solving strategies for you to try:

  • Use a solution that worked before
  • Brainstorming
  • Work backward
  • Use the Kipling method
  • Draw the problem
  • Use trial and error
  • Sleep on it
  • Get advice from your peers
  • Use the Pareto principle
  • Add successful solutions to your toolkit

Let’s break each of these down.

1. Use a solution that worked before

It might seem obvious, but if you’ve faced similar problems in the past, look back to what worked then. See if any of the solutions could apply to your current situation and, if so, replicate them.

2. Brainstorming

The more people you enlist to help solve the problem, the more potential solutions you can come up with.

Use different brainstorming techniques to workshop potential solutions with your team. They’ll likely bring something you haven’t thought of to the table.

3. Work backward

Working backward is a way to reverse engineer your problem. Imagine your problem has been solved, and make that the starting point.

Then, retrace your steps back to where you are now. This can help you see which course of action may be most effective.

4. Use the Kipling method

This is a method that poses six questions based on Rudyard Kipling’s poem, “ I Keep Six Honest Serving Men .” 

  • What is the problem?
  • Why is the problem important?
  • When did the problem arise, and when does it need to be solved?
  • How did the problem happen?
  • Where is the problem occurring?
  • Who does the problem affect?

Answering these questions can help you identify possible solutions.

5. Draw the problem

Sometimes it can be difficult to visualize all the components and moving parts of a problem and its solution. Drawing a diagram can help.

This technique is particularly helpful for solving process-related problems. For example, a product development team might want to decrease the time they take to fix bugs and create new iterations. Drawing the processes involved can help you see where improvements can be made.

woman-drawing-mind-map-problem-solving-strategies

6. Use trial-and-error

A trial-and-error approach can be useful when you have several possible solutions and want to test them to see which one works best.

7. Sleep on it

Finding the best solution to a problem is a process. Remember to take breaks and get enough rest . Sometimes, a walk around the block can bring inspiration, but you should sleep on it if possible.

A good night’s sleep helps us find creative solutions to problems. This is because when you sleep, your brain sorts through the day’s events and stores them as memories. This enables you to process your ideas at a subconscious level. 

If possible, give yourself a few days to develop and analyze possible solutions. You may find you have greater clarity after sleeping on it. Your mind will also be fresh, so you’ll be able to make better decisions.

8. Get advice from your peers

Getting input from a group of people can help you find solutions you may not have thought of on your own. 

For solo entrepreneurs or freelancers, this might look like hiring a coach or mentor or joining a mastermind group. 

For leaders , it might be consulting other members of the leadership team or working with a business coach .

It’s important to recognize you might not have all the skills, experience, or knowledge necessary to find a solution alone. 

9. Use the Pareto principle

The Pareto principle — also known as the 80/20 rule — can help you identify possible root causes and potential solutions for your problems.

Although it’s not a mathematical law, it’s a principle found throughout many aspects of business and life. For example, 20% of the sales reps in a company might close 80% of the sales. 

You may be able to narrow down the causes of your problem by applying the Pareto principle. This can also help you identify the most appropriate solutions.

10. Add successful solutions to your toolkit

Every situation is different, and the same solutions might not always work. But by keeping a record of successful problem-solving strategies, you can build up a solutions toolkit. 

These solutions may be applicable to future problems. Even if not, they may save you some of the time and work needed to come up with a new solution.

three-colleagues-looking-at-computer-problem-solving-strategies

Improving problem-solving skills is essential for professional development — both yours and your team’s. Here are some of the key skills of effective problem solvers:

  • Critical thinking and analytical skills
  • Communication skills , including active listening
  • Decision-making
  • Planning and prioritization
  • Emotional intelligence , including empathy and emotional regulation
  • Time management
  • Data analysis
  • Research skills
  • Project management

And they see problems as opportunities. Everyone is born with problem-solving skills. But accessing these abilities depends on how we view problems. Effective problem-solvers see problems as opportunities to learn and improve.

Ready to work on your problem-solving abilities? Get started with these seven tips.

1. Build your problem-solving skills

One of the best ways to improve your problem-solving skills is to learn from experts. Consider enrolling in organizational training , shadowing a mentor , or working with a coach .

2. Practice

Practice using your new problem-solving skills by applying them to smaller problems you might encounter in your daily life. 

Alternatively, imagine problematic scenarios that might arise at work and use problem-solving strategies to find hypothetical solutions.

3. Don’t try to find a solution right away

Often, the first solution you think of to solve a problem isn’t the most appropriate or effective.

Instead of thinking on the spot, give yourself time and use one or more of the problem-solving strategies above to activate your creative thinking. 

two-colleagues-talking-at-corporate-event-problem-solving-strategies

4. Ask for feedback

Receiving feedback is always important for learning and growth. Your perception of your problem-solving skills may be different from that of your colleagues. They can provide insights that help you improve. 

5. Learn new approaches and methodologies

There are entire books written about problem-solving methodologies if you want to take a deep dive into the subject. 

We recommend starting with “ Fixed — How to Perfect the Fine Art of Problem Solving ” by Amy E. Herman. 

6. Experiment

Tried-and-tested problem-solving techniques can be useful. However, they don’t teach you how to innovate and develop your own problem-solving approaches. 

Sometimes, an unconventional approach can lead to the development of a brilliant new idea or strategy. So don’t be afraid to suggest your most “out there” ideas.

7. Analyze the success of your competitors

Do you have competitors who have already solved the problem you’re facing? Look at what they did, and work backward to solve your own problem. 

For example, Netflix started in the 1990s as a DVD mail-rental company. Its main competitor at the time was Blockbuster. 

But when streaming became the norm in the early 2000s, both companies faced a crisis. Netflix innovated, unveiling its streaming service in 2007. 

If Blockbuster had followed Netflix’s example, it might have survived. Instead, it declared bankruptcy in 2010.

Use problem-solving strategies to uplevel your business

When facing a problem, it’s worth taking the time to find the right solution. 

Otherwise, we risk either running away from our problems or headlong into solutions. When we do this, we might miss out on other, better options.

Use the problem-solving strategies outlined above to find innovative solutions to your business’ most perplexing problems.

If you’re ready to take problem-solving to the next level, request a demo with BetterUp . Our expert coaches specialize in helping teams develop and implement strategies that work.

New call-to-action

Elizabeth Perry

Content Marketing Manager, ACC

8 creative solutions to your most challenging problems

What are metacognitive skills examples in everyday life, 5 problem-solving questions to prepare you for your next interview, what is lateral thinking 7 techniques to encourage creative ideas, 31 examples of problem solving performance review phrases, learn what process mapping is and how to create one (+ examples), leadership activities that encourage employee engagement, can dreams help you solve problems 6 ways to try, how much do distractions cost 8 effects of lack of focus, similar articles, the pareto principle: how the 80/20 rule can help you do more with less, thinking outside the box: 8 ways to become a creative problem solver, experimentation brings innovation: create an experimental workplace, effective problem statements have these 5 components, contingency planning: 4 steps to prepare for the unexpected, stay connected with betterup, get our newsletter, event invites, plus product insights and research..

3100 E 5th Street, Suite 350 Austin, TX 78702

  • Platform Overview
  • Integrations
  • Powered by AI
  • BetterUp Lead
  • BetterUp Manage™
  • BetterUp Care™
  • Sales Performance
  • Diversity & Inclusion
  • Case Studies
  • Why BetterUp?
  • About Coaching
  • Find your Coach
  • Career Coaching
  • Communication Coaching
  • Life Coaching
  • News and Press
  • Leadership Team
  • Become a BetterUp Coach
  • BetterUp Labs
  • Center for Purpose & Performance
  • Leadership Training
  • Business Coaching
  • Contact Support
  • Contact Sales
  • Privacy Policy
  • Acceptable Use Policy
  • Trust & Security
  • Cookie Preferences

what are three common impediments to problem solving

Barriers To Problem-Solving

Problems are inevitable at work. They could be big problems. Or they could be small problems.  Either way, the trick…

Barriers To Problem Solving

Problems are inevitable at work. They could be big problems. Or they could be small problems. 

Either way, the trick is to develop strong problem-solving skills. But it isn’t always easy to find a solution to a problem. You often face many unexpected obstacles on the way.

Imagine a client rejects a proposal for a marketing pitch you and your team worked hard on. In such a situation, you might come up with a quick and easy alternative to retain the client, but in the scramble, you may forget to assess its long-term potential.

Such barriers to problem-solving abound at the workplace. You need to be prepared for potential pitfalls that could trip you up. ( Phentermine )

Effective problem-solving in such situations is a handy skill that’ll help you navigate your way through the professional landscape. 

You will find some useful tips on how to deal with some common barriers to effective problem-solving in Harappa Education’s Defining Problems course. The course introduces ways in which you can define, identify and deal with problems in a solution-oriented manner.

Contrary to popular belief, problem-solving takes time and patience. This is something we tend to overlook because quick solutions are often rewarded at the workplace where everyone is busy and pressed for time. 

When you stop for a moment to think about what went wrong, you’re more likely to come up with a lasting solution. Here are the most common barriers to problem-solving and decision-making in the workplace:

Misdiagnosis

Common barriers to problem-solving include an incorrect diagnosis of the problem. This could be due to preconceived ideas, biases, or judgments. Defining a problem is the hardest step in the process of problem-solving because this is the foundation on which your entire strategy is built. If you’re not careful, you may end up spending all your time, resources and effort on the wrong problem and, eventually, the wrong solution.

Communication Barriers

Thinking that you know better than anyone else or miscommunicating the problem is another one of the barriers to problem-solving. Everyone defines or understands the problem differently. It’s important to communicate with your teammates so that everyone’s on the same page. If you’re unclear about something, acknowledge your limited understanding of the problem. This will save you both time and energy.  

Solution Bias

Another common challenge is a solution bias or thinking that one solution is universal and can be applied to multiple problems. If you catch yourself thinking about a problem that you solved in a particular way, you’re already going in the wrong direction. It’s more important for you to focus on the problem at hand than to force-fit a solution from the past that, in all probability, won’t work. 

Cognitive Bias

Barriers to problem solving psychology often involve a cognitive bias or the tendency to jump to conclusions. To find a solution as quickly as possible, you might end up with a solution that’s irrelevant to the situation. You have to learn to listen before making a judgment. If you miss a step, for instance, there’s a chance that you’ll end up in an even bigger mess.

Lack Of Empathy

Every problem is in one way or another associated with human emotions, abilities or feelings. If you’re not able to recognize the people who are affected by the problem, you won’t be able to come up with a solution that serves everyone.

Module 7: Thinking and Intelligence

Solving problems, learning objectives.

  • Describe problem solving strategies, including algorithms and heuristics
  • Explain some common roadblocks to effective problem solving

People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

Problem-Solving Strategies

When you are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them. For example, a well-known strategy is trial and error . The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backwards is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

Link to Learning

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

Everyday Connections: Solving Puzzles

Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below (Figure 1) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

A four column by four row Sudoku puzzle is shown. The top left cell contains the number 3. The top right cell contains the number 2. The bottom right cell contains the number 1. The bottom left cell contains the number 4. The cell at the intersection of the second row and the second column contains the number 4. The cell to the right of that contains the number 1. The cell below the cell containing the number 1 contains the number 2. The cell to the left of the cell containing the number 2 contains the number 3.

Figure 1. How long did it take you to solve this sudoku puzzle? (You can see the answer at the end of this section.)

Here is another popular type of puzzle that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

A square shaped outline contains three rows and three columns of dots with equal space between them.

Figure 2. Did you figure it out? (The answer is at the end of this section.) Once you understand how to crack this puzzle, you won’t forget.

Take a look at the “Puzzling Scales” logic puzzle below (Figure 3). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

A puzzle involving a scale is shown. At the top of the figure it reads: “Sam Loyds Puzzling Scales.” The first row of the puzzle shows a balanced scale with 3 blocks and a top on the left and 12 marbles on the right. Below this row it reads: “Since the scales now balance.” The next row of the puzzle shows a balanced scale with just the top on the left, and 1 block and 8 marbles on the right. Below this row it reads: “And balance when arranged this way.” The third row shows an unbalanced scale with the top on the left side, which is much lower than the right side. The right side is empty. Below this row it reads: “Then how many marbles will it require to balance with that top?”

Figure 3. The puzzle reads, “Since the scales now balance…and balance when arranged this way, then how many marbles will it require to balance with that top?

Were you able to determine how many marbles are needed to balance the scales in the Puzzling Scales? You need nine. Were you able to solve the other problems above? Here are the answers:

The first puzzle is a Sudoku grid of 16 squares (4 rows of 4 squares) is shown. Half of the numbers were supplied to start the puzzle and are colored blue, and half have been filled in as the puzzle’s solution and are colored red. The numbers in each row of the grid, left to right, are as follows. Row 1: blue 3, red 1, red 4, blue 2. Row 2: red 2, blue 4, blue 1, red 3. Row 3: red 1, blue 3, blue 2, red 4. Row 4: blue 4, red 2, red 3, blue 1.The second puzzle consists of 9 dots arranged in 3 rows of 3 inside of a square. The solution, four straight lines made without lifting the pencil, is shown in a red line with arrows indicating the direction of movement. In order to solve the puzzle, the lines must extend beyond the borders of the box. The four connecting lines are drawn as follows. Line 1 begins at the top left dot, proceeds through the middle and right dots of the top row, and extends to the right beyond the border of the square. Line 2 extends from the end of line 1, through the right dot of the horizontally centered row, through the middle dot of the bottom row, and beyond the square’s border ending in the space beneath the left dot of the bottom row. Line 3 extends from the end of line 2 upwards through the left dots of the bottom, middle, and top rows. Line 4 extends from the end of line 3 through the middle dot in the middle row and ends at the right dot of the bottom row.

Pitfalls to Problem-Solving

Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A mental set is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.  Functional fixedness is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. During the Apollo 13 mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

Check out this Apollo 13 scene where the group of NASA engineers are given the task of overcoming functional fixedness.

Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An anchoring bias occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

The confirmation bias is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis. This bias proves that first impressions do matter and that we tend to look for information to confirm our initial judgments of others.

Hindsight bias leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did. Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the availability heuristic is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision . To use a common example, would you guess there are more murders or more suicides in America each year? When asked, most people would guess there are more murders. In truth, there are twice as many suicides as there are murders each year. However, murders seem more common because we hear a lot more about murders on an average day. Unless someone we know or someone famous takes their own life, it does not make the news. Murders, on the other hand, we see in the news every day. This leads to the erroneous assumption that the easier it is to think of instances of something, the more often that thing occurs. Watch the following video for an example of the availability heuristic.

Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in Table 2 below.

Test your understanding of heuristics and common biases through this interactive website .

You can also visit this site to see a clever music video explaining these and other cognitive biases.

Think It Over

Which type of bias do you recognize in your own decision making processes? How has this bias affected how you’ve made decisions in the past and how can you use your awareness of it to improve your decisions making skills in the future?

  • Modification and adaptation. Provided by : Lumen Learning. License : CC BY: Attribution
  • Problem-Solving. Authored by : OpenStax College. Located at : http://cnx.org/contents/[email protected]:Lk3YnvuC@6/Problem-Solving . License : CC BY: Attribution . License Terms : Download for free at http://cnx.org/content/col11629/latest/.
  • Can you solve Einsteinu2019s Riddle? . Authored by : Dan Van der Vieren. Provided by : Ted-Ed. Located at : https://www.youtube.com/watch?v=1rDVz_Fb6HQ&index=3&list=PLUmyCeox8XCwB8FrEfDQtQZmCc2qYMS5a . License : Other . License Terms : Standard YouTube License

Footer Logo Lumen Candela

Privacy Policy

  • Welcome at Ben Linders
  • Presentations
  • Getting Value out of Agile Retrospectives
  • What Drives Quality
  • New! The Agile Self-assessment Game
  • New! Problem? What Problem?
  • Quotes from Ben Linders
  • Updated! Agile Self-assessment Game
  • All Recommended Books
  • on Leadership
  • for Scrum Masters
  • for Product Owners
  • for Agile Coaches
  • for Managers
  • for Software Engineers
  • for Agile Teams
  • for Project Managers
  • written by me
  • Updated! Agile Self-assessments
  • Updated! Retrospective Exercises Toolbox
  • Updated Business Benefits of Agile
  • Agile/Scrum Certification
  • Business Benefits of Reviews
  • Root Cause Analysis Tools
  • CMMI V1.3 Process Areas
  • Services Ben Linders Consulting
  • Upcoming workshops
  • Workshop Making Agile Work for You
  • Workshop Improving Organizational Agility
  • New! Workshop Assessing your Agility
  • New! Workshop Problem Solving with Agile Thinking and Practices
  • Workshop Valuable Agile Retrospectives for Teams
  • Workshop Increasing Agility with Retrospectives
  • New! Workshop Continuous Improvement in Remote / Distributed Teams
  • New! Assessing your Agility
  • Upcoming Conferences
  • Free Lifetime Support by Ben Linders
  • Book: Getting Value out of Agile Retrospectives
  • New! Book: What Drives Quality
  • New! Book: The Agile Self-assessment Game
  • Diensten Ben Linders Advies
  • All Workshops by Ben Linders
  • Workshop Waardevolle Agile Retrospectives
  • Introductietraining Verandermanagement
  • Workshop Continu Verbeteren met Agile
  • Workshop Software Kwaliteitsverbetering
  • Open Inschrijving Workshops
  • Advies en Consultancy
  • Webshop – Nederlandstalige edities
  • Games en Boeken
  • Lezingen en presentaties (wereldwijd)
  • Boek: Waardevolle Agile Retrospectives
  • Partners / Samenwerkingen
  • Nieuwsbrief Ben Linders
  • Aanbevolen Boeken
  • About BenLinders.com
  • Contact me!
  • Guest/Sponsored Posts
  • Subscribe to BenLinders.com
  • Conference & Workshop Calendar
  • Appearances
  • Member Login
  • Donations for benlinders.com
  • Feedback Benlinders.com
  • Privacy Policy
  • Agile Games by Ben Linders
  • Workshops and Coaching by Ben Linders
  • Books on Agile by Ben Linders
  • All Products and Services
  • Delivery Information / FAQ
  • Games and Books in English
  • Games en boeken in het Nederlands
  • Libros y Juegos de Ben Linders en español
  • Jeux et livres en français
  • Knihy a hry Bena Linderse v češtině
  • Free Lifetime Support
  • Membership Information
  • Your account
  • All editions / shops
  • Paperback Edition (Amazon)
  • Kindle Edition (Amazon)
  • eBook (Leanpub)
  • Translations
  • Retrospective Exercises Toolbox
  • Ask your Agile Retrospective Question!
  • Waardevolle Agile Retrospectives

Ben Linders

Handling Impediments: Effective Solutions

  • Post author: Ben Linders
  • Post published: January 5, 2016
  • Post category: All (English/Nederlands) / English Articles
  • Post comments: 0 Comments

Impediment effective solutions

To solve an impediment you can apply existing “good practices”, e.g. solutions that have worked in similar situations. You probably need to tailor them to be effective for your problem. There are many practices that have been described and are used by many people, so why reinvent the wheel?

Some examples of applying practices for solving an impediment:

  • If the customer needs are unclear, you can consider to use Minimum Viable Products to learn more about them.
  • If the incoming User Stories often contain insufficient or wrong information, maybe the team can setup a definition of Ready to increase the quality.
  • If there are problems with code quality, think about pair programming, code walkthroughs or reviews or static code analysis.
  • If the build is often broken by code changes, consider continuous integration and automated testing.
  • If team members are having difficulty to coordinate the work, how about making the work visible on a task board, do daily stand-up meetings, or use a (cloud based) agile tool to make work in progress visible.
  • If teams seem to be overloaded with work, think about practices like limiting Work in Progress, sustainable pace, slack and clear priorities.
  • If communication and collaboration is lacking between development and operations, maybe deploy DevOps with teams that have people from development and operations.

Personally, I prefer to use practices that match with agile and lean principles, as I have seen those practices to be very effective in solving problems, and they also reduce the chance that the same problem will happen again. I call it sustainble improvement.

You can use a  Solution Focused  approach to find effective solutions for dealing with impediments. For instance by asking people to thinks about times when the problem that they are trying to solve wasn’t there or has been less of a problem. And then ask them what they were doing at that time that was helpful. Instead of coming up with something new and scary this approach helps them to solve a problem by doing things they know how to do.

There are always more solutions possible to solve the problem. Each solution has advantages and disadvantages. To test if you have really understood the problem before applying a solution, there’s my rule of three, which is based on Jerry Weinbergs rule of three from his book The Secrets of Consulting :

If you cant come up with three different solutions that might help to solve a problem, then you don’t understand the problem.

Deploying practices effectively

Practices are not recipes. There are no standard solutions, “no best practices , only good practices in context”  as Larry Maccherone stated (more on this in my InfoQ interview with Larry Maccherone and Jim McCurley in Quantifying the Impact of Agile Software Development Practices ). So it depends on the situation which practice can be suitable to handle an impediment, and you will need to adapt it to be effective.

Some of the techniques that can be used to deploy practices in an effective way are:

  • Play a  devils or angels advocate game  to challenge a practice.
  • Define a safe-to-fail experiment to try a practice.
  • Why over how, ask why to understand the needs before deploying a practice.
  • Give people space to try a practice, don’t enforce it but be available .
  • Listen to people and understand their concerns , and based upon that suggest one or more practices.
  • Tailor a practice by using checklists .

There are many more techniques for deploying practices, these are just some ideas to get you started. And I would love to hear your ideas and experiences in deploying practices to solve impediments, so please share them by submitting a comment on this blog post!

Learn how to deal with problems and impediments effectively

Workshop Agile Lean Value

Related posts, news, workshops, conferences, and books:

Impediment square 1200

Ben Linders

Leave a reply cancel reply.

This site uses Akismet to reduce spam. Learn how your comment data is processed .

Get a free paperback copy of my Agile Retrospectives book, see "Agile Coaching Tools" Dismiss

Myth 7: The Scrum Master Must Resolve Every Problem

Profile picture for user Barry Overeem

  • Website for Barry Overeem
  • Contact Barry Overeem
  • Twitter for Barry Overeem
  • LinkedIn for Barry Overeem

Scrum is intended as  a simple, yet sufficient framework for complex product delivery . Scrum is not a one-size-fits-all solution, a silver bullet or a complete methodology. Instead, Scrum provides the minimal boundaries within which teams can self-organize to solve a complex problem using an empirical approach. This simplicity is its greatest strength, but also the source of many misinterpretations and myths surrounding Scrum. In this series of posts we - your ‘mythbusters’  Christiaan Verwijs  &  Barry Overeem  - will address the most common myths and misunderstandings. PS: The great visuals are by  Thea Schukken . Check out the previous episodes here ( 1 ,  2 ,  3 ,  4  ,  5  and  6 ).

Today’s myth is all about how problems are resolved that are hindering a Development Team in their work. From a broken wi-fi router to a steady stream of meeting-requests from outside the team. And from clarifying unclear work to resolving a conflict between members.

We’ve met quite a few teams where the Scrum Master has a full-time job taking care of these kinds of problems, or ‘impediments’ as they are called. Some Scrum Masters go through great lengths to set up their own ‘Impediment Board’ and invite the Development Team to put new impediments on it for them to resolve. Today we bust the myth that it is the responsibility of the Scrum Master to resolve all problems that are hindering the Development Team.

Busting the Myth

The Scrum Guide clearly describes the various services that a Scrum Master provides. One of those  is to remove impediments to the Development Team’s progress . At first glance, this seems to support today’s myth. But ‘impediment’ is an important keyword here. All too often, impediments are assumed to be whatever problems arise during the Sprint. But this is not the way how this responsibility should be understood.

The Scrum Master must resolve every problem

What makes something an ‘impediment’?

Impediments are those problems that hinder a Development Team’s progress  and  lie outside of their capability to resolve on their own. This ties impediments strongly to another concept that is central to Scrum: self-organization. The background here is that - with software development being a very complex, unpredictable endeavor - it is likely for all sorts of unexpected problems to emerge during a Sprint. Examples of such unexpected problems are:

  • Team members becoming sick
  • problems with the development environment
  • A broken laptop
  • Unavailability of the Product Owner
  • Conflict between team members
  • Bugs in the production environment

A great demand is placed on Development Teams to use their professional expertise, creativity and collective intelligence to solve problems as they emerge. Within Scrum, the self-organizing nature of a Development Team can be understood by their ability to solve the problems they run into, without having to delegate ownership of the problem to people outside the team. In that regard, we prefer to explain impediments as those problems that, when resolved, improve the chances that the Development Team can solve similar problems on their own the next time they occur.

Many categories of problems are resolvable by Development Teams, like clarifying unclear specifications, fixing problems in a deployment or even the resolution of a conflict within the team.

The difference may seem trivial, but the consequences are not. Is a Development Team truly self-organizing when all problems that arise need a Scrum Master to resolve them? What happens when only the Scrum Master can resolve a conflict between members of the team? What happens when only the Scrum Master can help the Development Team clarify unclear specifications with the Product Owner, or break down large chunks of work? What happens when only the Scrum Master can get infrastructural problems resolved? A Scrum Master that solves most of the problems that arise is not doing a Development Team any favors. He or she is actively impeding the (growing) ability of the Development Team to solve their own problems.

Some real-life examples of problems and impediments

All this talk about ‘self-organization’ and ‘impediments’ is still quite abstract. So let's break it down into some concrete examples to work with.

Example #1: Infrastructure problems

Suppose a Development Team runs into problems with their infrastructure. Not being able to deploy applications on their own, they depend on an external team. On the day before the Sprint Review, the Development Team is having problems with a deployment. An impediment is raised during the Daily Scrum, and the Scrum Master takes it upon himself to get this sorted out.

The problem that is raised is just a symptom of a deeper impediment; the inability of the Development Team to do their own deployments or at least solve problems related to deployment. By solving only the problem at hand, the Scrum Master does not help the Development Team to improve their ability to solve similar problems on their own. Instead, the Scrum Master can address the actual impediment by helping the team find ways to resolve deployment problems on their own.

One solution might be to add the skills or the people to the Development Team that are needed to do this. Another solution might be for the team to set up and manage their own infrastructure (DevOps). A more low-tech solution might be to create communication channels between the Development Team and the people capable of resolving problems in deployments (e.g. liaisons). Whatever the solution, it should emerge from the Development Team with help from the Scrum Master.

Example #2: Team conflict

Another example. Suppose a Development Team is dealing with two members that can’t stand each other. Instead of talking about the problem themselves, it is delegated to the Scrum Master to resolve. The actual impediment here is the inability of the team to deal with their own conflicts. Perhaps there is no psychological safety within the Development Team to talk about it. Or people don’t know how to bring up conflicts or lack the courage to do so. By solving only the problem, the Scrum Master does not help the Development Team to improve their ability to solve similar problems on their own.

Instead, the Scrum Master could facilitate a session where frustrations are aired and where the team mediates solutions (instead of being handed one). The Scrum Master can model the kind of behavior needed for conflict resolution, like asking open-ended questions, showing empathy and finding common ground, and invite members of the team to do the same.

Example #3: Not enough work

A final example. Suppose a Development Team finds itself in the position where half the team has nothing to do. This is raised as an impediment during the Daily Scrum, and the Scrum Master is tasked with finding them some work. The actual impediment here is that the Development Team is apparently not collaborating in a manner so that everyone can contribute to achieving the Sprint Goal.

Instead of finding work, the Scrum Master would do well to investigate why this is happening. He or she might address this during a themed Sprint Retrospective. Or perhaps the Development Team is unaware of practices that promote collaboration, like pair- or crowd-programming, breaking up large chunks of work or testing work by others (‘two pair of eyes’). Or maybe there are people in the team that are acting as ‘Towers of Knowledge’, and take up the bulk of the work while the rest works on the crumbs.

Either way, the Scrum Master can help the Development Team become more self-organizing by finding solutions for these impediments, not for the (symptomatic) problem that is raised during the Daily Scrum.

Being a successful Scrum Master means ...

Successful Scrum Masters help Development Teams increase their ability to resolve problems on their own. This is something that teams have to learn, and the Scrum Master helps them do so. What may be considered an impediment during Sprint 1, may have become an problem that the team can easily resolve by itself during Sprint 5. If you want to know if you are doing a good job as a Scrum Master, monitor the ability of a Development Team to resolve problems on their own over time. If this is increasing, you are probably doing a good job.

So Scrum Masters never resolve problems?

Does this mean that a Scrum Master  never  resolves problems? Of course not. Scrum Masters are still part of the Scrum Team. Perhaps a Scrum Master will fix that wi-fi router if the Development Team is totally focussed on solving a major technical problem. Or a Scrum Master can facilitate a session where the team breaks down some large chunks of work. Solving problems for the Development Team is totally acceptable if it is done for the right reasons. Don’t do it out of routine. Before solving an problem, consider if you’re really helping to the Development Team to grow in their ability to resolve similar problems on their own. A good guideline to remember is:

"A Scrum Master should reveal, not resolve.”
  • Don’t wait until the Daily Scrum to raise an impediment.  Consider the Daily Scrum as the most  minimal  opportunity to discuss impediments. Real blockers to the team’s progress should be discussed immediately.
  • Whenever a potential impediment is raised by the team, consider  what would happen if you don’t do anything . Will someone else in the Development Team take care of it?
  • There is nothing wrong with an ‘ Impediment Board ’ to make transparent what impediments have been removed over time. But make sure to use it for real impediments, not just for whatever problem the Development Team feels like delegating to the Scrum Master. And make sure that the board is owned by the entire Scrum Team, and is just not for the Scrum Master;
  • Not every problem is important.  Use a Sprint Goal as a compass and guidance. As a Scrum Master you should especially act on impediments that hinder the Development Team from achieving the Sprint Goal. Focus on these impediments before resolving anything else;
  • Be brave and creative in removing impediments.  Remember “A good Scrum Master will push for permission to remove impediments to team productivity. A great Scrum Master will be prepared to ask for forgiveness.”  (Geoff Watts - Scrum Mastery)
  • One of the most powerful tools of a coach is the use of silence.  Remain silent and see what happens next. The same goes for how a Scrum Master should act. As an experiment, don’t act on an impediment and see what happens;
  • Collaborate with the Product Owner.  Quite often impediments will be related to product management and collaboration with stakeholders and suppliers. The Product Owner is a key player on this area. Therefore, ensure a solid relationship with the Product Owner.
  • Focus on the real problem, not the first problem.  Ask questions to understand the situation. Check if it’s really an impediment or a learning opportunity for the Development Team.
“Focus on the real problem, not the first problem.”

Today we busted the myth that the Scrum Master is responsible for solving all problems that hinder the Development Team in achieving the Sprint Goal. Instead, the Scrum Master should help the Development Team to become increasingly capable of resolving similar problems on their own (self-organization). The Scrum Master does so by addressing those problems that ‘act as a parachute’ to the team slowing down overall progress, not just whatever pops up. In this post we offered a couple of concrete examples and clarified what kind of problems a Development Team should solve, and what problems are ‘impediments’ to be picked up by the Scrum Master. We also offered some tips on how to do this.

What do you think about this myth? Do you agree? What are your lessons learned?

Want to separate Scrum from the myths? Join our  Professional Scrum Master  or Scrum Master Advanced  courses (in Dutch or English). We guarantee a unique, eye-opening experience that is 100% free of PowerPoint, highly interactive and serious-but-fun. Check out our public courses (Dutch) or contact us for in-house or English courses. Check out the previous episodes here ( 1 ,  2 ,  3 ,  4  ,  5  and  6 ).

What did you think about this post?

Share with your network.

  • Share this page via email
  • Share this page on Facebook
  • Share this page on Twitter
  • Share this page on LinkedIn

View the discussion thread.

IMAGES

  1. what is problem solving steps process & techniques asq

    what are three common impediments to problem solving

  2. 3 Tips for Effective Problem Solving

    what are three common impediments to problem solving

  3. three stages of problem solving according to traditional models

    what are three common impediments to problem solving

  4. 8 Important Problem Solving Skills

    what are three common impediments to problem solving

  5. 7 Steps to Improve Your Problem Solving Skills

    what are three common impediments to problem solving

  6. three stages of problem solving according to traditional models

    what are three common impediments to problem solving

VIDEO

  1. Problem Solving IQ Pedestal

  2. Problem Solving Techniques

  3. MATHEMATICS GRADE 8 : COMMON FRACTIONS- PROBLEM SOLVING

  4. 🎯 Common Problem Solving ETDP Support Class 15

  5. problem solving

  6. #IGNOU

COMMENTS

  1. 6 Common Problem Solving Barriers and How Can Managers Beat them

    One of the most common barriers to problem solving is fear of failure. Fear can prevent us from taking risks and trying new things, preventing us from achieving our goals. Overcoming this fear is vital to success. Several ways to reduce or eliminate fear include practice, visualization, and positive self-talk.

  2. The Six Main Barriers Against Problem-Solving And How To ...

    Double loop always to make sure that you are not patching over the symptoms but getting to the heart of the matter. 6. Failure to identify the involved parts. Take time to figure out and consult ...

  3. Barriers to Effective Problem Solving

    There are several common barriers to successful CPS, including: Confirmation Bias: The tendency to only search for or interpret information that confirms a person's existing ideas. People misinterpret or disregard data that doesn't align with their beliefs. Mental Set: People's inclination to solve problems using the same tactics they ...

  4. Problem-Solving Strategies and Obstacles

    Several mental processes are at work during problem-solving. Among them are: Perceptually recognizing the problem. Representing the problem in memory. Considering relevant information that applies to the problem. Identifying different aspects of the problem. Labeling and describing the problem.

  5. 6.8: Blocks to Problem Solving

    Common obstacles to solving problems. The example also illustrates two common problems that sometimes happen during problem solving. One of these is functional fixedness: a tendency to regard the functions of objects and ideas as fixed (German & Barrett, 2005).Over time, we get so used to one particular purpose for an object that we overlook other uses.

  6. Pitfalls to Problem Solving

    Tendency to focus on one particular piece of information when making decisions or problem-solving. Confirmation. Focuses on information that confirms existing beliefs. Hindsight. Belief that the event just experienced was predictable. Representative. Unintentional stereotyping of someone or something. Availability.

  7. 9.5: Pitfalls to Problem Solving

    Try It. Query 9.5.1 9.5. 1. Query 9.5.2 9.5. 2. Query 9.5.3 9.5. 3. In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation.

  8. Pitfalls to Problem Solving

    functional fixedness: inability to see an object as useful for any other use other than the one for which it was intended. hindsight bias: belief that the event just experienced was predictable, even though it really wasn't. mental set: continually using an old solution to a problem without results.

  9. 7.3 Problem-Solving

    Additional Problem Solving Strategies:. Abstraction - refers to solving the problem within a model of the situation before applying it to reality.; Analogy - is using a solution that solves a similar problem.; Brainstorming - refers to collecting an analyzing a large amount of solutions, especially within a group of people, to combine the solutions and developing them until an optimal ...

  10. The Five Pitfalls of Problem Solving

    This chapter discusses its five specific pitfalls, based on real-life cases. First, a flawed problem definition almost invariably leads to irrelevant solutions. Second, most problem solvers start with a hypothetical solution in mind, which they tend to confirm instead of systematically challenging it. Third, picking the wrong framework when ...

  11. 7 Critical Thinking Barriers and How to Overcome Them

    Most importantly, we must discover how to get around these barriers. This article will explore seven common critical thinking barriers and how to effectively circumvent them. In our view, the 7 most common and harmful critical thinking barriers to actively overcome are: Egocentric Thinking. Groupthink. Drone Mentality.

  12. What is Problem Solving? Steps, Process & Techniques

    Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below. Step. Characteristics. 1. Define the problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically.

  13. 10 Problem-solving strategies to turn challenges on their head

    2. Break the problem down. Identifying the problem allows you to see which steps need to be taken to solve it. First, break the problem down into achievable blocks. Then, use strategic planning to set a time frame in which to solve the problem and establish a timeline for the completion of each stage. 3.

  14. Barriers to Problem Solving

    Here are the most common barriers to problem-solving and decision-making in the workplace: Misdiagnosis; Common barriers to problem-solving include an incorrect diagnosis of the problem. This could be due to preconceived ideas, biases, or judgments. Defining a problem is the hardest step in the process of problem-solving because this is the ...

  15. Problem? What Problem?: Dealing Effectively with Impediments using

    In agile these problems are called impediments: anything that slows down a team and needs to be dealt with. Agile teams need to be able to handle impediments.This is the first book specifically about dealing with impediments using agile thinking with problem-solving practices. In this book, I explain why dealing with impediments matters.

  16. Problem solving

    e. Problem solving is the process of achieving a goal by overcoming obstacles, a frequent part of most activities. Problems in need of solutions range from simple personal tasks (e.g. how to turn on an appliance) to complex issues in business and technical fields. The former is an example of simple problem solving (SPS) addressing one issue ...

  17. Solving Problems

    A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A "rule of thumb" is an example of a heuristic.

  18. Handling Impediments: Effective Solutions

    In this workshop, you can play the agile and lean impediment game which teaches you how to recognize and deal with problems and impediments and how you can deploy agile and lean practices to solve problems and become more agile and lean. 43. Shares. Looking for reviewers for my book on impediments. Effectief aanpakken van impediments.

  19. PDF UNIT 4 IMPEDIMENTS TO PROBLEM Problem Solving Theoretical ...

    4.5 IMPEDIMENTS IN PROBLEM SOLVING Solving problems is a complex process and each of us is better at the skills required at some stages than others. A problem exists when an obstacle prevents the person from reaching an objective. In order to achieve effective problem solving , this problem solving itself can be

  20. Problem solving techniques: Steps and methods

    Evaluate the options. Select the best solution. Create an implementation plan. Communicate your solution. Let's look at each step in a little more detail. The first solution you come up with won't always be the best - taking the time to consider your options is an essential problem solving technique. 1.

  21. Solving Impediments as a Scrum Team

    Solving Impediments like the Interruption Problem as a Team. In this case, the Scrum Team decided to approach the impediment at two levels: The Scrum Master reached out to the stakeholders and the management to offer a short training class at a convenient time slot late in the evening to educate them on the productivity issues of agile teams ...

  22. Five common barriers to creative problem solving, and ways ...

    Lack of supportive environment can discourage creative thinking. New ideas may threaten the status quo, and hence there can be resistance to accept them. Stringent deadlines and stress can make ...

  23. Myth 7: The Scrum Master Must Resolve Every Problem

    The problem that is raised is just a symptom of a deeper impediment; the inability of the Development Team to do their own deployments or at least solve problems related to deployment. By solving only the problem at hand, the Scrum Master does not help the Development Team to improve their ability to solve similar problems on their own.