User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

5.2 - writing hypotheses.

The first step in conducting a hypothesis test is to write the hypothesis statements that are going to be tested. For each test you will have a null hypothesis (\(H_0\)) and an alternative hypothesis (\(H_a\)).

When writing hypotheses there are three things that we need to know: (1) the parameter that we are testing (2) the direction of the test (non-directional, right-tailed or left-tailed), and (3) the value of the hypothesized parameter.

  • At this point we can write hypotheses for a single mean (\(\mu\)), paired means(\(\mu_d\)), a single proportion (\(p\)), the difference between two independent means (\(\mu_1-\mu_2\)), the difference between two proportions (\(p_1-p_2\)), a simple linear regression slope (\(\beta\)), and a correlation (\(\rho\)). 
  • The research question will give us the information necessary to determine if the test is two-tailed (e.g., "different from," "not equal to"), right-tailed (e.g., "greater than," "more than"), or left-tailed (e.g., "less than," "fewer than").
  • The research question will also give us the hypothesized parameter value. This is the number that goes in the hypothesis statements (i.e., \(\mu_0\) and \(p_0\)). For the difference between two groups, regression, and correlation, this value is typically 0.

Hypotheses are always written in terms of population parameters (e.g., \(p\) and \(\mu\)).  The tables below display all of the possible hypotheses for the parameters that we have learned thus far. Note that the null hypothesis always includes the equality (i.e., =).

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • How to Write a Strong Hypothesis | Guide & Examples

How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 25 March 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

PrepScholar

Choose Your Test

Sat / act prep online guides and tips, what is a hypothesis and how do i write one.

author image

General Education

body-glowing-question-mark

Think about something strange and unexplainable in your life. Maybe you get a headache right before it rains, or maybe you think your favorite sports team wins when you wear a certain color. If you wanted to see whether these are just coincidences or scientific fact, you would form a hypothesis, then create an experiment to see whether that hypothesis is true or not. 

But what is a hypothesis, anyway? If you’re not sure about what a hypothesis is--or how to test for one!--you’re in the right place. This article will teach you everything you need to know about hypotheses, including: 

  • Defining the term “hypothesis” 
  • Providing hypothesis examples 
  • Giving you tips for how to write your own hypothesis 

So let’s get started!

body-picture-ask-sign

What Is a Hypothesis?

Merriam Webster defines a hypothesis as “an assumption or concession made for the sake of argument.” In other words, a hypothesis is an educated guess . Scientists make a reasonable assumption--or a hypothesis--then design an experiment to test whether it’s true or not. Keep in mind that in science, a hypothesis should be testable. You have to be able to design an experiment that tests your hypothesis in order for it to be valid. 

As you could assume from that statement, it’s easy to make a bad hypothesis. But when you’re holding an experiment, it’s even more important that your guesses be good...after all, you’re spending time (and maybe money!) to figure out more about your observation. That’s why we refer to a hypothesis as an educated guess--good hypotheses are based on existing data and research to make them as sound as possible.

Hypotheses are one part of what’s called the scientific method .  Every (good) experiment or study is based in the scientific method. The scientific method gives order and structure to experiments and ensures that interference from scientists or outside influences does not skew the results. It’s important that you understand the concepts of the scientific method before holding your own experiment. Though it may vary among scientists, the scientific method is generally made up of six steps (in order):

  • Observation
  • Asking questions
  • Forming a hypothesis
  • Analyze the data
  • Communicate your results

You’ll notice that the hypothesis comes pretty early on when conducting an experiment. That’s because experiments work best when they’re trying to answer one specific question. And you can’t conduct an experiment until you know what you’re trying to prove!

Independent and Dependent Variables 

After doing your research, you’re ready for another important step in forming your hypothesis: identifying variables. Variables are basically any factor that could influence the outcome of your experiment . Variables have to be measurable and related to the topic being studied.

There are two types of variables:  independent variables and dependent variables. I ndependent variables remain constant . For example, age is an independent variable; it will stay the same, and researchers can look at different ages to see if it has an effect on the dependent variable. 

Speaking of dependent variables... dependent variables are subject to the influence of the independent variable , meaning that they are not constant. Let’s say you want to test whether a person’s age affects how much sleep they need. In that case, the independent variable is age (like we mentioned above), and the dependent variable is how much sleep a person gets. 

Variables will be crucial in writing your hypothesis. You need to be able to identify which variable is which, as both the independent and dependent variables will be written into your hypothesis. For instance, in a study about exercise, the independent variable might be the speed at which the respondents walk for thirty minutes, and the dependent variable would be their heart rate. In your study and in your hypothesis, you’re trying to understand the relationship between the two variables.

Elements of a Good Hypothesis

The best hypotheses start by asking the right questions . For instance, if you’ve observed that the grass is greener when it rains twice a week, you could ask what kind of grass it is, what elevation it’s at, and if the grass across the street responds to rain in the same way. Any of these questions could become the backbone of experiments to test why the grass gets greener when it rains fairly frequently.

As you’re asking more questions about your first observation, make sure you’re also making more observations . If it doesn’t rain for two weeks and the grass still looks green, that’s an important observation that could influence your hypothesis. You'll continue observing all throughout your experiment, but until the hypothesis is finalized, every observation should be noted.

Finally, you should consult secondary research before writing your hypothesis . Secondary research is comprised of results found and published by other people. You can usually find this information online or at your library. Additionally, m ake sure the research you find is credible and related to your topic. If you’re studying the correlation between rain and grass growth, it would help you to research rain patterns over the past twenty years for your county, published by a local agricultural association. You should also research the types of grass common in your area, the type of grass in your lawn, and whether anyone else has conducted experiments about your hypothesis. Also be sure you’re checking the quality of your research . Research done by a middle school student about what minerals can be found in rainwater would be less useful than an article published by a local university.

body-pencil-notebook-writing

Writing Your Hypothesis

Once you’ve considered all of the factors above, you’re ready to start writing your hypothesis. Hypotheses usually take a certain form when they’re written out in a research report.

When you boil down your hypothesis statement, you are writing down your best guess and not the question at hand . This means that your statement should be written as if it is fact already, even though you are simply testing it.

The reason for this is that, after you have completed your study, you'll either accept or reject your if-then or your null hypothesis. All hypothesis testing examples should be measurable and able to be confirmed or denied. You cannot confirm a question, only a statement! 

In fact, you come up with hypothesis examples all the time! For instance, when you guess on the outcome of a basketball game, you don’t say, “Will the Miami Heat beat the Boston Celtics?” but instead, “I think the Miami Heat will beat the Boston Celtics.” You state it as if it is already true, even if it turns out you’re wrong. You do the same thing when writing your hypothesis.

Additionally, keep in mind that hypotheses can range from very specific to very broad.  These hypotheses can be specific, but if your hypothesis testing examples involve a broad range of causes and effects, your hypothesis can also be broad.  

body-hand-number-two

The Two Types of Hypotheses

Now that you understand what goes into a hypothesis, it’s time to look more closely at the two most common types of hypothesis: the if-then hypothesis and the null hypothesis.

#1: If-Then Hypotheses

First of all, if-then hypotheses typically follow this formula:

If ____ happens, then ____ will happen.

The goal of this type of hypothesis is to test the causal relationship between the independent and dependent variable. It’s fairly simple, and each hypothesis can vary in how detailed it can be. We create if-then hypotheses all the time with our daily predictions. Here are some examples of hypotheses that use an if-then structure from daily life: 

  • If I get enough sleep, I’ll be able to get more work done tomorrow.
  • If the bus is on time, I can make it to my friend’s birthday party. 
  • If I study every night this week, I’ll get a better grade on my exam. 

In each of these situations, you’re making a guess on how an independent variable (sleep, time, or studying) will affect a dependent variable (the amount of work you can do, making it to a party on time, or getting better grades). 

You may still be asking, “What is an example of a hypothesis used in scientific research?” Take one of the hypothesis examples from a real-world study on whether using technology before bed affects children’s sleep patterns. The hypothesis read s:

“We hypothesized that increased hours of tablet- and phone-based screen time at bedtime would be inversely correlated with sleep quality and child attention.”

It might not look like it, but this is an if-then statement. The researchers basically said, “If children have more screen usage at bedtime, then their quality of sleep and attention will be worse.” The sleep quality and attention are the dependent variables and the screen usage is the independent variable. (Usually, the independent variable comes after the “if” and the dependent variable comes after the “then,” as it is the independent variable that affects the dependent variable.) This is an excellent example of how flexible hypothesis statements can be, as long as the general idea of “if-then” and the independent and dependent variables are present.

#2: Null Hypotheses

Your if-then hypothesis is not the only one needed to complete a successful experiment, however. You also need a null hypothesis to test it against. In its most basic form, the null hypothesis is the opposite of your if-then hypothesis . When you write your null hypothesis, you are writing a hypothesis that suggests that your guess is not true, and that the independent and dependent variables have no relationship .

One null hypothesis for the cell phone and sleep study from the last section might say: 

“If children have more screen usage at bedtime, their quality of sleep and attention will not be worse.” 

In this case, this is a null hypothesis because it’s asking the opposite of the original thesis! 

Conversely, if your if-then hypothesis suggests that your two variables have no relationship, then your null hypothesis would suggest that there is one. So, pretend that there is a study that is asking the question, “Does the amount of followers on Instagram influence how long people spend on the app?” The independent variable is the amount of followers, and the dependent variable is the time spent. But if you, as the researcher, don’t think there is a relationship between the number of followers and time spent, you might write an if-then hypothesis that reads:

“If people have many followers on Instagram, they will not spend more time on the app than people who have less.”

In this case, the if-then suggests there isn’t a relationship between the variables. In that case, one of the null hypothesis examples might say:

“If people have many followers on Instagram, they will spend more time on the app than people who have less.”

You then test both the if-then and the null hypothesis to gauge if there is a relationship between the variables, and if so, how much of a relationship. 

feature_tips

4 Tips to Write the Best Hypothesis

If you’re going to take the time to hold an experiment, whether in school or by yourself, you’re also going to want to take the time to make sure your hypothesis is a good one. The best hypotheses have four major elements in common: plausibility, defined concepts, observability, and general explanation.

#1: Plausibility

At first glance, this quality of a hypothesis might seem obvious. When your hypothesis is plausible, that means it’s possible given what we know about science and general common sense. However, improbable hypotheses are more common than you might think. 

Imagine you’re studying weight gain and television watching habits. If you hypothesize that people who watch more than  twenty hours of television a week will gain two hundred pounds or more over the course of a year, this might be improbable (though it’s potentially possible). Consequently, c ommon sense can tell us the results of the study before the study even begins.

Improbable hypotheses generally go against  science, as well. Take this hypothesis example: 

“If a person smokes one cigarette a day, then they will have lungs just as healthy as the average person’s.” 

This hypothesis is obviously untrue, as studies have shown again and again that cigarettes negatively affect lung health. You must be careful that your hypotheses do not reflect your own personal opinion more than they do scientifically-supported findings. This plausibility points to the necessity of research before the hypothesis is written to make sure that your hypothesis has not already been disproven.

#2: Defined Concepts

The more advanced you are in your studies, the more likely that the terms you’re using in your hypothesis are specific to a limited set of knowledge. One of the hypothesis testing examples might include the readability of printed text in newspapers, where you might use words like “kerning” and “x-height.” Unless your readers have a background in graphic design, it’s likely that they won’t know what you mean by these terms. Thus, it’s important to either write what they mean in the hypothesis itself or in the report before the hypothesis.

Here’s what we mean. Which of the following sentences makes more sense to the common person?

If the kerning is greater than average, more words will be read per minute.

If the space between letters is greater than average, more words will be read per minute.

For people reading your report that are not experts in typography, simply adding a few more words will be helpful in clarifying exactly what the experiment is all about. It’s always a good idea to make your research and findings as accessible as possible. 

body-blue-eye

Good hypotheses ensure that you can observe the results. 

#3: Observability

In order to measure the truth or falsity of your hypothesis, you must be able to see your variables and the way they interact. For instance, if your hypothesis is that the flight patterns of satellites affect the strength of certain television signals, yet you don’t have a telescope to view the satellites or a television to monitor the signal strength, you cannot properly observe your hypothesis and thus cannot continue your study.

Some variables may seem easy to observe, but if you do not have a system of measurement in place, you cannot observe your hypothesis properly. Here’s an example: if you’re experimenting on the effect of healthy food on overall happiness, but you don’t have a way to monitor and measure what “overall happiness” means, your results will not reflect the truth. Monitoring how often someone smiles for a whole day is not reasonably observable, but having the participants state how happy they feel on a scale of one to ten is more observable. 

In writing your hypothesis, always keep in mind how you'll execute the experiment.

#4: Generalizability 

Perhaps you’d like to study what color your best friend wears the most often by observing and documenting the colors she wears each day of the week. This might be fun information for her and you to know, but beyond you two, there aren’t many people who could benefit from this experiment. When you start an experiment, you should note how generalizable your findings may be if they are confirmed. Generalizability is basically how common a particular phenomenon is to other people’s everyday life.

Let’s say you’re asking a question about the health benefits of eating an apple for one day only, you need to realize that the experiment may be too specific to be helpful. It does not help to explain a phenomenon that many people experience. If you find yourself with too specific of a hypothesis, go back to asking the big question: what is it that you want to know, and what do you think will happen between your two variables?

body-experiment-chemistry

Hypothesis Testing Examples

We know it can be hard to write a good hypothesis unless you’ve seen some good hypothesis examples. We’ve included four hypothesis examples based on some made-up experiments. Use these as templates or launch pads for coming up with your own hypotheses.

Experiment #1: Students Studying Outside (Writing a Hypothesis)

You are a student at PrepScholar University. When you walk around campus, you notice that, when the temperature is above 60 degrees, more students study in the quad. You want to know when your fellow students are more likely to study outside. With this information, how do you make the best hypothesis possible?

You must remember to make additional observations and do secondary research before writing your hypothesis. In doing so, you notice that no one studies outside when it’s 75 degrees and raining, so this should be included in your experiment. Also, studies done on the topic beforehand suggested that students are more likely to study in temperatures less than 85 degrees. With this in mind, you feel confident that you can identify your variables and write your hypotheses:

If-then: “If the temperature in Fahrenheit is less than 60 degrees, significantly fewer students will study outside.”

Null: “If the temperature in Fahrenheit is less than 60 degrees, the same number of students will study outside as when it is more than 60 degrees.”

These hypotheses are plausible, as the temperatures are reasonably within the bounds of what is possible. The number of people in the quad is also easily observable. It is also not a phenomenon specific to only one person or at one time, but instead can explain a phenomenon for a broader group of people.

To complete this experiment, you pick the month of October to observe the quad. Every day (except on the days where it’s raining)from 3 to 4 PM, when most classes have released for the day, you observe how many people are on the quad. You measure how many people come  and how many leave. You also write down the temperature on the hour. 

After writing down all of your observations and putting them on a graph, you find that the most students study on the quad when it is 70 degrees outside, and that the number of students drops a lot once the temperature reaches 60 degrees or below. In this case, your research report would state that you accept or “failed to reject” your first hypothesis with your findings.

Experiment #2: The Cupcake Store (Forming a Simple Experiment)

Let’s say that you work at a bakery. You specialize in cupcakes, and you make only two colors of frosting: yellow and purple. You want to know what kind of customers are more likely to buy what kind of cupcake, so you set up an experiment. Your independent variable is the customer’s gender, and the dependent variable is the color of the frosting. What is an example of a hypothesis that might answer the question of this study?

Here’s what your hypotheses might look like: 

If-then: “If customers’ gender is female, then they will buy more yellow cupcakes than purple cupcakes.”

Null: “If customers’ gender is female, then they will be just as likely to buy purple cupcakes as yellow cupcakes.”

This is a pretty simple experiment! It passes the test of plausibility (there could easily be a difference), defined concepts (there’s nothing complicated about cupcakes!), observability (both color and gender can be easily observed), and general explanation ( this would potentially help you make better business decisions ).

body-bird-feeder

Experiment #3: Backyard Bird Feeders (Integrating Multiple Variables and Rejecting the If-Then Hypothesis)

While watching your backyard bird feeder, you realized that different birds come on the days when you change the types of seeds. You decide that you want to see more cardinals in your backyard, so you decide to see what type of food they like the best and set up an experiment. 

However, one morning, you notice that, while some cardinals are present, blue jays are eating out of your backyard feeder filled with millet. You decide that, of all of the other birds, you would like to see the blue jays the least. This means you'll have more than one variable in your hypothesis. Your new hypotheses might look like this: 

If-then: “If sunflower seeds are placed in the bird feeders, then more cardinals will come than blue jays. If millet is placed in the bird feeders, then more blue jays will come than cardinals.”

Null: “If either sunflower seeds or millet are placed in the bird, equal numbers of cardinals and blue jays will come.”

Through simple observation, you actually find that cardinals come as often as blue jays when sunflower seeds or millet is in the bird feeder. In this case, you would reject your “if-then” hypothesis and “fail to reject” your null hypothesis . You cannot accept your first hypothesis, because it’s clearly not true. Instead you found that there was actually no relation between your different variables. Consequently, you would need to run more experiments with different variables to see if the new variables impact the results.

Experiment #4: In-Class Survey (Including an Alternative Hypothesis)

You’re about to give a speech in one of your classes about the importance of paying attention. You want to take this opportunity to test a hypothesis you’ve had for a while: 

If-then: If students sit in the first two rows of the classroom, then they will listen better than students who do not.

Null: If students sit in the first two rows of the classroom, then they will not listen better or worse than students who do not.

You give your speech and then ask your teacher if you can hand out a short survey to the class. On the survey, you’ve included questions about some of the topics you talked about. When you get back the results, you’re surprised to see that not only do the students in the first two rows not pay better attention, but they also scored worse than students in other parts of the classroom! Here, both your if-then and your null hypotheses are not representative of your findings. What do you do?

This is when you reject both your if-then and null hypotheses and instead create an alternative hypothesis . This type of hypothesis is used in the rare circumstance that neither of your hypotheses is able to capture your findings . Now you can use what you’ve learned to draft new hypotheses and test again! 

Key Takeaways: Hypothesis Writing

The more comfortable you become with writing hypotheses, the better they will become. The structure of hypotheses is flexible and may need to be changed depending on what topic you are studying. The most important thing to remember is the purpose of your hypothesis and the difference between the if-then and the null . From there, in forming your hypothesis, you should constantly be asking questions, making observations, doing secondary research, and considering your variables. After you have written your hypothesis, be sure to edit it so that it is plausible, clearly defined, observable, and helpful in explaining a general phenomenon.

Writing a hypothesis is something that everyone, from elementary school children competing in a science fair to professional scientists in a lab, needs to know how to do. Hypotheses are vital in experiments and in properly executing the scientific method . When done correctly, hypotheses will set up your studies for success and help you to understand the world a little better, one experiment at a time.

body-whats-next-post-it-note

What’s Next?

If you’re studying for the science portion of the ACT, there’s definitely a lot you need to know. We’ve got the tools to help, though! Start by checking out our ultimate study guide for the ACT Science subject test. Once you read through that, be sure to download our recommended ACT Science practice tests , since they’re one of the most foolproof ways to improve your score. (And don’t forget to check out our expert guide book , too.)

If you love science and want to major in a scientific field, you should start preparing in high school . Here are the science classes you should take to set yourself up for success.

If you’re trying to think of science experiments you can do for class (or for a science fair!), here’s a list of 37 awesome science experiments you can do at home

Need more help with this topic? Check out Tutorbase!

Our vetted tutor database includes a range of experienced educators who can help you polish an essay for English or explain how derivatives work for Calculus. You can use dozens of filters and search criteria to find the perfect person for your needs.

Connect With a Tutor Now

Ashley Sufflé Robinson has a Ph.D. in 19th Century English Literature. As a content writer for PrepScholar, Ashley is passionate about giving college-bound students the in-depth information they need to get into the school of their dreams.

Student and Parent Forum

Our new student and parent forum, at ExpertHub.PrepScholar.com , allow you to interact with your peers and the PrepScholar staff. See how other students and parents are navigating high school, college, and the college admissions process. Ask questions; get answers.

Join the Conversation

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

Improve With Our Famous Guides

  • For All Students

The 5 Strategies You Must Be Using to Improve 160+ SAT Points

How to Get a Perfect 1600, by a Perfect Scorer

Series: How to Get 800 on Each SAT Section:

Score 800 on SAT Math

Score 800 on SAT Reading

Score 800 on SAT Writing

Series: How to Get to 600 on Each SAT Section:

Score 600 on SAT Math

Score 600 on SAT Reading

Score 600 on SAT Writing

Free Complete Official SAT Practice Tests

What SAT Target Score Should You Be Aiming For?

15 Strategies to Improve Your SAT Essay

The 5 Strategies You Must Be Using to Improve 4+ ACT Points

How to Get a Perfect 36 ACT, by a Perfect Scorer

Series: How to Get 36 on Each ACT Section:

36 on ACT English

36 on ACT Math

36 on ACT Reading

36 on ACT Science

Series: How to Get to 24 on Each ACT Section:

24 on ACT English

24 on ACT Math

24 on ACT Reading

24 on ACT Science

What ACT target score should you be aiming for?

ACT Vocabulary You Must Know

ACT Writing: 15 Tips to Raise Your Essay Score

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

Is the ACT easier than the SAT? A Comprehensive Guide

Should you retake your SAT or ACT?

When should you take the SAT or ACT?

Stay Informed

how to write a hypothesis in college

Get the latest articles and test prep tips!

Looking for Graduate School Test Prep?

Check out our top-rated graduate blogs here:

GRE Online Prep Blog

GMAT Online Prep Blog

TOEFL Online Prep Blog

Holly R. "I am absolutely overjoyed and cannot thank you enough for helping me!”
  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

how to write a hypothesis in college

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

how to write a hypothesis in college

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis, operational definitions, types of hypotheses, hypotheses examples.

  • Collecting Data

Frequently Asked Questions

A hypothesis is a tentative statement about the relationship between two or more  variables. It is a specific, testable prediction about what you expect to happen in a study.

One hypothesis example would be a study designed to look at the relationship between sleep deprivation and test performance might have a hypothesis that states: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. It is only at this point that researchers begin to develop a testable hypothesis. Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore a number of factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk wisdom that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis.   In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in a number of different ways. One of the basic principles of any type of scientific research is that the results must be replicable.   By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. How would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

In order to measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming other people. In this situation, the researcher might utilize a simulated task to measure aggressiveness.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests that there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type of hypothesis suggests a relationship between three or more variables, such as two independent variables and a dependent variable.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative sample of the population and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • Complex hypothesis: "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "Children who receive a new reading intervention will have scores different than students who do not receive the intervention."
  • "There will be no difference in scores on a memory recall task between children and adults."

Examples of an alternative hypothesis:

  • "Children who receive a new reading intervention will perform better than students who did not receive the intervention."
  • "Adults will perform better on a memory task than children." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when it would be impossible or difficult to  conduct an experiment . These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a correlational study can then be used to look at how the variables are related. This type of research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

A Word From Verywell

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Some examples of how to write a hypothesis include:

  • "Staying up late will lead to worse test performance the next day."
  • "People who consume one apple each day will visit the doctor fewer times each year."
  • "Breaking study sessions up into three 20-minute sessions will lead to better test results than a single 60-minute study session."

The four parts of a hypothesis are:

  • The research question
  • The independent variable (IV)
  • The dependent variable (DV)
  • The proposed relationship between the IV and DV

Castillo M. The scientific method: a need for something better? . AJNR Am J Neuroradiol. 2013;34(9):1669-71. doi:10.3174/ajnr.A3401

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Learn How To Write A Hypothesis For Your Next Research Project!

blog image

Undoubtedly, research plays a crucial role in substantiating or refuting our assumptions. These assumptions act as potential answers to our questions. Such assumptions, also known as hypotheses, are considered key aspects of research. In this blog, we delve into the significance of hypotheses. And provide insights on how to write them effectively. So, let’s dive in and explore the art of writing hypotheses together.

Table of Contents

What is a Hypothesis?

A hypothesis is a crucial starting point in scientific research. It is an educated guess about the relationship between two or more variables. In other words, a hypothesis acts as a foundation for a researcher to build their study.

Here are some examples of well-crafted hypotheses:

  • Increased exposure to natural sunlight improves sleep quality in adults.

A positive relationship between natural sunlight exposure and sleep quality in adult individuals.

  • Playing puzzle games on a regular basis enhances problem-solving abilities in children.

Engaging in frequent puzzle gameplay leads to improved problem-solving skills in children.

  • Students and improved learning hecks.

S tudents using online  paper writing service  platforms (as a learning tool for receiving personalized feedback and guidance) will demonstrate improved writing skills. (compared to those who do not utilize such platforms).

  • The use of APA format in research papers. 

Using the  APA format  helps students stay organized when writing research papers. Organized students can focus better on their topics and, as a result, produce better quality work.

The Building Blocks of a Hypothesis

To better understand the concept of a hypothesis, let’s break it down into its basic components:

  • Variables . A hypothesis involves at least two variables. An independent variable and a dependent variable. The independent variable is the one being changed or manipulated, while the dependent variable is the one being measured or observed.
  • Relationship : A hypothesis proposes a relationship or connection between the variables. This could be a cause-and-effect relationship or a correlation between them.
  • Testability : A hypothesis should be testable and falsifiable, meaning it can be proven right or wrong through experimentation or observation.

Types of Hypotheses

When learning how to write a hypothesis, it’s essential to understand its main types. These include; alternative hypotheses and null hypotheses. In the following section, we explore both types of hypotheses with examples. 

Alternative Hypothesis (H1)

This kind of hypothesis suggests a relationship or effect between the variables. It is the main focus of the study. The researcher wants to either prove or disprove it. Many research divides this hypothesis into two subsections: 

  • Directional 

This type of H1 predicts a specific outcome. Many researchers use this hypothesis to explore the relationship between variables rather than the groups. 

  • Non-directional

You can take a guess from the name. This type of H1 does not provide a specific prediction for the research outcome. 

Here are some examples for your better understanding of how to write a hypothesis.

  • Consuming caffeine improves cognitive performance.  (This hypothesis predicts that there is a positive relationship between caffeine consumption and cognitive performance.)
  • Aerobic exercise leads to reduced blood pressure.  (This hypothesis suggests that engaging in aerobic exercise results in lower blood pressure readings.)
  • Exposure to nature reduces stress levels among employees.  (Here, the hypothesis proposes that employees exposed to natural environments will experience decreased stress levels.)
  • Listening to classical music while studying increases memory retention.  (This hypothesis speculates that studying with classical music playing in the background boosts students’ ability to retain information.)
  • Early literacy intervention improves reading skills in children.  (This hypothesis claims that providing early literacy assistance to children results in enhanced reading abilities.)
  • Time management in nursing students. ( Students who use a  nursing research paper writing service  have more time to focus on their studies and can achieve better grades in other subjects. )

Null Hypothesis (H0)

A null hypothesis assumes no relationship or effect between the variables. If the alternative hypothesis is proven to be false, the null hypothesis is considered to be true. Usually a null hypothesis shows no direct correlation between the defined variables. 

Here are some of the examples

  • The consumption of herbal tea has no effect on sleep quality.  (This hypothesis assumes that herbal tea consumption does not impact the quality of sleep.)
  • The number of hours spent playing video games is unrelated to academic performance.  (Here, the null hypothesis suggests that no relationship exists between video gameplay duration and academic achievement.)
  • Implementing flexible work schedules has no influence on employee job satisfaction.  (This hypothesis contends that providing flexible schedules does not affect how satisfied employees are with their jobs.)
  • Writing ability of a 7th grader is not affected by reading editorial example. ( There is no relationship between reading an  editorial example  and improving a 7th grader’s writing abilities.) 
  • The type of lighting in a room does not affect people’s mood.  (In this null hypothesis, there is no connection between the kind of lighting in a room and the mood of those present.)
  • The use of social media during break time does not impact productivity at work.  (This hypothesis proposes that social media usage during breaks has no effect on work productivity.)

As you learn how to write a hypothesis, remember that aiming for clarity, testability, and relevance to your research question is vital. By mastering this skill, you’re well on your way to conducting impactful scientific research. Good luck!

Importance of a Hypothesis in Research

A well-structured hypothesis is a vital part of any research project for several reasons:

  • It provides clear direction for the study by setting its focus and purpose.
  • It outlines expectations of the research, making it easier to measure results.
  • It helps identify any potential limitations in the study, allowing researchers to refine their approach.

In conclusion, a hypothesis plays a fundamental role in the research process. By understanding its concept and constructing a well-thought-out hypothesis, researchers lay the groundwork for a successful, scientifically sound investigation.

How to Write a Hypothesis?

Here are five steps that you can follow to write an effective hypothesis. 

Step 1: Identify Your Research Question

The first step in learning how to compose a hypothesis is to clearly define your research question. This question is the central focus of your study and will help you determine the direction of your hypothesis.

Step 2: Determine the Variables

When exploring how to write a hypothesis, it’s crucial to identify the variables involved in your study. You’ll need at least two variables:

  • Independent variable : The factor you manipulate or change in your experiment.
  • Dependent variable : The outcome or result you observe or measure, which is influenced by the independent variable.

Step 3: Build the Hypothetical Relationship

In understanding how to compose a hypothesis, constructing the relationship between the variables is key. Based on your research question and variables, predict the expected outcome or connection. This prediction should be specific, testable, and, if possible, expressed in the “If…then” format.

Step 4: Write the Null Hypothesis

When mastering how to write a hypothesis, it’s important to create a null hypothesis as well. The null hypothesis assumes no relationship or effect between the variables, acting as a counterpoint to your primary hypothesis.

Step 5: Review Your Hypothesis

Finally, when learning how to compose a hypothesis, it’s essential to review your hypothesis for clarity, testability, and relevance to your research question. Make any necessary adjustments to ensure it provides a solid basis for your study.

In conclusion, understanding how to write a hypothesis is crucial for conducting successful scientific research. By focusing on your research question and carefully building relationships between variables, you will lay a strong foundation for advancing research and knowledge in your field.

Hypothesis vs. Prediction: What’s the Difference?

Understanding the differences between a hypothesis and a prediction is crucial in scientific research. Often, these terms are used interchangeably, but they have distinct meanings and functions. This segment aims to clarify these differences and explain how to compose a hypothesis correctly, helping you improve the quality of your research projects.

Hypothesis: The Foundation of Your Research

A hypothesis is an educated guess about the relationship between two or more variables. It provides the basis for your research question and is a starting point for an experiment or observational study.

The critical elements for a hypothesis include:

  • Specificity: A clear and concise statement that describes the relationship between variables.
  • Testability: The ability to test the hypothesis through experimentation or observation.

To learn how to write a hypothesis, it’s essential to identify your research question first and then predict the relationship between the variables.

Prediction: The Expected Outcome

A prediction is a statement about a specific outcome you expect to see in your experiment or observational study. It’s derived from the hypothesis and provides a measurable way to test the relationship between variables.

Here’s an example of how to write a hypothesis and a related prediction:

  • Hypothesis: Consuming a high-sugar diet leads to weight gain.
  • Prediction: People who consume a high-sugar diet for six weeks will gain more weight than those who maintain a low-sugar diet during the same period.

Key Differences Between a Hypothesis and a Prediction

While a hypothesis and prediction are both essential components of scientific research, there are some key differences to keep in mind:

  • A hypothesis is an educated guess that suggests a relationship between variables, while a prediction is a specific and measurable outcome based on that hypothesis.
  • A hypothesis can give rise to multiple experiment or observational study predictions.

To conclude, understanding the differences between a hypothesis and a prediction, and learning how to write a hypothesis, are essential steps to form a robust foundation for your research. By creating clear, testable hypotheses along with specific, measurable predictions, you lay the groundwork for scientifically sound investigations.

Here’s a wrap-up for this guide on how to write a hypothesis. We’re confident this article was helpful for many of you. We understand that many students struggle with writing their school research . However, we hope to continue assisting you through our blog tutorial on writing different aspects of academic assignments.

For further information, you can check out our reverent blog or contact our professionals to avail amazing writing services. Paper perk experts tailor assignments to reflect your unique voice and perspectives. Our professionals make sure to stick around till your satisfaction. So what are you waiting for? Pick your required service and order away!

Order Original Papers & Essays

Your First Custom Paper Sample is on Us!

timely deliveries

Timely Deliveries

premium quality

No Plagiarism & AI

unlimited revisions

100% Refund

Calculate Your Order Price

Related blogs.

blog-img

Connections with Writers and support

safe service

Privacy and Confidentiality Guarantee

quality-score

Average Quality Score

  • How it works

"Christmas Offer"

Terms & conditions.

As the Christmas season is upon us, we find ourselves reflecting on the past year and those who we have helped to shape their future. It’s been quite a year for us all! The end of the year brings no greater joy than the opportunity to express to you Christmas greetings and good wishes.

At this special time of year, Research Prospect brings joyful discount of 10% on all its services. May your Christmas and New Year be filled with joy.

We are looking back with appreciation for your loyalty and looking forward to moving into the New Year together.

"Claim this offer"

In unfamiliar and hard times, we have stuck by you. This Christmas, Research Prospect brings you all the joy with exciting discount of 10% on all its services.

Offer valid till 5-1-2024

We love being your partner in success. We know you have been working hard lately, take a break this holiday season to spend time with your loved ones while we make sure you succeed in your academics

Discount code: RP23720

researchprospect post subheader

Published by Nicolas at January 16th, 2024 , Revised On January 23, 2024

How To Write A Hypotheses – Guide For Students

The word “hypothesis” might conjure up images of scientists in white coats, but crafting a solid hypothesis is a crucial skill for students in any field. Whether you are analyzing Shakespeare’s sonnets or conducting a science experiment, a well-defined research hypothesis sets the stage for your dissertation or thesis and fuels your investigation. 

Table of Contents

Writing a hypothesis is a crucial step in the research process. A hypothesis serves as the foundation of your research paper because it guides the direction of your study and provides a clear framework for investigation. But how to write a hypothesis? This blog will help you craft one. Let’s get started.

What Is A Hypothesis

A hypothesis is a clear and testable thesis statement or prediction that serves as the foundation of a research study. It is formulated based on existing knowledge, observations, and theoretical frameworks. 

A hypothesis articulates the researcher’s expectations regarding the relationship between variables in a study.

Hypothesis Example

Students exposed to multimedia-enhanced teaching methods will demonstrate higher retention of information compared to those taught using traditional methods.

The formulation of a hypothesis is crucial for guiding the research process and providing a clear direction for data collection and analysis. A well-crafted research hypothesis not only makes the research purpose explicit but also sets the stage for drawing meaningful conclusions from the study’s findings.

What Is A Null Hypothesis And Alternative Hypothesis

There are two main types of hypotheses: the null hypothesis (H0) and the alternative hypothesis (H1 or Ha). 

The null hypothesis posits that there is no significant effect or relationship, while the alternative hypothesis suggests the presence of a significant effect or relationship.

For example, in a study investigating the effect of a new drug on blood pressure, the null hypothesis might state that there is no difference in blood pressure between the control group (not receiving the drug) and the experimental group (receiving the drug). The alternative hypothesis, on the other hand, would propose that there is a significant difference in blood pressure between the two groups.

The literature review we write have:

  • Precision and Clarity
  • Zero Plagiarism
  • High-level Encryption
  • Authentic Sources

proposals we write

How To Write A Good Research Hypothesis

Writing a hypothesis involves a systematic process that guides your research and provides a clear and testable statement about the expected relationship between variables. Go through the MLA vs. APA guidelines before writing. Here are the steps to help you how to write a hypothesis:

Step 1: Identify The Research Topic

Clearly define the research topic or question that you want to investigate. Ensure that your research question is specific and focused, providing a clear direction for your study.

Step 2: Conduct A Literature Review

Review existing literature related to your research topic. A thorough literature review helps you understand what is already known in the field, identify gaps, and build a foundation for formulating your hypothesis.

Step 3: Define Variables

Identify the variables involved in your study. The independent variable is the factor you manipulate, and the dependent variable is the one you measure. Clearly define the characteristics or conditions you are studying.

Step 4: Establish The Relationship

Determine the expected relationship between the independent and dependent variables. Will a change in the independent variable lead to a change in the dependent variable? Specify whether you anticipate a positive, negative, or no relationship.

Step 5: Formulate The Null Hypothesis (H0)

The null hypothesis represents the default position, suggesting that there is no significant effect or relationship between the variables you are studying. It serves as the baseline to be tested against. The null hypothesis is often denoted as H0.

Step 6: Formulate The Alternative Hypothesis (H1 or Ha)

The alternative hypothesis articulates the researcher’s expectation about the existence of a significant effect or relationship. It is what you aim to support with your research paper . The alternative hypothesis is denoted as H1 or Ha.

For example, if your research topic is about the effect of a new fertilizer on plant growth:

  • Null Hypothesis (H0): There is no significant difference in plant growth between plants treated with the traditional fertilizer and those treated with the new fertilizer.
  • Alternative Hypothesis (H1): There is a significant difference in plant growth between plants treated with the traditional fertilizer and those treated with the new fertilizer.

Step 7: Ensure Testability And Specificity

Confirm that your research hypothesis is testable and can be empirically investigated. Ensure that it is specific, providing a clear and measurable statement that can be validated or refuted through data collection and analysis.

Hypothesis Examples

What makes a good hypothesis.

  • Clear Statement: A hypothesis should be stated clearly and precisely. It should be easily understandable and convey the expected relationship between variables.
  • Testability: A hypothesis must be testable through empirical observation or experimentation. This means that there should be a feasible way to collect data and assess whether the expected relationship holds true.
  • Specificity: The research hypothesis should be specific in terms of the variables involved and the nature of the expected relationship. Vague or ambiguous hypotheses can lead to unclear research outcomes.
  • Measurability: Variables in a hypothesis should be measurable, meaning they can be quantified or observed objectively. This ensures that the research can be conducted with precision.
  • Falsifiability: A good research hypothesis should be falsifiable, meaning there should be a possibility of proving it wrong. This concept is fundamental to the scientific method, as hypotheses that cannot be tested or disproven lack scientific validity.

Frequently Asked Questions

How to write a hypothesis.

  • Clearly state the research question.
  • Identify the variables involved.
  • Formulate a clear and testable prediction.
  • Use specific and measurable terms.
  • Align the hypothesis with the research question.
  • Distinguish between the null hypothesis (no effect) and alternative hypothesis (expected effect).
  • Ensure the hypothesis is falsifiable and subject to empirical testing.

How to write a hypothesis for a lab?

  • Identify the purpose of the lab.
  • Clearly state the relationship between variables.
  • Use concise language and specific terms.
  • Make the hypothesis testable through experimentation.
  • Align with the lab’s objectives.
  • Include an if-then statement to express the expected outcome.
  • Ensure clarity and relevance to the experimental setup.

What Is A Null Hypothesis?

A null hypothesis is a statement suggesting no effect or relationship between variables in a research study. It serves as the default assumption, stating that any observed differences or effects are due to chance. Researchers aim to reject the null hypothesis based on statistical evidence to support their alternative hypothesis.

How to write a null hypothesis?

  • State there is no effect, difference, or relationship between variables.
  • Use clear and specific language.
  • Frame it in a testable manner.
  • Align with the research question.
  • Specify parameters for statistical testing.
  • Consider it as the default assumption to be tested and potentially rejected in favour of the alternative hypothesis.

What is the p-value of a hypothesis test?

The p-value in a hypothesis test represents the probability of obtaining observed results, or more extreme ones, if the null hypothesis is true. A lower p-value suggests stronger evidence against the null hypothesis, often leading to its rejection. Common significance thresholds include 0.05 or 0.01.

How to write a hypothesis in science?

  • Clearly state the research question
  • Identify the variables and their relationship.
  • Formulate a testable and falsifiable prediction.
  • Use specific, measurable terms.
  • Distinguish between the null and alternative hypotheses.
  • Ensure clarity and relevance to the scientific investigation.

How to write a hypothesis for a research proposal?

  • Clearly define the research question.
  • Identify variables and their expected relationship.
  • Formulate a specific, testable hypothesis.
  • Align the hypothesis with the proposal’s objectives.
  • Clearly articulate the null hypothesis.
  • Use concise language and measurable terms.
  • Ensure the hypothesis aligns with the proposed research methodology.

How to write a good hypothesis psychology?

  • Formulate a specific and testable prediction.
  • Use precise and measurable terms.
  • Align the hypothesis with psychological theories.
  • Articulate the null hypothesis.
  • Ensure the hypothesis guides empirical testing in psychological research.

You May Also Like

A preliminary literature review is an initial exploration of existing research on a topic, setting the foundation for in-depth study.

The central idea of this excerpt revolves around the exploration of key themes, offering insights that illuminate the concepts within the text.

Do you require captivating and feasible research subjects in the area of nursing and medicine?  If so, then your search […]

Ready to place an order?

USEFUL LINKS

Learning resources.

DMCA.com Protection Status

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works
  • Affiliate Program

Wordvice

  • UNITED STATES
  • 台灣 (TAIWAN)
  • TÜRKIYE (TURKEY)
  • Academic Editing Services
  • - Research Paper
  • - Journal Manuscript
  • - Dissertation
  • - College & University Assignments
  • Admissions Editing Services
  • - Application Essay
  • - Personal Statement
  • - Recommendation Letter
  • - Cover Letter
  • - CV/Resume
  • Business Editing Services
  • - Business Documents
  • - Report & Brochure
  • - Website & Blog
  • Writer Editing Services
  • - Script & Screenplay
  • Our Editors
  • Client Reviews
  • Editing & Proofreading Prices
  • Wordvice Points
  • Partner Discount
  • Plagiarism Checker
  • APA Citation Generator
  • MLA Citation Generator
  • Chicago Citation Generator
  • Vancouver Citation Generator
  • - APA Style
  • - MLA Style
  • - Chicago Style
  • - Vancouver Style
  • Writing & Editing Guide
  • Academic Resources
  • Admissions Resources

How to Write a Research Hypothesis: Good & Bad Examples

how to write a hypothesis in college

What is a research hypothesis?

A research hypothesis is an attempt at explaining a phenomenon or the relationships between phenomena/variables in the real world. Hypotheses are sometimes called “educated guesses”, but they are in fact (or let’s say they should be) based on previous observations, existing theories, scientific evidence, and logic. A research hypothesis is also not a prediction—rather, predictions are ( should be) based on clearly formulated hypotheses. For example, “We tested the hypothesis that KLF2 knockout mice would show deficiencies in heart development” is an assumption or prediction, not a hypothesis. 

The research hypothesis at the basis of this prediction is “the product of the KLF2 gene is involved in the development of the cardiovascular system in mice”—and this hypothesis is probably (hopefully) based on a clear observation, such as that mice with low levels of Kruppel-like factor 2 (which KLF2 codes for) seem to have heart problems. From this hypothesis, you can derive the idea that a mouse in which this particular gene does not function cannot develop a normal cardiovascular system, and then make the prediction that we started with. 

What is the difference between a hypothesis and a prediction?

You might think that these are very subtle differences, and you will certainly come across many publications that do not contain an actual hypothesis or do not make these distinctions correctly. But considering that the formulation and testing of hypotheses is an integral part of the scientific method, it is good to be aware of the concepts underlying this approach. The two hallmarks of a scientific hypothesis are falsifiability (an evaluation standard that was introduced by the philosopher of science Karl Popper in 1934) and testability —if you cannot use experiments or data to decide whether an idea is true or false, then it is not a hypothesis (or at least a very bad one).

So, in a nutshell, you (1) look at existing evidence/theories, (2) come up with a hypothesis, (3) make a prediction that allows you to (4) design an experiment or data analysis to test it, and (5) come to a conclusion. Of course, not all studies have hypotheses (there is also exploratory or hypothesis-generating research), and you do not necessarily have to state your hypothesis as such in your paper. 

But for the sake of understanding the principles of the scientific method, let’s first take a closer look at the different types of hypotheses that research articles refer to and then give you a step-by-step guide for how to formulate a strong hypothesis for your own paper.

Types of Research Hypotheses

Hypotheses can be simple , which means they describe the relationship between one single independent variable (the one you observe variations in or plan to manipulate) and one single dependent variable (the one you expect to be affected by the variations/manipulation). If there are more variables on either side, you are dealing with a complex hypothesis. You can also distinguish hypotheses according to the kind of relationship between the variables you are interested in (e.g., causal or associative ). But apart from these variations, we are usually interested in what is called the “alternative hypothesis” and, in contrast to that, the “null hypothesis”. If you think these two should be listed the other way round, then you are right, logically speaking—the alternative should surely come second. However, since this is the hypothesis we (as researchers) are usually interested in, let’s start from there.

Alternative Hypothesis

If you predict a relationship between two variables in your study, then the research hypothesis that you formulate to describe that relationship is your alternative hypothesis (usually H1 in statistical terms). The goal of your hypothesis testing is thus to demonstrate that there is sufficient evidence that supports the alternative hypothesis, rather than evidence for the possibility that there is no such relationship. The alternative hypothesis is usually the research hypothesis of a study and is based on the literature, previous observations, and widely known theories. 

Null Hypothesis

The hypothesis that describes the other possible outcome, that is, that your variables are not related, is the null hypothesis ( H0 ). Based on your findings, you choose between the two hypotheses—usually that means that if your prediction was correct, you reject the null hypothesis and accept the alternative. Make sure, however, that you are not getting lost at this step of the thinking process: If your prediction is that there will be no difference or change, then you are trying to find support for the null hypothesis and reject H1. 

Directional Hypothesis

While the null hypothesis is obviously “static”, the alternative hypothesis can specify a direction for the observed relationship between variables—for example, that mice with higher expression levels of a certain protein are more active than those with lower levels. This is then called a one-tailed hypothesis. 

Another example for a directional one-tailed alternative hypothesis would be that 

H1: Attending private classes before important exams has a positive effect on performance. 

Your null hypothesis would then be that

H0: Attending private classes before important exams has no/a negative effect on performance.

Nondirectional Hypothesis

A nondirectional hypothesis does not specify the direction of the potentially observed effect, only that there is a relationship between the studied variables—this is called a two-tailed hypothesis. For instance, if you are studying a new drug that has shown some effects on pathways involved in a certain condition (e.g., anxiety) in vitro in the lab, but you can’t say for sure whether it will have the same effects in an animal model or maybe induce other/side effects that you can’t predict and potentially increase anxiety levels instead, you could state the two hypotheses like this:

H1: The only lab-tested drug (somehow) affects anxiety levels in an anxiety mouse model.

You then test this nondirectional alternative hypothesis against the null hypothesis:

H0: The only lab-tested drug has no effect on anxiety levels in an anxiety mouse model.

hypothesis in a research paper

How to Write a Hypothesis for a Research Paper

Now that we understand the important distinctions between different kinds of research hypotheses, let’s look at a simple process of how to write a hypothesis.

Writing a Hypothesis Step:1

Ask a question, based on earlier research. Research always starts with a question, but one that takes into account what is already known about a topic or phenomenon. For example, if you are interested in whether people who have pets are happier than those who don’t, do a literature search and find out what has already been demonstrated. You will probably realize that yes, there is quite a bit of research that shows a relationship between happiness and owning a pet—and even studies that show that owning a dog is more beneficial than owning a cat ! Let’s say you are so intrigued by this finding that you wonder: 

What is it that makes dog owners even happier than cat owners? 

Let’s move on to Step 2 and find an answer to that question.

Writing a Hypothesis Step 2:

Formulate a strong hypothesis by answering your own question. Again, you don’t want to make things up, take unicorns into account, or repeat/ignore what has already been done. Looking at the dog-vs-cat papers your literature search returned, you see that most studies are based on self-report questionnaires on personality traits, mental health, and life satisfaction. What you don’t find is any data on actual (mental or physical) health measures, and no experiments. You therefore decide to make a bold claim come up with the carefully thought-through hypothesis that it’s maybe the lifestyle of the dog owners, which includes walking their dog several times per day, engaging in fun and healthy activities such as agility competitions, and taking them on trips, that gives them that extra boost in happiness. You could therefore answer your question in the following way:

Dog owners are happier than cat owners because of the dog-related activities they engage in.

Now you have to verify that your hypothesis fulfills the two requirements we introduced at the beginning of this resource article: falsifiability and testability . If it can’t be wrong and can’t be tested, it’s not a hypothesis. We are lucky, however, because yes, we can test whether owning a dog but not engaging in any of those activities leads to lower levels of happiness or well-being than owning a dog and playing and running around with them or taking them on trips.  

Writing a Hypothesis Step 3:

Make your predictions and define your variables. We have verified that we can test our hypothesis, but now we have to define all the relevant variables, design our experiment or data analysis, and make precise predictions. You could, for example, decide to study dog owners (not surprising at this point), let them fill in questionnaires about their lifestyle as well as their life satisfaction (as other studies did), and then compare two groups of active and inactive dog owners. Alternatively, if you want to go beyond the data that earlier studies produced and analyzed and directly manipulate the activity level of your dog owners to study the effect of that manipulation, you could invite them to your lab, select groups of participants with similar lifestyles, make them change their lifestyle (e.g., couch potato dog owners start agility classes, very active ones have to refrain from any fun activities for a certain period of time) and assess their happiness levels before and after the intervention. In both cases, your independent variable would be “ level of engagement in fun activities with dog” and your dependent variable would be happiness or well-being . 

Examples of a Good and Bad Hypothesis

Let’s look at a few examples of good and bad hypotheses to get you started.

Good Hypothesis Examples

Bad hypothesis examples, tips for writing a research hypothesis.

If you understood the distinction between a hypothesis and a prediction we made at the beginning of this article, then you will have no problem formulating your hypotheses and predictions correctly. To refresh your memory: We have to (1) look at existing evidence, (2) come up with a hypothesis, (3) make a prediction, and (4) design an experiment. For example, you could summarize your dog/happiness study like this:

(1) While research suggests that dog owners are happier than cat owners, there are no reports on what factors drive this difference. (2) We hypothesized that it is the fun activities that many dog owners (but very few cat owners) engage in with their pets that increases their happiness levels. (3) We thus predicted that preventing very active dog owners from engaging in such activities for some time and making very inactive dog owners take up such activities would lead to an increase and decrease in their overall self-ratings of happiness, respectively. (4) To test this, we invited dog owners into our lab, assessed their mental and emotional well-being through questionnaires, and then assigned them to an “active” and an “inactive” group, depending on… 

Note that you use “we hypothesize” only for your hypothesis, not for your experimental prediction, and “would” or “if – then” only for your prediction, not your hypothesis. A hypothesis that states that something “would” affect something else sounds as if you don’t have enough confidence to make a clear statement—in which case you can’t expect your readers to believe in your research either. Write in the present tense, don’t use modal verbs that express varying degrees of certainty (such as may, might, or could ), and remember that you are not drawing a conclusion while trying not to exaggerate but making a clear statement that you then, in a way, try to disprove . And if that happens, that is not something to fear but an important part of the scientific process.

Similarly, don’t use “we hypothesize” when you explain the implications of your research or make predictions in the conclusion section of your manuscript, since these are clearly not hypotheses in the true sense of the word. As we said earlier, you will find that many authors of academic articles do not seem to care too much about these rather subtle distinctions, but thinking very clearly about your own research will not only help you write better but also ensure that even that infamous Reviewer 2 will find fewer reasons to nitpick about your manuscript. 

Perfect Your Manuscript With Professional Editing

Now that you know how to write a strong research hypothesis for your research paper, you might be interested in our free AI proofreader , Wordvice AI, which finds and fixes errors in grammar, punctuation, and word choice in academic texts. Or if you are interested in human proofreading , check out our English editing services , including research paper editing and manuscript editing .

On the Wordvice academic resources website , you can also find many more articles and other resources that can help you with writing the other parts of your research paper , with making a research paper outline before you put everything together, or with writing an effective cover letter once you are ready to submit.

how to write a hypothesis in college

How to Write a Hypothesis

how to write a hypothesis in college

If I [do something], then [this] will happen.

This basic statement/formula should be pretty familiar to all of you as it is the starting point of almost every scientific project or paper. It is a hypothesis – a statement that showcases what you “think” will happen during an experiment. This assumption is made based on the knowledge, facts, and data you already have.

How do you write a hypothesis? If you have a clear understanding of the proper structure of a hypothesis, you should not find it too hard to create one. However, if you have never written a hypothesis before, you might find it a bit frustrating. In this article from EssayPro - custom essay writing services , we are going to tell you everything you need to know about hypotheses, their types, and practical tips for writing them.

Hypothesis Definition

According to the definition, a hypothesis is an assumption one makes based on existing knowledge. To elaborate, it is a statement that translates the initial research question into a logical prediction shaped on the basis of available facts and evidence. To solve a specific problem, one first needs to identify the research problem (research question), conduct initial research, and set out to answer the given question by performing experiments and observing their outcomes. However, before one can move to the experimental part of the research, they should first identify what they expect to see for results. At this stage, a scientist makes an educated guess and writes a hypothesis that he or she is going to prove or refute in the course of their study.

Get Help With Writing a Hypothesis Now!

Head on over to EssayPro. We can help you with editing and polishing up any of the work you speedwrite.

A hypothesis can also be seen as a form of development of knowledge. It is a well-grounded assumption put forward to clarify the properties and causes of the phenomena being studied.

As a rule, a hypothesis is formed based on a number of observations and examples that confirm it. This way, it looks plausible as it is backed up with some known information. The hypothesis is subsequently proved by turning it into an established fact or refuted (for example, by pointing out a counterexample), which allows it to attribute it to the category of false statements.

As a student, you may be asked to create a hypothesis statement as a part of your academic papers. Hypothesis-based approaches are commonly used among scientific academic works, including but not limited to research papers, theses, and dissertations.

Note that in some disciplines, a hypothesis statement is called a thesis statement. However, its essence and purpose remain unchanged – this statement aims to make an assumption regarding the outcomes of the investigation that will either be proved or refuted.

Characteristics and Sources of a Hypothesis

Now, as you know what a hypothesis is in a nutshell, let’s look at the key characteristics that define it:

  • It has to be clear and accurate in order to look reliable.
  • It has to be specific.
  • There should be scope for further investigation and experiments.
  • A hypothesis should be explained in simple language—while retaining its significance.
  • If you are making a relational hypothesis, two essential elements you have to include are variables and the relationship between them.

The main sources of a hypothesis are:

  • Scientific theories.
  • Observations from previous studies and current experiences.
  • The resemblance among different phenomena.
  • General patterns that affect people’s thinking process.

Types of Hypothesis

Basically, there are two major types of scientific hypothesis: alternative and null.

Types of Hypothesis

  • Alternative Hypothesis

This type of hypothesis is generally denoted as H1. This statement is used to identify the expected outcome of your research. According to the alternative hypothesis definition, this type of hypothesis can be further divided into two subcategories:

  • Directional — a statement that explains the direction of the expected outcomes. Sometimes this type of hypothesis is used to study the relationship between variables rather than comparing between the groups.
  • Non-directional — unlike the directional alternative hypothesis, a non-directional one does not imply a specific direction of the expected outcomes.

Now, let’s see an alternative hypothesis example for each type:

Directional: Attending more lectures will result in improved test scores among students. Non-directional: Lecture attendance will influence test scores among students.

Notice how in the directional hypothesis we specified that the attendance of more lectures will boost student’s performance on tests, whereas in the non-directional hypothesis we only stated that there is a relationship between the two variables (i.e. lecture attendance and students’ test scores) but did not specify whether the performance will improve or decrease.

  • Null Hypothesis

This type of hypothesis is generally denoted as H0. This statement is the complete opposite of what you expect or predict will happen throughout the course of your study—meaning it is the opposite of your alternative hypothesis. Simply put, a null hypothesis claims that there is no exact or actual correlation between the variables defined in the hypothesis.

To give you a better idea of how to write a null hypothesis, here is a clear example: Lecture attendance has no effect on student’s test scores.

Both of these types of hypotheses provide specific clarifications and restatements of the research problem. The main difference between these hypotheses and a research problem is that the latter is just a question that can’t be tested, whereas hypotheses can.

Based on the alternative and null hypothesis examples provided earlier, we can conclude that the importance and main purpose of these hypotheses are that they deliver a rough description of the subject matter. The main purpose of these statements is to give an investigator a specific guess that can be directly tested in a study. Simply put, a hypothesis outlines the framework, scope, and direction for the study. Although null and alternative hypotheses are the major types, there are also a few more to keep in mind:

Research Hypothesis — a statement that is used to test the correlation between two or more variables.

For example: Eating vitamin-rich foods affects human health.

Simple Hypothesis — a statement used to indicate the correlation between one independent and one dependent variable.

For example: Eating more vegetables leads to better immunity.

Complex Hypothesis — a statement used to indicate the correlation between two or more independent variables and two or more dependent variables.

For example: Eating more fruits and vegetables leads to better immunity, weight loss, and lower risk of diseases.

Associative and Causal Hypothesis — an associative hypothesis is a statement used to indicate the correlation between variables under the scenario when a change in one variable inevitably changes the other variable. A causal hypothesis is a statement that highlights the cause and effect relationship between variables.

Be sure to read how to write a DBQ - this article will expand your understanding.

Add a secret ingredient to your hypothesis

Help of a professional writer.

Hypothesis vs Prediction

When speaking of hypotheses, another term that comes to mind is prediction. These two terms are often used interchangeably, which can be rather confusing. Although both a hypothesis and prediction can generally be defined as “guesses” and can be easy to confuse, these terms are different. The main difference between a hypothesis and a prediction is that the first is predominantly used in science, while the latter is most often used outside of science.

Simply put, a hypothesis is an intelligent assumption. It is a guess made regarding the nature of the unknown (or less known) phenomena based on existing knowledge, studies, and/or series of experiments, and is otherwise grounded by valid facts. The main purpose of a hypothesis is to use available facts to create a logical relationship between variables in order to provide a more precise scientific explanation. Additionally, hypotheses are statements that can be tested with further experiments. It is an assumption you make regarding the flow and outcome(s) of your research study.

A prediction, on the contrary, is a guess that often lacks grounding. Although, in theory, a prediction can be scientific, in most cases it is rather fictional—i.e. a pure guess that is not based on current knowledge and/or facts. As a rule, predictions are linked to foretelling events that may or may not occur in the future. Often, a person who makes predictions has little or no actual knowledge of the subject matter he or she makes the assumption about.

Another big difference between these terms is in the methodology used to prove each of them. A prediction can only be proven once. You can determine whether it is right or wrong only upon the occurrence or non-occurrence of the predicted event. A hypothesis, on the other hand, offers scope for further testing and experiments. Additionally, a hypothesis can be proven in multiple stages. This basically means that a single hypothesis can be proven or refuted numerous times by different scientists who use different scientific tools and methods.

To give you a better idea of how a hypothesis is different from a prediction, let’s look at the following examples:

Hypothesis: If I eat more vegetables and fruits, then I will lose weight faster.

This is a hypothesis because it is based on generally available knowledge (i.e. fruits and vegetables include fewer calories compared to other foods) and past experiences (i.e. people who give preference to healthier foods like fruits and vegetables are losing weight easier). It is still a guess, but it is based on facts and can be tested with an experiment.

Prediction: The end of the world will occur in 2023.

This is a prediction because it foretells future events. However, this assumption is fictional as it doesn’t have any actual grounded evidence supported by facts.

Based on everything that was said earlier and our examples, we can highlight the following key takeaways:

  • A hypothesis, unlike a prediction, is a more intelligent assumption based on facts.
  • Hypotheses define existing variables and analyze the relationship(s) between them.
  • Predictions are most often fictional and lack grounding.
  • A prediction is most often used to foretell events in the future.
  • A prediction can only be proven once – when the predicted event occurs or doesn’t occur. 
  • A hypothesis can remain a hypothesis even if one scientist has already proven or disproven it. Other scientists in the future can obtain a different result using other methods and tools.

We also recommend that you read about some informative essay topics .

Now, as you know what a hypothesis is, what types of it exist, and how it differs from a prediction, you are probably wondering how to state a hypothesis. In this section, we will guide you through the main stages of writing a good hypothesis and provide handy tips and examples to help you overcome this challenge:

how to write

1. Define Your Research Question

Here is one thing to keep in mind – regardless of the paper or project you are working on, the process should always start with asking the right research question. A perfect research question should be specific, clear, focused (meaning not too broad), and manageable.

Example: How does eating fruits and vegetables affect human health?

2. Conduct Your Basic Initial Research

As you already know, a hypothesis is an educated guess of the expected results and outcomes of an investigation. Thus, it is vital to collect some information before you can make this assumption.

At this stage, you should find an answer to your research question based on what has already been discovered. Search for facts, past studies, theories, etc. Based on the collected information, you should be able to make a logical and intelligent guess.

3. Formulate a Hypothesis

Based on the initial research, you should have a certain idea of what you may find throughout the course of your research. Use this knowledge to shape a clear and concise hypothesis.

Based on the type of project you are working on, and the type of hypothesis you are planning to use, you can restate your hypothesis in several different ways:

Non-directional: Eating fruits and vegetables will affect one’s human physical health. Directional: Eating fruits and vegetables will positively affect one’s human physical health. Null: Eating fruits and vegetables will have no effect on one’s human physical health.

4. Refine Your Hypothesis

Finally, the last stage of creating a good hypothesis is refining what you’ve got. During this step, you need to define whether your hypothesis:

  • Has clear and relevant variables;
  • Identifies the relationship between its variables;
  • Is specific and testable;
  • Suggests a predicted result of the investigation or experiment.

In case you need some help with your essay, leave us a notice ' pay someone to write my essay ' and we'll help asap. We also provide nursing writing services .

Hypothesis Examples

Following a step-by-step guide and tips from our essay writers for hire , you should be able to create good hypotheses with ease. To give you a starting point, we have also compiled a list of different research questions with one hypothesis and one null hypothesis example for each:

Ask Pros to Make a Perfect Hypothesis for You!

Sometimes, coping with a large academic load is just too much for a student to handle. Papers like research papers and dissertations can take too much time and effort to write, and, often, a hypothesis is a necessary starting point to get the task on track. Writing or editing a hypothesis is not as easy as it may seem. However, if you need help with forming it, the team at EssayPro is always ready to come to your rescue! If you’re feeling stuck, or don’t have enough time to cope with other tasks, don’t hesitate to send us you rewrite my essay for me or any other request.

Related Articles

Family Essay: How to Write, Topics and Examples

how to write a hypothesis in college

Explore your training options in 10 minutes Get Started

  • Graduate Stories
  • Partner Spotlights
  • Bootcamp Prep
  • Bootcamp Admissions
  • University Bootcamps
  • Coding Tools
  • Software Engineering
  • Web Development
  • Data Science
  • Tech Guides
  • Tech Resources
  • Career Advice
  • Online Learning
  • Internships
  • Apprenticeships
  • Tech Salaries
  • Associate Degree
  • Bachelor's Degree
  • Master's Degree
  • University Admissions
  • Best Schools
  • Certifications
  • Bootcamp Financing
  • Higher Ed Financing
  • Scholarships
  • Financial Aid
  • Best Coding Bootcamps
  • Best Online Bootcamps
  • Best Web Design Bootcamps
  • Best Data Science Bootcamps
  • Best Technology Sales Bootcamps
  • Best Data Analytics Bootcamps
  • Best Cybersecurity Bootcamps
  • Best Digital Marketing Bootcamps
  • Los Angeles
  • San Francisco
  • Browse All Locations
  • Digital Marketing
  • Machine Learning
  • See All Subjects
  • Bootcamps 101
  • Full-Stack Development
  • Career Changes
  • View all Career Discussions
  • Mobile App Development
  • Cybersecurity
  • Product Management
  • UX/UI Design
  • What is a Coding Bootcamp?
  • Are Coding Bootcamps Worth It?
  • How to Choose a Coding Bootcamp
  • Best Online Coding Bootcamps and Courses
  • Best Free Bootcamps and Coding Training
  • Coding Bootcamp vs. Community College
  • Coding Bootcamp vs. Self-Learning
  • Bootcamps vs. Certifications: Compared
  • What Is a Coding Bootcamp Job Guarantee?
  • How to Pay for Coding Bootcamp
  • Ultimate Guide to Coding Bootcamp Loans
  • Best Coding Bootcamp Scholarships and Grants
  • Education Stipends for Coding Bootcamps
  • Get Your Coding Bootcamp Sponsored by Your Employer
  • GI Bill and Coding Bootcamps
  • Tech Intevriews
  • Our Enterprise Solution
  • Connect With Us
  • Publication
  • Reskill America
  • Partner With Us

Career Karma

  • Resource Center
  • Bachelor’s Degree
  • Master’s Degree

How to Write a Hypothesis: Tips, Guidelines, and Hypothesis Examples

In any industry, the ability to use observations and create a compelling hypothesis to solve a problem through research is very valuable. Scientists, data analysts, and medical professionals should all learn how to write a hypothesis to guide their research. A good hypothesis is a key part of using research methods that lead to impactful research.

In this guide, we’ll define a hypothesis and the elements that make a complete hypothesis. We’ll also cover a couple of hypothesis examples and answer questions about creating a hypothesis. By the time you are done reading this article, you’ll know how to write a hypothesis that is perfect for any research project or empirical research paper.

Find your bootcamp match

What is a hypothesis.

A hypothesis is a testable statement used in research, and researchers use the hypothesis to design an experiment that will give results that support or do not support the hypothesis. People make causal hypotheses all the time when solving problems. For example, if you have an assumption that if you restart your computer it will fix the problem you’re having with a program, that statement is testable, because you can restart your computer and see if it fixes the problem.

What Are the Elements of a Hypothesis?

  • Statement of the research question. A hypothesis is the research question rewritten as a testable statement. You have to include the goal of the research, the variables, the relationship between variables, and a testable prediction. Without a clear research question, you could end up performing endless, aimless research studies.
  • Independent variable. The independent variable is the part of the experiment where you change something. If you are wondering whether different types of motor oil change your car’s mileage, motor oil is the independent variable. This is usually based on an idea that you came up with to solve a problem.
  • Dependent variable. The dependent variable is the part of the experiment where you measure the outcome and collect data. In the above example about motor oil, the dependent variable is the car’s mileage because that is what you are measuring.
  • Predicted relationship between the independent and dependent variable. The goal of your hypothesis is to make an educated guess of what impact the independent variable has on the dependent variable. You can hypothesize that different kinds of motor oil will have no effect on a car’s mileage, or that one kind of motor oil will increase the car’s mileage. This is also the declarative statement.
  • Testability. You have to be able to test your hypothesis through experimentation. A hypothesis like, “Unicorns prefer to eat cake instead of cookies,” isn’t testable because there aren’t any unicorns to do the experiment with.

How to Write a Hypothesis: Beginning and Ending

To write a solid hypothesis you need to understand the scientific method and the basic format of a hypothesis. A strong, testable hypothesis turns random ideas into scientific experiments. A well-written hypothesis is usually a single sentence. Let’s look at how to start and end a strong hypothesis.

How to Begin a Hypothesis

The beginning of your hypothesis introduces the variables. Remember, the independent variable is the thing you change in your experiment and the dependent variable is the thing you measure.  In the example, “Flowers watered with lemonade will grow faster than flowers watered with plain water,” water and lemonade are the independent variables and flowers’ growth rate is the dependent variable.

Many people choose to structure hypotheses as an if-then statement. For instance, “If you drink coffee before going to bed, then it will take you longer to fall asleep.” If you are having trouble with the process of hypothesis writing, then you should try starting with an if-then statement.

How to End a Hypothesis

The second section of a simple hypothesis statement is where you predict the relationship between the types of variables. Using our coffee example above, the second half of the sentence shows how we expect the amount of coffee to impact the time it takes to fall asleep.

When you write your prediction, remember to ask yourself, “Is this hypothesis testable?” You can predict that there is no relationship between your variables, that the independent variable will have an effect on the dependent variable, or you can make a specific guess about how the independent variable will affect the dependent variable. Bad hypotheses are not testable, because there is no way to prove or disprove your original idea.

How to Write a Hypothesis: 5 More Useful Tips

A person writing in a notebook with a light blue pen.

Conduct preliminary research

To create a scientific hypothesis, you need to get background knowledge on your topic by reading previous studies, scientific experiments, and academic journals. You need to become a student of the sciences again. Be open-minded and explore research that supports and doesn’t support your ideas. Learn about the experimental methods other people use, and find any knowledge gaps that you could fill with your research question.

Define a research question

The first step in formulating a hypothesis is to brainstorm a research question. Use your writing skills to write a research question that’s specific, clear, focused, and manageable. Make sure you have the resources to conduct whatever experiment you’ll need to answer the question.

Formulate a hypothesis

Use your new background knowledge to rewrite your research question as a testable statement. Remember to include an independent variable, a dependent variable, and predict how they are related. Use an if-then statement if you are having trouble.

Refine your hypothesis

The first draft of a hypothesis is rarely perfect. You’ll need to edit and proofread to find and fix mistakes. Make sure your hypothesis is testable and has all the relevant variables. Try to get a peer or advisor to read your hypothesis and suggest changes.

Create a null and alternative hypothesis

A null hypothesis always states that there is no relationship between variables, while an alternative hypothesis states there is some kind of relationship between variables. You need to write both a null and alternative hypothesis for statistical analysis. An example of a null hypothesis from our coffee example is, “If you drink coffee before going to bed, it will have no impact on how long it takes to fall asleep.”

Hypothesis Examples to Help You Write a Hypothesis

The best way to learn how to write a hypothesis is to read example hypotheses. Below are a couple of example hypotheses.

Hypothesis Example 1: Smoking and Lung Cancer

A hypothesis explores the relationship between independent and dependent variables. Let’s say we are interested in the relationship between smoking habits and lung cancer. Our independent variable is smoking habits and our dependent variable is lung cancer.

Next, we have to use our hypothesis to make a prediction about the relationship between smoking habits and lung cancer. Based on background knowledge we might guess that daily smoking increases the risk of lung cancer. This is our alternative hypothesis. The null hypothesis requires us to predict that there is no relationship between the variables.

Our null hypothesis is, “Daily smoking does not affect the risk of lung cancer.” Our alternative hypothesis is, “Daily smoking increases the risk of lung cancer.” Both hypotheses have an independent and dependent variable, both are testable, and both predict a relationship between the two variables.

Hypothesis Example 2: Vitamins and Hair Growth Rate

Say you work for a company that distributes vitamins. You think vitamins E and K help hair growth, but there is limited evidence about how these different vitamins impact hair growth. You decide to conduct a single experiment on how vitamins impact hair growth for scientific exploration.

You have a strong research question, “Does vitamin E or vitamin K make your hair grow faster?” Now we need to turn that into an experimental hypothesis. Our independent variable is what vitamins to take and our dependent variable is the hair growth rate. This is a complex hypothesis because we are testing two vitamins, two independent variables.

The null hypothesis is, “Neither vitamin E nor vitamin K impact hair growth rate.” One possible alternative hypothesis is, “Both vitamins E and K increase hair growth rate.” There are also a few other possible alternative hypotheses depending on what you think the relationship is between vitamin E and hair growth vs vitamin K and hair growth.

How to Use Hypothesis Examples to Write Your Own

The hypothesis examples we’ve discussed should give you a starting point for writing your own hypotheses. Use your research skills to develop a research question and then use our tips to rewrite it into a testable hypothesis with a simple prediction.

How to Write a Hypothesis FAQ

A hypothesis is a statement that describes a research question and predicts a relationship between variables. The same information can be posed as a question, but a true hypothesis is written as a statement. Hypotheses are often written as if-then statements.

A null hypothesis is a type of hypothesis that predicts that there is no relationship between your variables. For instance, if your research question is, “Is it important to integrate mental health education into schools?” Your null hypothesis is, “Implementation of mental health education in school will not affect students.

An alternative hypothesis means you expect that there is some relationship between variables. Let’s use the research question, “Is it important to integrate mental health education into schools?” An alternative hypothesis to that would be “Implementing mental health education in school programs will impact students.”

A good hypothesis is a simple statement of a research question that is testable and must include a dependent variable, an independent variable, and a prediction of the relationship between the two variables. There are also specific types of hypotheses such as a directional hypothesis, a non-directional hypothesis, or an associative hypothesis.

About us: Career Karma is a platform designed to help job seekers find, research, and connect with job training programs to advance their careers. Learn about the CK publication .

What's Next?

icon_10

Get matched with top bootcamps

Ask a question to our community, take our careers quiz.

Elvis Gwaro

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Apply to top tech training programs in one click

how to write a hypothesis in college

The Plagiarism Checker Online For Your Academic Work

Start Plagiarism Check

Editing & Proofreading for Your Research Paper

Get it proofread now

Online Printing & Binding with Free Express Delivery

Configure binding now

  • Academic essay overview
  • The writing process
  • Structuring academic essays
  • Types of academic essays
  • Academic writing overview
  • Sentence structure
  • Academic writing process
  • Improving your academic writing
  • Titles and headings
  • APA style overview
  • APA citation & referencing
  • APA structure & sections
  • Citation & referencing
  • Structure and sections
  • APA examples overview
  • Commonly used citations
  • Other examples
  • British English vs. American English
  • Chicago style overview
  • Chicago citation & referencing
  • Chicago structure & sections
  • Chicago style examples
  • Citing sources overview
  • Citation format
  • Citation examples
  • College essay overview
  • Application
  • How to write a college essay
  • Types of college essays
  • Commonly confused words
  • Definitions
  • Dissertation overview
  • Dissertation structure & sections
  • Dissertation writing process
  • Graduate school overview
  • Application & admission
  • Study abroad
  • Master degree
  • Harvard referencing overview
  • Language rules overview
  • Grammatical rules & structures
  • Parts of speech
  • Punctuation
  • Methodology overview
  • Analyzing data
  • Experiments
  • Observations
  • Inductive vs. Deductive
  • Qualitative vs. Quantitative
  • Types of validity
  • Types of reliability
  • Sampling methods
  • Theories & Concepts
  • Types of research studies
  • Types of variables
  • MLA style overview
  • MLA examples
  • MLA citation & referencing
  • MLA structure & sections
  • Plagiarism overview
  • Plagiarism checker
  • Types of plagiarism
  • Printing production overview
  • Research bias overview
  • Types of research bias
  • Example sections
  • Types of research papers
  • Research process overview
  • Problem statement
  • Research proposal
  • Research topic
  • Statistics overview
  • Levels of measurment
  • Frequency distribution
  • Measures of central tendency
  • Measures of variability
  • Hypothesis testing
  • Parameters & test statistics
  • Types of distributions
  • Correlation
  • Effect size
  • Hypothesis testing assumptions
  • Types of ANOVAs
  • Types of chi-square
  • Statistical data
  • Statistical models
  • Spelling mistakes
  • Tips overview
  • Academic writing tips
  • Dissertation tips
  • Sources tips
  • Working with sources overview
  • Evaluating sources
  • Finding sources
  • Including sources
  • Types of sources

Your Step to Success

Plagiarism Check within 10min

Printing & Binding with 3D Live Preview

Hypothesis – Definition, Development & Examples

How do you like this article cancel reply.

Save my name, email, and website in this browser for the next time I comment.

How-to-write-a-Hypothesis-250x166

A hypothesis is a fundamental element in academic writing and research papers , offering a tentative explanation or prediction about relationships between variables. It is crafted based on preliminary observations or existing knowledge, guiding the direction of research. The development of a hypothesis involves observation, research, and the formulation of a testable statement, critical for structuring and advancing academic inquiry. Through examples, this introduction highlights the importance of hypotheses in enhancing research.

Inhaltsverzeichnis

  • 1 Hypothesis in a nutshell
  • 2 Definition: Hypothesis
  • 3 Developing a hypothesis
  • 4 Hypothesis examples
  • 5 Null hypothesis and alternative hypothesis
  • 6 Statistical hypothesis testing
  • 7 Scientific hypothesis
  • 8 Hypotheses as concepts & measurements

Hypothesis in a nutshell

A hypothesis is like a smart guess about what might happen or why something happens, based on what you already know. It’s a prediction you can test to see whether it’s true or not.

Definition: Hypothesis

A hypothesis , plural hypotheses, is a tentative explanation or prediction about a phenomenon or the relationship between variables that can be tested through observation and experimentation. According to Oxford Languages, the term hypothesis is “a supposition or proposed explanation made based on limited evidence as a starting point for further investigation” or “a proposition made as a basis for reasoning, without any assumption of its truth.” It’s an informed conjecture that is formulated based on existing knowledge, observations, and available evidence. Well-constructed hypotheses are clear, specific, and testable, stating an expected outcome in a way that can be supported or refuted through empirical research. It often takes the form of a statement predicting a relationship between variables, such as cause and effect, and serves as a foundational element in the scientific method, guiding the direction of research and experimentation. Hypotheses are found across different subject areas, like:

  • Astronomical hypotheses
  • Authorship debates
  • Biological hypotheses
  • Documentary hypothesis
  • Hypothetical documents
  • Hypothetical impact events
  • Hypothetical laws
  • Linguistic theories and hypotheses
  • Meteorological hypotheses
  • Hypothetical objects
  • Origin hypotheses of ethnic groups
  • Hypothetical processes
  • Hypothetical spacecraft

Statistical hypothesis testing

  • Hypothetical technology

If you notice that plants in your garden grow better in the sunlight than in the shade, you might come up with a hypothesis like: “Plants that get more sunlight grow faster than plants that get less sunlight.” This is a prediction you can test by observing and measuring the growth of plants in different lighting conditions.

There are typically two main types of variables: Independent vs. dependent variables .

  • Independent variable: This is the variable that you change or control in an experiment to see how it affects the dependent variable. It’s the cause you’re investigating.
  • Dependent variable: This is the variable you measure in the experiment and expect to change as a result of alterations to the independent variable. It’s the effect or outcome you’re observing.

Directionality is also part of a hypothesis; however, it is only an optional component. It specifies if the effect increases or decreases, showing the expected relationship between the variables.

  • Hypothesis: If fertilizer is added to plants, then they will grow taller.
  • Independent variable: Presence of fertilizer (what you control).
  • Dependent variable: Height of the plants (the outcome you’re measuring).

Conceptual framework

A conceptual framework plays a crucial role in the development and contextualization of hypotheses within research. It acts as a scaffold that outlines the theoretical underpinnings and assumptions guiding the research, providing a structured approach to understanding the relationships between variables. The conceptual framework helps to:

  • Identify and define key concepts
  • Establish relationships
  • Guide the research design
  • Interpret findings

The word comes from the Greek term “hupóthesis,” which means “foundation” or “supposition.” Let’s break it down into its separate parts:

  • “hupo-“ means “under”
  • “-thesis” means “placing” or “setting”

The etymology reflects the idea of setting down a foundation or a preliminary assumption that can be tested and built upon through research and observation.

Developing a hypothesis

Developing a hypothesis is an integral part of academic writing because it guides the direction of the study, helping to formulate questions, determine methodology , and analyze results. By stating what the writer expects to find, hypotheses lay the groundwork for a structured investigation, allowing for a systematic approach to gathering and interpreting data.

Preparation

Experimentation, null hypothesis.

In this step, you’ll determine the research question to which you want the answer. The question should be concise, specific, and researchable based on observations or existing knowledge.

Observing that some children seem to get sick less often than others, you might wonder, “Do children who visit the doctor yearly get sick less often?”

The results you expect to get should be supported by the information already known about the topic. This includes reviewing existing literature, studies, and data. Use previous research to make an educated guess as to what your research will find. Journals and reports are also good places to find information. This will help you figure out your variables and what direction your research will take, which is the overriding principle of how to write a hypothesis. In this step, you may create a conceptual framework.

Researching how regular health check-ups might influence the frequency of illness in children, including immunity, early detection of issues, etc.

Based on your research, you propose a tentative explanation or prediction that addresses your question. This should be specific and testable. Now that you have a bit of research under your belt, you can write the answer you expect to find when you conduct your research. Like the question you pose in your hypothesis, this statement should be clear, concise, and to the point.

Children who have yearly doctor’s visits have fewer illnesses compared to children who do not have yearly doctor’s visits.

In this step, you’ll outline why your question is researchable. Design and experiment to test whether the data supports your hypothesis. This often involves data collection through observations or experiments , discussing your variables, who or what you’ll be studying, and what you expect to happen with experimentation or analysis.

Design a study comparing the health records of two groups of children over a year – those who have yearly doctor visits and those who do not.

Make sure the wording of your hypothesis aligns with your purpose. This could be an “if-then” statement. It could also use a correlation between the variables. It might be what differences you expect to find. After the experiment, analyze the collected data to see if it supports your hypothesis. This step may involve statistical analysis to determine the significance of your findings.

Analyzing the frequency of illness in both groups to see if there is a statistically significant difference in health outcomes, leads to a conclusion about the impact of yearly doctor’s visits on children’s health.

The last step involves formulating a null hypothesis (H₀) , which is a statement that there is no effect or no difference, and it serves as a default or neutral position that researchers aim to test against the alternative hypothesis (H₁) .

The null hypothesis is designed to be tested and possibly rejected in favor of the alternative hypothesis. It’s a critical component because it allows for a precise and statistical examination of the expected relationship between variables.

  • Null hypothesis (H₁): Children who visit the doctor yearly get sick less often than those who don’t.
  • Alternative hypothesis (H₀): Yearly visits to the doctor do not affect the frequency of illnesses in children; children who visit the doctor yearly get sick just as often as those who do not.

Hypothesis examples

There are many ways to address how to write a hypothesis, but the process isn’t always easy. Sometimes seeing a research example is a good way to figure out what direction you want to take. Below are some examples that can help guide you.

Null hypothesis and alternative hypothesis

The null and alternative hypotheses are fundamental concepts in hypothesis testing , a core aspect of statistical analysis used to infer the relationship between variables.

Alternative hypothesis

The alternative hypothesis (H₁) proposes that there is a significant difference or relationship between the variables. The researcher aims to support it, suggesting that the observed effects are not due to chance but are real and can be attributed to the specified conditions or treatments. Below, you will find examples that illustrate using an alternative hypothesis.

  • Eating breakfast improves students’ academic performance.
  • Regular physical activity reduces the risk of chronic diseases.
  • Increased screen time is associated with decreased sleep quality in adults.

The null hypothesis (H₀) asserts that there is no significant difference or relationship between the variables being studied. It represents the default position that any observed effects are due to chance. The purpose of hypothesis testing is often to reject or fail to reject the null hypothesis.

  • Eating breakfast does not affect students’ academic performance.
  • Regular physical activity does not reduce the risk of chronic diseases.
  • Increased screen time is not associated with decreased sleep quality in adults.

Statistical hypothesis testing is a scientific method used in statistics to decide whether there is enough evidence in a sample of data to infer that a certain condition is true for the entire population. It starts with formulating two hypotheses: the null hypothesis (H₀), which suggests no effect or no difference, and the alternative hypothesis (H₁ or Ha), which suggests a significant effect or difference. Researchers then use statistical tests to calculate a p-value , which indicates the probability of observing the data if the null hypothesis is true. If the p-value is less than a predefined significance level (commonly 0.05), the null hypothesis is rejected in favor of the alternative hypothesis, suggesting the observed effect is statistically significant. This process helps researchers make informed conclusions based on sample data , though it’s important to consider, it only indicates the null hypothesis is unlikely given the data.

Scientific hypothesis

A scientific hypothesis is a specific, testable prediction about what will happen under certain conditions, based on a combination of existing knowledge, observations, and an understanding of scientific principles. It suggests a possible explanation for a phenomenon or a predicted relationship between variables that researchers aim to explore through empirical investigation.

When formulating a scientific hypothesis, researchers should consider the following:

  • Empirical testability: Allows it to be tested through observation or experimentation.
  • Clarity and specificity: Should specify the expected relationship between variables.
  • Consistency: Must be consistent with existing scientific theories and knowledge.
  • Simplicity: If two hypotheses explain the data equally well, the simpler one is preferred.
  • Falsifiability:  Evidence can refute a hypothesis, proving it wrong.

Hypotheses as concepts & measurements

In the realm of scientific research, hypotheses serve as bridges between abstract concepts and tangible measurements, enabling researchers to rigorously test theories and explore the laws of nature. At the core of this process lies the differentiation between primitive and derivative hypotheses, each playing a vital role in the systematic inquiry into natural phenomena.

Primitive hypotheses are foundational assumptions or propositions taken as given within a particular research context. These hypotheses are often broader in scope, serving as the bedrock upon which more specific, testable propositions are built. They usually stem from established theories or widespread observations, acting as the initial building blocks in the formulation of a conceptual framework.

Derivative Hypotheses , on the other hand, are those that are directly formulated from primitive hypotheses. They are more specific, testable statements that predict outcomes based on the foundational assumptions of the primitive hypotheses. Derivative hypotheses are crucial for the empirical testing of theories, as they translate broad theoretical concepts into specific, measurable predictions.

Levels for testing hypotheses reflect the complexity and hierarchical structuring of research questions, ranging from broad, theoretical propositions to specific, empirical inquiries. This gradation ensures that hypotheses can be systematically tested across different layers of abstraction, from verifying fundamental laws of nature to assessing the applicability of theories in specific contexts. Levels for testing hypotheses often range from very broad, theoretical inquiries to more specific, empirical investigations.

The testing of hypotheses is a methodical process that involves comparing empirical data against predictions made by derivative hypotheses . This critical step allows researchers to assess the validity of their hypotheses, refine theoretical models, and contribute to the body of scientific knowledge. Successful hypothesis testing typically relies on sophisticated statistical analysis, providing a quantifiable measure of the extent to which the data supports or refutes the proposed hypotheses.

Ultimately, the interplay between hypotheses as concepts and their empirical measurements is fundamental to advancing our understanding of the law of nature . Through the meticulous testing of hypotheses, science progresses from abstract theories to concrete understanding, uncovering the principles that govern our world. This iterative process of formulation, testing, and refinement is essential for the continuous evolution of scientific knowledge, driving forward the quest for truths of the law of nature.

What is a hypothesis?

Your hypothesis is a statement that lets the reader of your paper know what your research question is and what you expect the answer to be.

How to write a hypothesis?

A well-written hypothesis should include:

  • The question you want to answer with your research
  • Information about what you already know about the topic
  • A clear sentence that says what you expect your results to show
  • The variables involved in the research
  • The group that is part of the research
  • The outcome you think you’ll see

What is an example of a hypothesis?

Here’s an example:

If people sleep less than seven hours a night, then they will feel more tired during the day compared to those who sleep more than seven hours.

What components does a hypothesis have?

The components are:

  • Independent variable
  • Dependent variable
  • Directionality

We use cookies on our website. Some of them are essential, while others help us to improve this website and your experience.

  • External Media

Individual Privacy Preferences

Cookie Details Privacy Policy Imprint

Here you will find an overview of all cookies used. You can give your consent to whole categories or display further information and select certain cookies.

Accept all Save

Essential cookies enable basic functions and are necessary for the proper function of the website.

Show Cookie Information Hide Cookie Information

Statistics cookies collect information anonymously. This information helps us to understand how our visitors use our website.

Content from video platforms and social media platforms is blocked by default. If External Media cookies are accepted, access to those contents no longer requires manual consent.

Privacy Policy Imprint

How To Write A Research Paper

How To Write A Hypothesis

Nova A.

How To Write a Hypothesis in a Research Paper | Steps & Examples

13 min read

Published on: Aug 5, 2021

Last updated on: Mar 5, 2024

How to write a hypothesis in a research paper

People also read

How to Write a Research Paper Step by Step

How to Write a Proposal For a Research Paper in 10 Steps

A Comprehensive Guide to Creating a Research Paper Outline

Types of Research - Methodologies and Characteristics

300+ Engaging Research Paper Topics to Get You Started

Interesting Psychology Research Topics & Ideas

Qualitative Research - Types, Methods & Examples

Understanding Quantitative Research - Definition, Types, Examples, And More

Research Paper Example - Examples for Different Formats

How To Start A Research Paper - Steps With Examples

How to Write an Abstract That Captivates Your Readers

How To Write a Literature Review for a Research Paper | Steps & Examples

Types of Qualitative Research Methods - An Overview

Understanding Qualitative vs. Quantitative Research - A Complete Guide

How to Cite a Research Paper in Different Citation Styles

Easy Sociology Research Topics for Your Next Project

200+ Outstanding History Research Paper Topics With Expert Tips

How to Write an Introduction for a Research Paper - A Step-by-Step Guide

How to Write a Good Research Paper Title

How to Write a Conclusion for a Research Paper in 3 Simple Steps

How to Write an Abstract For a Research Paper with Examples

How To Write a Thesis For a Research Paper Step by Step

How to Write a Discussion For a Research Paper | Objectives, Steps & Examples

How to Write the Results Section of a Research Paper - Structure and Tips

How to Write a Problem Statement for a Research Paper in 6 Steps

How To Write The Methods Section of a Research Paper Step-by-Step

How to Find Sources For a Research Paper | A Guide

Share this article

Imagine spending hours conducting experiments, only to realize that your hypothesis is unclear or poorly constructed.

This can lead to wasted time, resources, and a lack of meaningful results.

Fortunately, by mastering the art of hypothesis writing, you can ensure that your research paper is focused and structured. 

This comprehensive guide will provide you with step-by-step instructions and examples to write a hypothesis effectively.

By the end of this guide, you will have all the knowledge to write hypotheses that drive impactful scientific research.

On This Page On This Page -->

What is a Hypothesis?

A hypothesis is a tentative explanation or prediction that can be tested through scientific investigation. 

It is like a roadmap that guides researchers in their quest for answers. By formulating a hypothesis, researchers make educated guesses about the relationship between variables or phenomena.

Think of a hypothesis as a detective's hunch. Just like a detective forms a theory about a crime based on evidence, a researcher develops a hypothesis based on existing knowledge and observations. 

Now that we have a basic understanding of what a hypothesis is, let's delve into the process of writing one effectively.

Variables in Hypothesis

In hypotheses, variables play a crucial role as they represent the factors that are being studied and tested. 

Let's explore two types of variables commonly found in hypotheses:

1. Independent Variable: This variable is manipulated or controlled by the researcher. It is the factor believed to have an effect on the dependent variable. Here's an example:

Hypothesis: "Increasing study time (independent variable) leads to improved test scores (dependent variable) in students."

In this hypothesis, the independent variable is the study time, which the researcher can manipulate to observe its impact on the test scores.

2. Dependent Variable: This variable is the outcome or response that is measured or observed as a result of the changes in the independent variable. Here's an example:

Hypothesis: "Exposure to sunlight (independent variable) affects plant growth (dependent variable)."

In this hypothesis, the dependent variable is plant growth, which is expected to be influenced by the independent variable, sunlight exposure. The researcher measures or observes the changes in plant growth based on the different levels of sunlight exposure.

Research Question vs Hypothesis

A research question is an inquiry that defines the focus and direction of a research study. A hypothesis, on the other hand, is a tentative statement that suggests a relationship between variables or predicts the outcome of a research study.

Hypothesis vs. Prediction

The difference between a hypothesis and a prediction is slight, but it's critical to understand. 

Hypotheses are a great way to explain why something happens based on scientific methods. A prediction is a statement that says something will happen based on what has been observed.

A hypothesis is a statement with variables. A prediction is a statement that says what will happen in the future.

Theory vs. Hypothesis

The theory and hypothesis have some differences between them.

  • A hypothesis is the explanation of a phenomenon that will be supported through scientific methods. 
  • A theory is a well-substantiated and already-tested explanation backed by evidence.  

To turn a hypothesis into a theory, you need to test it in different situations and with strong evidence. Theories can also be used to make predictions about something that is not understood. Once you have predictions, you can turn them into hypotheses that can be tested.

How to Develop a Hypothesis Step by Step?

Developing a hypothesis is an important step in scientific research, as it sets the foundation for designing experiments and testing theories. 

Let's explore the step-by-step process of developing a hypothesis, using the example of studying the effects of exercise on sleep quality.

Step 1. Ask a Question

To begin, ask a specific question that focuses on the relationship between variables. In our example, the question could be: "Does regular exercise have a positive impact on sleep quality?"

Step 2. Do Background Research

Before formulating your hypothesis, conduct preliminary research to gather existing knowledge on the topic. 

Review scientific studies, articles, and relevant literature to understand the current understanding of exercise and its potential effects on sleep quality. This research will provide a foundation for formulating your hypothesis.

Step 3. Develop Your Hypothesis

Based on your question and preliminary research, formulate a hypothesis that predicts the expected relationship between variables. In our example, the hypothesis could be: 

"Regular exercise has a positive influence on sleep quality, resulting in improved sleep duration and reduced sleep disturbances."

Step 4. Refine Your Hypothesis

Refine your hypothesis by making it more specific and testable. Specify the variables involved and the anticipated outcomes in clear terms. For instance: 

"Engaging in moderate-intensity aerobic exercise for at least 30 minutes, three times a week, will lead to an increase in total sleep time and a decrease in the frequency of sleep disruptions."

Step 5. Express Your Hypothesis in Three Forms

To ensure comprehensiveness, phrase your hypothesis in three different ways: as a simple statement, as a positive correlation, and as a negative correlation. This will cover different perspectives and potential outcomes. 

Using our example:

  • Simple Statement: "Regular exercise positively affects sleep quality."
  • Positive Correlation: "As the frequency of regular exercise increases, sleep quality improves."
  • Negative Correlation: "A lack of regular exercise is associated with poorer sleep quality."

Step 6. Construct a Null Hypothesis

In addition to the main hypothesis, it is important to write a null hypothesis. The null hypothesis assumes that there is no significant relationship between the variables being studied. 

The example below shows how to state the null hypothesis in a research paper: 

By following these steps, you can develop a well-structured and testable hypothesis that serves as a guiding framework for your scientific research.

Types of Research Hypotheses with Examples

Hypotheses come in various forms, depending on the nature of the research and the relationship between variables. 

Here are seven common types of hypotheses along with examples:

  • Simple Hypothesis: A straightforward statement about the expected relationship between variables.

Example: "Increasing fertilizer dosage will lead to higher crop yields."

  • Complex Hypothesis: A hypothesis that suggests a more intricate relationship between multiple variables.

Example: "The interaction of genetic factors and environmental stressors contributes to the development of certain mental disorders."

  • Directional Hypothesis: A hypothesis that predicts the specific direction of the relationship between variables.

Example: "As temperature decreases, the viscosity of the liquid will increase."

  • Non-Directional Hypothesis: A hypothesis that suggests a relationship between variables without specifying the direction.

Example: "There is a correlation between caffeine consumption and anxiety levels."

  • Null Hypothesis: A hypothesis that assumes no significant relationship between variables.

Example: "There is no difference in exam performance between students who study in silence and students who listen to music."

  • Alternative Hypothesis: A hypothesis that contradicts or offers an alternative explanation to the null hypothesis.

Example: "There is a significant difference in weight loss between individuals following a low-carb diet and those following a low-fat diet."

  • Associative Hypothesis: A hypothesis that suggests a relationship between variables without implying causality.

Example: "There is a correlation between exercise frequency and cardiovascular health."

Order Essay

Paper Due? Why Suffer? That's our Job!

What Makes a Good Hypothesis? 5 Key Elements

Crafting a good hypothesis is essential for conducting effective scientific research. A well-formed hypothesis sets the stage for meaningful experiments. 

Here are some key characteristics that make a hypothesis strong:

1. Testable and Specific

A good hypothesis should be testable through observation or experimentation. It should be formulated in a way that allows researchers to gather data and evidence to support or refute it. 

When writing a research hypothesis, it is crucial to structure it in a manner that suggests clear ways to measure or observe the variables involved.

2. Grounded in Existing Knowledge

A strong hypothesis is built upon a foundation of existing knowledge and understanding of the topic. By connecting your hypothesis to previous findings, you ensure that your research contributes to the broader scientific knowledge. 

This incorporation of existing knowledge aligns with the concept of research hypotheses, where hypotheses are framed based on the understanding of the subject from previous studies.

3. Falsifiable

A good hypothesis must be falsifiable, meaning that it can be proven false if it is indeed false. This principle is important because it allows for rigorous testing and prevents researchers from making claims that are impossible to verify or disprove. 

This aligns with the idea of statistical hypothesis, where hypotheses need to be formulated in a way that allows statistical testing to determine their validity.

4. Clearly Defines Variables

A well-formulated hypothesis clearly identifies the independent and dependent variables involved in the research. It specifies the relationship between two variables and states what researchers expect to find during the study. 

The clarity in defining variables is a crucial aspect of developing logical hypotheses.

5. Supported by Logic and Reasoning

A good hypothesis is logical and based on sound reasoning. It should be supported by evidence and a plausible rationale. The relationship between two variables proposed in the hypothesis should be grounded in a solid understanding of cause-and-effect relationships and theories.

A strong hypothesis, whether it is a research hypothesis, statistical hypothesis, or logical hypothesis, encompasses these key elements. By incorporating these elements you lay the groundwork for a robust and meaningful research study.

Hypothesis Examples 

Here are a few more examples for you to look at and get a better understanding!

How to Write a Hypothesis in Research

Research Question: "Does exposure to violent video games increase aggressive behavior in adolescents?"

Hypothesis 1: "Adolescents who are exposed to violent video games will display higher levels of aggressive behavior compared to those who are not exposed."

Hypothesis 2: "There is a positive correlation between the amount of time spent playing violent video games and the level of aggressive behavior exhibited by adolescents."

How to Write a Hypothesis for a Lab Report:

Lab Experiment: Testing the effect of different fertilizers on plant growth.

Hypothesis 1: "Plants treated with fertilizer A will exhibit greater growth in terms of height and leaf count compared to plants treated with fertilizer B."

Hypothesis 2: "There is a significant difference in the growth rate of plants when exposed to different types of fertilizers."

How to Write a Hypothesis in a Report:

Report Topic: Investigating the impact of social media usage on self-esteem.

Hypothesis 1: "Individuals who spend more time on social media will report lower levels of self-esteem compared to those who spend less time on social media."

Hypothesis 2: "There is an inverse relationship between the frequency of social media use and self-esteem levels among individuals."

Example of Hypothesis in a Research Proposal:

Crafting hypotheses in a research proposal is pivotal for outlining the research aims and guiding the investigative process. Here's an example of a hypothesis within a research proposal:

Research Proposal Topic: Investigating the impact of social media usage on adolescents' self-esteem levels.

Hypothesis: "Adolescents who spend more time on social media platforms will have lower self-esteem levels compared to those who spend less time on social media."

How To Write a Hypothesis Psychology

Research Topic: Investigating the impact of mindfulness meditation on reducing symptoms of anxiety in college students.

Hypothesis 1: "College students who regularly practice mindfulness meditation will report lower levels of anxiety compared to those who do not engage in mindfulness practices."

Hypothesis 2: "There will be a significant decrease in anxiety scores among college students who undergo a structured mindfulness meditation program compared to a control group receiving no intervention."

How to Write a Hypothesis for a Research Paper:

 Research Paper Topic: Examining the effect of mindfulness meditation on stress reduction.

Hypothesis 1: "Participating in regular mindfulness meditation practice will result in a significant decrease in perceived stress levels among participants."

Hypothesis 2: "There is a positive association between the frequency of mindfulness meditation practice and the reduction of stress levels in individuals."

How to Write a Hypothesis for Qualitative Research:

Qualitative Research Topic: Exploring the experiences of first-time mothers during the postpartum period.

Hypothesis 1: "First-time mothers will report feelings of increased anxiety and stress during the early weeks of the postpartum period."

Hypothesis 2: "There will be a common theme of adjustment challenges among first-time mothers in their narratives about the postpartum experience."

Good and Bad Hypothesis Example

Below are examples of good and bad hypotheses, along with their corresponding research question and hypothesis examples:

In conclusion, a well-crafted hypothesis sets the stage for designing experiments, collecting data, and drawing meaningful conclusions. 

By following the steps of formulating a hypothesis, researchers can ensure that their investigations are grounded in solid reasoning. AI essay writing tools can be a great help in getting ideas.

However, If you need assistance with essay writing, consider leveraging the services of CollegeEssay.org. Our team of experienced writers is dedicated to delivering high-quality, customized essays that meet your requirements and deadlines. 

Don't hesitate to visit CollegeEssay.org and benefit from our professional essay writing service . Contact us today and say goodbye to your academic paper-writing worries.

Frequently Asked Questions

What are the 3 required parts of a hypothesis.

The three main parts of the hypothesis are: 

  • Problem 
  • Proposed solution 
  • Result 

What are 5 characteristics of a good hypothesis?

The main five characteristics of a good hypothesis are: 

  • Clarity 
  • Relevant to problem 
  • Consistency 
  • Specific 
  • Testability 

What should not be characteristic of a hypothesis?

Complexity should not be a good characteristic of a hypothesis. 

Nova A. (Literature, Marketing)

As a Digital Content Strategist, Nova Allison has eight years of experience in writing both technical and scientific content. With a focus on developing online content plans that engage audiences, Nova strives to write pieces that are not only informative but captivating as well.

Paper Due? Why Suffer? That’s our Job!

Get Help

Keep reading

How to write a hypothesis in a research paper

  • Privacy Policy
  • Cookies Policy
  • Terms of Use
  • Refunds & Cancellations
  • Our Writers
  • Success Stories
  • Our Guarantees
  • Affiliate Program
  • Referral Program
  • AI Essay Writer

Disclaimer: All client orders are completed by our team of highly qualified human writers. The essays and papers provided by us are not to be used for submission but rather as learning models only.

how to write a hypothesis in college

Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Hypothesis Examples

Hypothesis Examples

A hypothesis is a prediction of the outcome of a test. It forms the basis for designing an experiment in the scientific method . A good hypothesis is testable, meaning it makes a prediction you can check with observation or experimentation. Here are different hypothesis examples.

Null Hypothesis Examples

The null hypothesis (H 0 ) is also known as the zero-difference or no-difference hypothesis. It predicts that changing one variable ( independent variable ) will have no effect on the variable being measured ( dependent variable ). Here are null hypothesis examples:

  • Plant growth is unaffected by temperature.
  • If you increase temperature, then solubility of salt will increase.
  • Incidence of skin cancer is unrelated to ultraviolet light exposure.
  • All brands of light bulb last equally long.
  • Cats have no preference for the color of cat food.
  • All daisies have the same number of petals.

Sometimes the null hypothesis shows there is a suspected correlation between two variables. For example, if you think plant growth is affected by temperature, you state the null hypothesis: “Plant growth is not affected by temperature.” Why do you do this, rather than say “If you change temperature, plant growth will be affected”? The answer is because it’s easier applying a statistical test that shows, with a high level of confidence, a null hypothesis is correct or incorrect.

Research Hypothesis Examples

A research hypothesis (H 1 ) is a type of hypothesis used to design an experiment. This type of hypothesis is often written as an if-then statement because it’s easy identifying the independent and dependent variables and seeing how one affects the other. If-then statements explore cause and effect. In other cases, the hypothesis shows a correlation between two variables. Here are some research hypothesis examples:

  • If you leave the lights on, then it takes longer for people to fall asleep.
  • If you refrigerate apples, they last longer before going bad.
  • If you keep the curtains closed, then you need less electricity to heat or cool the house (the electric bill is lower).
  • If you leave a bucket of water uncovered, then it evaporates more quickly.
  • Goldfish lose their color if they are not exposed to light.
  • Workers who take vacations are more productive than those who never take time off.

Is It Okay to Disprove a Hypothesis?

Yes! You may even choose to write your hypothesis in such a way that it can be disproved because it’s easier to prove a statement is wrong than to prove it is right. In other cases, if your prediction is incorrect, that doesn’t mean the science is bad. Revising a hypothesis is common. It demonstrates you learned something you did not know before you conducted the experiment.

Test yourself with a Scientific Method Quiz .

  • Mellenbergh, G.J. (2008). Chapter 8: Research designs: Testing of research hypotheses. In H.J. Adèr & G.J. Mellenbergh (eds.), Advising on Research Methods: A Consultant’s Companion . Huizen, The Netherlands: Johannes van Kessel Publishing.
  • Popper, Karl R. (1959). The Logic of Scientific Discovery . Hutchinson & Co. ISBN 3-1614-8410-X.
  • Schick, Theodore; Vaughn, Lewis (2002). How to think about weird things: critical thinking for a New Age . Boston: McGraw-Hill Higher Education. ISBN 0-7674-2048-9.
  • Tobi, Hilde; Kampen, Jarl K. (2018). “Research design: the methodology for interdisciplinary research framework”. Quality & Quantity . 52 (3): 1209–1225. doi: 10.1007/s11135-017-0513-8

Related Posts

Enago Academy

How to Develop a Good Research Hypothesis

' src=

The story of a research study begins by asking a question. Researchers all around the globe are asking curious questions and formulating research hypothesis. However, whether the research study provides an effective conclusion depends on how well one develops a good research hypothesis. Research hypothesis examples could help researchers get an idea as to how to write a good research hypothesis.

This blog will help you understand what is a research hypothesis, its characteristics and, how to formulate a research hypothesis

Table of Contents

What is Hypothesis?

Hypothesis is an assumption or an idea proposed for the sake of argument so that it can be tested. It is a precise, testable statement of what the researchers predict will be outcome of the study.  Hypothesis usually involves proposing a relationship between two variables: the independent variable (what the researchers change) and the dependent variable (what the research measures).

What is a Research Hypothesis?

Research hypothesis is a statement that introduces a research question and proposes an expected result. It is an integral part of the scientific method that forms the basis of scientific experiments. Therefore, you need to be careful and thorough when building your research hypothesis. A minor flaw in the construction of your hypothesis could have an adverse effect on your experiment. In research, there is a convention that the hypothesis is written in two forms, the null hypothesis, and the alternative hypothesis (called the experimental hypothesis when the method of investigation is an experiment).

Characteristics of a Good Research Hypothesis

As the hypothesis is specific, there is a testable prediction about what you expect to happen in a study. You may consider drawing hypothesis from previously published research based on the theory.

A good research hypothesis involves more effort than just a guess. In particular, your hypothesis may begin with a question that could be further explored through background research.

To help you formulate a promising research hypothesis, you should ask yourself the following questions:

  • Is the language clear and focused?
  • What is the relationship between your hypothesis and your research topic?
  • Is your hypothesis testable? If yes, then how?
  • What are the possible explanations that you might want to explore?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate your variables without hampering the ethical standards?
  • Does your research predict the relationship and outcome?
  • Is your research simple and concise (avoids wordiness)?
  • Is it clear with no ambiguity or assumptions about the readers’ knowledge
  • Is your research observable and testable results?
  • Is it relevant and specific to the research question or problem?

research hypothesis example

The questions listed above can be used as a checklist to make sure your hypothesis is based on a solid foundation. Furthermore, it can help you identify weaknesses in your hypothesis and revise it if necessary.

Source: Educational Hub

How to formulate a research hypothesis.

A testable hypothesis is not a simple statement. It is rather an intricate statement that needs to offer a clear introduction to a scientific experiment, its intentions, and the possible outcomes. However, there are some important things to consider when building a compelling hypothesis.

1. State the problem that you are trying to solve.

Make sure that the hypothesis clearly defines the topic and the focus of the experiment.

2. Try to write the hypothesis as an if-then statement.

Follow this template: If a specific action is taken, then a certain outcome is expected.

3. Define the variables

Independent variables are the ones that are manipulated, controlled, or changed. Independent variables are isolated from other factors of the study.

Dependent variables , as the name suggests are dependent on other factors of the study. They are influenced by the change in independent variable.

4. Scrutinize the hypothesis

Evaluate assumptions, predictions, and evidence rigorously to refine your understanding.

Types of Research Hypothesis

The types of research hypothesis are stated below:

1. Simple Hypothesis

It predicts the relationship between a single dependent variable and a single independent variable.

2. Complex Hypothesis

It predicts the relationship between two or more independent and dependent variables.

3. Directional Hypothesis

It specifies the expected direction to be followed to determine the relationship between variables and is derived from theory. Furthermore, it implies the researcher’s intellectual commitment to a particular outcome.

4. Non-directional Hypothesis

It does not predict the exact direction or nature of the relationship between the two variables. The non-directional hypothesis is used when there is no theory involved or when findings contradict previous research.

5. Associative and Causal Hypothesis

The associative hypothesis defines interdependency between variables. A change in one variable results in the change of the other variable. On the other hand, the causal hypothesis proposes an effect on the dependent due to manipulation of the independent variable.

6. Null Hypothesis

Null hypothesis states a negative statement to support the researcher’s findings that there is no relationship between two variables. There will be no changes in the dependent variable due the manipulation of the independent variable. Furthermore, it states results are due to chance and are not significant in terms of supporting the idea being investigated.

7. Alternative Hypothesis

It states that there is a relationship between the two variables of the study and that the results are significant to the research topic. An experimental hypothesis predicts what changes will take place in the dependent variable when the independent variable is manipulated. Also, it states that the results are not due to chance and that they are significant in terms of supporting the theory being investigated.

Research Hypothesis Examples of Independent and Dependent Variables

Research Hypothesis Example 1 The greater number of coal plants in a region (independent variable) increases water pollution (dependent variable). If you change the independent variable (building more coal factories), it will change the dependent variable (amount of water pollution).
Research Hypothesis Example 2 What is the effect of diet or regular soda (independent variable) on blood sugar levels (dependent variable)? If you change the independent variable (the type of soda you consume), it will change the dependent variable (blood sugar levels)

You should not ignore the importance of the above steps. The validity of your experiment and its results rely on a robust testable hypothesis. Developing a strong testable hypothesis has few advantages, it compels us to think intensely and specifically about the outcomes of a study. Consequently, it enables us to understand the implication of the question and the different variables involved in the study. Furthermore, it helps us to make precise predictions based on prior research. Hence, forming a hypothesis would be of great value to the research. Here are some good examples of testable hypotheses.

More importantly, you need to build a robust testable research hypothesis for your scientific experiments. A testable hypothesis is a hypothesis that can be proved or disproved as a result of experimentation.

Importance of a Testable Hypothesis

To devise and perform an experiment using scientific method, you need to make sure that your hypothesis is testable. To be considered testable, some essential criteria must be met:

  • There must be a possibility to prove that the hypothesis is true.
  • There must be a possibility to prove that the hypothesis is false.
  • The results of the hypothesis must be reproducible.

Without these criteria, the hypothesis and the results will be vague. As a result, the experiment will not prove or disprove anything significant.

What are your experiences with building hypotheses for scientific experiments? What challenges did you face? How did you overcome these challenges? Please share your thoughts with us in the comments section.

Frequently Asked Questions

The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a ‘if-then’ structure. 3. Defining the variables: Define the variables as Dependent or Independent based on their dependency to other factors. 4. Scrutinizing the hypothesis: Identify the type of your hypothesis

Hypothesis testing is a statistical tool which is used to make inferences about a population data to draw conclusions for a particular hypothesis.

Hypothesis in statistics is a formal statement about the nature of a population within a structured framework of a statistical model. It is used to test an existing hypothesis by studying a population.

Research hypothesis is a statement that introduces a research question and proposes an expected result. It forms the basis of scientific experiments.

The different types of hypothesis in research are: • Null hypothesis: Null hypothesis is a negative statement to support the researcher’s findings that there is no relationship between two variables. • Alternate hypothesis: Alternate hypothesis predicts the relationship between the two variables of the study. • Directional hypothesis: Directional hypothesis specifies the expected direction to be followed to determine the relationship between variables. • Non-directional hypothesis: Non-directional hypothesis does not predict the exact direction or nature of the relationship between the two variables. • Simple hypothesis: Simple hypothesis predicts the relationship between a single dependent variable and a single independent variable. • Complex hypothesis: Complex hypothesis predicts the relationship between two or more independent and dependent variables. • Associative and casual hypothesis: Associative and casual hypothesis predicts the relationship between two or more independent and dependent variables. • Empirical hypothesis: Empirical hypothesis can be tested via experiments and observation. • Statistical hypothesis: A statistical hypothesis utilizes statistical models to draw conclusions about broader populations.

' src=

Wow! You really simplified your explanation that even dummies would find it easy to comprehend. Thank you so much.

Thanks a lot for your valuable guidance.

I enjoy reading the post. Hypotheses are actually an intrinsic part in a study. It bridges the research question and the methodology of the study.

Useful piece!

This is awesome.Wow.

It very interesting to read the topic, can you guide me any specific example of hypothesis process establish throw the Demand and supply of the specific product in market

Nicely explained

It is really a useful for me Kindly give some examples of hypothesis

It was a well explained content ,can you please give me an example with the null and alternative hypothesis illustrated

clear and concise. thanks.

So Good so Amazing

Good to learn

Thanks a lot for explaining to my level of understanding

Explained well and in simple terms. Quick read! Thank you

Rate this article Cancel Reply

Your email address will not be published.

how to write a hypothesis in college

Enago Academy's Most Popular Articles

Content Analysis vs Thematic Analysis: What's the difference?

  • Reporting Research

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for data interpretation

In research, choosing the right approach to understand data is crucial for deriving meaningful insights.…

Cross-sectional and Longitudinal Study Design

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right approach

The process of choosing the right research design can put ourselves at the crossroads of…

how to write a hypothesis in college

  • Industry News

COPE Forum Discussion Highlights Challenges and Urges Clarity in Institutional Authorship Standards

The COPE forum discussion held in December 2023 initiated with a fundamental question — is…

Networking in Academic Conferences

  • Career Corner

Unlocking the Power of Networking in Academic Conferences

Embarking on your first academic conference experience? Fear not, we got you covered! Academic conferences…

Research recommendation

Research Recommendations – Guiding policy-makers for evidence-based decision making

Research recommendations play a crucial role in guiding scholars and researchers toward fruitful avenues of…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…

How to Design Effective Research Questionnaires for Robust Findings

how to write a hypothesis in college

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

how to write a hypothesis in college

What should universities' stance be on AI tools in research and academic writing?

Science Fair Wizard

  • Pick a topic
  • Determine a problem
  • Investigate your problem
  • Formulate a hypothesis

Experimenting

  • Define the problem
  • Select your variables
  • Draft your hypothesis
  • Write your procedure
  • Get permissions
  • Test your hypothesis
  • Compile your data
  • Write your research paper
  • Construct your exhibit
  • Prepare your presentation
  • Show Time! Pre-science fair checklist
  • Submit your paperwork

PLANNING

Step 5C: Draft your hypothesis

Your draft hypothesis statement should include the following:

  • the question or problem you are trying to answer;
  • how the independent variable will be changed;
  • the measurable or testable effect it will have on the dependent variable ;
  • and your best guess as to what you think the outcome will be.

Use the space on the Experiment Design Worksheet to draft your hypothesis statement.

Tip: A hypothesis problem can be stated in different ways.  Here are some examples:

As a question: Does temperature affect the rate of plant growth? As a statement: Temperature may affect the rate of plant growth. As an if/then statement: If temperature is related to the rate of plant growth, then changing the temperature will change the rate of plant growth.

A hypothesis is a statement that predicts the outcome of your experiment, and is informed by the research you have done on your topic.

next

The digital library project

  • PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • RANDOM QUIZ
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • This Or That Game New
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications
  • Science Writing

How to Write a Hypothesis

Last Updated: May 2, 2023 Fact Checked

This article was co-authored by Bess Ruff, MA . Bess Ruff is a Geography PhD student at Florida State University. She received her MA in Environmental Science and Management from the University of California, Santa Barbara in 2016. She has conducted survey work for marine spatial planning projects in the Caribbean and provided research support as a graduate fellow for the Sustainable Fisheries Group. There are 9 references cited in this article, which can be found at the bottom of the page. This article has been fact-checked, ensuring the accuracy of any cited facts and confirming the authority of its sources. This article has been viewed 1,032,047 times.

A hypothesis is a description of a pattern in nature or an explanation about some real-world phenomenon that can be tested through observation and experimentation. The most common way a hypothesis is used in scientific research is as a tentative, testable, and falsifiable statement that explains some observed phenomenon in nature. [1] X Research source Many academic fields, from the physical sciences to the life sciences to the social sciences, use hypothesis testing as a means of testing ideas to learn about the world and advance scientific knowledge. Whether you are a beginning scholar or a beginning student taking a class in a science subject, understanding what hypotheses are and being able to generate hypotheses and predictions yourself is very important. These instructions will help get you started.

Preparing to Write a Hypothesis

Step 1 Select a topic.

  • If you are writing a hypothesis for a school assignment, this step may be taken care of for you.

Step 2 Read existing research.

  • Focus on academic and scholarly writing. You need to be certain that your information is unbiased, accurate, and comprehensive. Scholarly search databases such as Google Scholar and Web of Science can help you find relevant articles from reputable sources.
  • You can find information in textbooks, at a library, and online. If you are in school, you can also ask for help from teachers, librarians, and your peers.

Step 3 Analyze the literature.

  • For example, if you are interested in the effects of caffeine on the human body, but notice that nobody seems to have explored whether caffeine affects males differently than it does females, this could be something to formulate a hypothesis about. Or, if you are interested in organic farming, you might notice that no one has tested whether organic fertilizer results in different growth rates for plants than non-organic fertilizer.
  • You can sometimes find holes in the existing literature by looking for statements like “it is unknown” in scientific papers or places where information is clearly missing. You might also find a claim in the literature that seems far-fetched, unlikely, or too good to be true, like that caffeine improves math skills. If the claim is testable, you could provide a great service to scientific knowledge by doing your own investigation. If you confirm the claim, the claim becomes even more credible. If you do not find support for the claim, you are helping with the necessary self-correcting aspect of science.
  • Examining these types of questions provides an excellent way for you to set yourself apart by filling in important gaps in a field of study.

Step 4 Generate questions.

  • Following the examples above, you might ask: "How does caffeine affect females as compared to males?" or "How does organic fertilizer affect plant growth compared to non-organic fertilizer?" The rest of your research will be aimed at answering these questions.

Step 5 Look for clues as to what the answer might be.

  • Following the examples above, if you discover in the literature that there is a pattern that some other types of stimulants seem to affect females more than males, this could be a clue that the same pattern might be true for caffeine. Similarly, if you observe the pattern that organic fertilizer seems to be associated with smaller plants overall, you might explain this pattern with the hypothesis that plants exposed to organic fertilizer grow more slowly than plants exposed to non-organic fertilizer.

Formulating Your Hypothesis

Step 1 Determine your variables.

  • You can think of the independent variable as the one that is causing some kind of difference or effect to occur. In the examples, the independent variable would be biological sex, i.e. whether a person is male or female, and fertilizer type, i.e. whether the fertilizer is organic or non-organically-based.
  • The dependent variable is what is affected by (i.e. "depends" on) the independent variable. In the examples above, the dependent variable would be the measured impact of caffeine or fertilizer.
  • Your hypothesis should only suggest one relationship. Most importantly, it should only have one independent variable. If you have more than one, you won't be able to determine which one is actually the source of any effects you might observe.

Step 2 Generate a simple hypothesis.

  • Don't worry too much at this point about being precise or detailed.
  • In the examples above, one hypothesis would make a statement about whether a person's biological sex might impact the way the person is affected by caffeine; for example, at this point, your hypothesis might simply be: "a person's biological sex is related to how caffeine affects his or her heart rate." The other hypothesis would make a general statement about plant growth and fertilizer; for example your simple explanatory hypothesis might be "plants given different types of fertilizer are different sizes because they grow at different rates."

Step 3 Decide on direction.

  • Using our example, our non-directional hypotheses would be "there is a relationship between a person's biological sex and how much caffeine increases the person's heart rate," and "there is a relationship between fertilizer type and the speed at which plants grow."
  • Directional predictions using the same example hypotheses above would be : "Females will experience a greater increase in heart rate after consuming caffeine than will males," and "plants fertilized with non-organic fertilizer will grow faster than those fertilized with organic fertilizer." Indeed, these predictions and the hypotheses that allow for them are very different kinds of statements. More on this distinction below.
  • If the literature provides any basis for making a directional prediction, it is better to do so, because it provides more information. Especially in the physical sciences, non-directional predictions are often seen as inadequate.

Step 4 Get specific.

  • Where necessary, specify the population (i.e. the people or things) about which you hope to uncover new knowledge. For example, if you were only interested the effects of caffeine on elderly people, your prediction might read: "Females over the age of 65 will experience a greater increase in heart rate than will males of the same age." If you were interested only in how fertilizer affects tomato plants, your prediction might read: "Tomato plants treated with non-organic fertilizer will grow faster in the first three months than will tomato plants treated with organic fertilizer."

Step 5 Make sure it is testable.

  • For example, you would not want to make the hypothesis: "red is the prettiest color." This statement is an opinion and it cannot be tested with an experiment. However, proposing the generalizing hypothesis that red is the most popular color is testable with a simple random survey. If you do indeed confirm that red is the most popular color, your next step may be to ask: Why is red the most popular color? The answer you propose is your explanatory hypothesis .

Step 6 Write a research hypothesis.

  • An easy way to get to the hypothesis for this method and prediction is to ask yourself why you think heart rates will increase if children are given caffeine. Your explanatory hypothesis in this case may be that caffeine is a stimulant. At this point, some scientists write a research hypothesis , a statement that includes the hypothesis, the experiment, and the prediction all in one statement.
  • For example, If caffeine is a stimulant, and some children are given a drink with caffeine while others are given a drink without caffeine, then the heart rates of those children given a caffeinated drink will increase more than the heart rate of children given a non-caffeinated drink.

Step 7 Contextualize your hypothesis.

  • Using the above example, if you were to test the effects of caffeine on the heart rates of children, evidence that your hypothesis is not true, sometimes called the null hypothesis , could occur if the heart rates of both the children given the caffeinated drink and the children given the non-caffeinated drink (called the placebo control) did not change, or lowered or raised with the same magnitude, if there was no difference between the two groups of children.
  • It is important to note here that the null hypothesis actually becomes much more useful when researchers test the significance of their results with statistics. When statistics are used on the results of an experiment, a researcher is testing the idea of the null statistical hypothesis. For example, that there is no relationship between two variables or that there is no difference between two groups. [8] X Research source

Step 8 Test your hypothesis.

Hypothesis Examples

how to write a hypothesis in college

Community Q&A

Community Answer

  • Remember that science is not necessarily a linear process and can be approached in various ways. [10] X Research source Thanks Helpful 0 Not Helpful 0
  • When examining the literature, look for research that is similar to what you want to do, and try to build on the findings of other researchers. But also look for claims that you think are suspicious, and test them yourself. Thanks Helpful 0 Not Helpful 0
  • Be specific in your hypotheses, but not so specific that your hypothesis can't be applied to anything outside your specific experiment. You definitely want to be clear about the population about which you are interested in drawing conclusions, but nobody (except your roommates) will be interested in reading a paper with the prediction: "my three roommates will each be able to do a different amount of pushups." Thanks Helpful 0 Not Helpful 0

how to write a hypothesis in college

You Might Also Like

Write a Good Lab Conclusion in Science

  • ↑ https://undsci.berkeley.edu/for-educators/prepare-and-plan/correcting-misconceptions/#a4
  • ↑ https://owl.purdue.edu/owl/general_writing/common_writing_assignments/research_papers/choosing_a_topic.html
  • ↑ https://owl.purdue.edu/owl/subject_specific_writing/writing_in_the_social_sciences/writing_in_psychology_experimental_report_writing/experimental_reports_1.html
  • ↑ https://www.grammarly.com/blog/how-to-write-a-hypothesis/
  • ↑ https://grammar.yourdictionary.com/for-students-and-parents/how-create-hypothesis.html
  • ↑ https://flexbooks.ck12.org/cbook/ck-12-middle-school-physical-science-flexbook-2.0/section/1.19/primary/lesson/hypothesis-ms-ps/
  • ↑ https://iastate.pressbooks.pub/preparingtopublish/chapter/goal-1-contextualize-the-studys-methods/
  • ↑ http://mathworld.wolfram.com/NullHypothesis.html
  • ↑ http://undsci.berkeley.edu/article/scienceflowchart

About This Article

Bess Ruff, MA

Before writing a hypothesis, think of what questions are still unanswered about a specific subject and make an educated guess about what the answer could be. Then, determine the variables in your question and write a simple statement about how they might be related. Try to focus on specific predictions and variables, such as age or segment of the population, to make your hypothesis easier to test. For tips on how to test your hypothesis, read on! Did this summary help you? Yes No

  • Send fan mail to authors

Reader Success Stories

Onyia Maxwell

Onyia Maxwell

Sep 13, 2016

Did this article help you?

how to write a hypothesis in college

Nov 26, 2017

ABEL SHEWADEG

ABEL SHEWADEG

Jun 12, 2018

Connor Gilligan

Connor Gilligan

Jan 2, 2017

Georgia

Dec 30, 2017

Am I a Narcissist or an Empath Quiz

Featured Articles

Make Your School More Period Friendly

Trending Articles

8 Reasons Why Life Sucks & 15 Ways to Deal With It

Watch Articles

Fold Boxer Briefs

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

Don’t miss out! Sign up for

wikiHow’s newsletter

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Hypothesis Testing | A Step-by-Step Guide with Easy Examples

Published on November 8, 2019 by Rebecca Bevans . Revised on June 22, 2023.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics . It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories.

There are 5 main steps in hypothesis testing:

  • State your research hypothesis as a null hypothesis and alternate hypothesis (H o ) and (H a  or H 1 ).
  • Collect data in a way designed to test the hypothesis.
  • Perform an appropriate statistical test .
  • Decide whether to reject or fail to reject your null hypothesis.
  • Present the findings in your results and discussion section.

Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps.

Table of contents

Step 1: state your null and alternate hypothesis, step 2: collect data, step 3: perform a statistical test, step 4: decide whether to reject or fail to reject your null hypothesis, step 5: present your findings, other interesting articles, frequently asked questions about hypothesis testing.

After developing your initial research hypothesis (the prediction that you want to investigate), it is important to restate it as a null (H o ) and alternate (H a ) hypothesis so that you can test it mathematically.

The alternate hypothesis is usually your initial hypothesis that predicts a relationship between variables. The null hypothesis is a prediction of no relationship between the variables you are interested in.

  • H 0 : Men are, on average, not taller than women. H a : Men are, on average, taller than women.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

For a statistical test to be valid , it is important to perform sampling and collect data in a way that is designed to test your hypothesis. If your data are not representative, then you cannot make statistical inferences about the population you are interested in.

There are a variety of statistical tests available, but they are all based on the comparison of within-group variance (how spread out the data is within a category) versus between-group variance (how different the categories are from one another).

If the between-group variance is large enough that there is little or no overlap between groups, then your statistical test will reflect that by showing a low p -value . This means it is unlikely that the differences between these groups came about by chance.

Alternatively, if there is high within-group variance and low between-group variance, then your statistical test will reflect that with a high p -value. This means it is likely that any difference you measure between groups is due to chance.

Your choice of statistical test will be based on the type of variables and the level of measurement of your collected data .

  • an estimate of the difference in average height between the two groups.
  • a p -value showing how likely you are to see this difference if the null hypothesis of no difference is true.

Based on the outcome of your statistical test, you will have to decide whether to reject or fail to reject your null hypothesis.

In most cases you will use the p -value generated by your statistical test to guide your decision. And in most cases, your predetermined level of significance for rejecting the null hypothesis will be 0.05 – that is, when there is a less than 5% chance that you would see these results if the null hypothesis were true.

In some cases, researchers choose a more conservative level of significance, such as 0.01 (1%). This minimizes the risk of incorrectly rejecting the null hypothesis ( Type I error ).

The results of hypothesis testing will be presented in the results and discussion sections of your research paper , dissertation or thesis .

In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p -value). In the discussion , you can discuss whether your initial hypothesis was supported by your results or not.

In the formal language of hypothesis testing, we talk about rejecting or failing to reject the null hypothesis. You will probably be asked to do this in your statistics assignments.

However, when presenting research results in academic papers we rarely talk this way. Instead, we go back to our alternate hypothesis (in this case, the hypothesis that men are on average taller than women) and state whether the result of our test did or did not support the alternate hypothesis.

If your null hypothesis was rejected, this result is interpreted as “supported the alternate hypothesis.”

These are superficial differences; you can see that they mean the same thing.

You might notice that we don’t say that we reject or fail to reject the alternate hypothesis . This is because hypothesis testing is not designed to prove or disprove anything. It is only designed to test whether a pattern we measure could have arisen spuriously, or by chance.

If we reject the null hypothesis based on our research (i.e., we find that it is unlikely that the pattern arose by chance), then we can say our test lends support to our hypothesis . But if the pattern does not pass our decision rule, meaning that it could have arisen by chance, then we say the test is inconsistent with our hypothesis .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 22). Hypothesis Testing | A Step-by-Step Guide with Easy Examples. Scribbr. Retrieved March 25, 2024, from https://www.scribbr.com/statistics/hypothesis-testing/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, choosing the right statistical test | types & examples, understanding p values | definition and examples, what is your plagiarism score.

  • Foundations
  • Write Paper

Search form

  • Experiments
  • Anthropology
  • Self-Esteem
  • Social Anxiety

how to write a hypothesis in college

  • Research Paper >

How to Write a Hypothesis

Often, one of the trickiest parts of designing and writing up any research paper is writing the hypothesis.

This article is a part of the guide:

  • Outline Examples
  • Example of a Paper
  • Introduction
  • Example of a Paper 2

Browse Full Outline

  • 1 Write a Research Paper
  • 2 Writing a Paper
  • 3.1 Write an Outline
  • 3.2 Outline Examples
  • 4.1 Thesis Statement
  • 4.2 Write a Hypothesis
  • 5.2 Abstract
  • 5.3 Introduction
  • 5.4 Methods
  • 5.5 Results
  • 5.6 Discussion
  • 5.7 Conclusion
  • 5.8 Bibliography
  • 6.1 Table of Contents
  • 6.2 Acknowledgements
  • 6.3 Appendix
  • 7.1 In Text Citations
  • 7.2 Footnotes
  • 7.3.1 Floating Blocks
  • 7.4 Example of a Paper
  • 7.5 Example of a Paper 2
  • 7.6.1 Citations
  • 7.7.1 Writing Style
  • 7.7.2 Citations
  • 8.1.1 Sham Peer Review
  • 8.1.2 Advantages
  • 8.1.3 Disadvantages
  • 8.2 Publication Bias
  • 8.3.1 Journal Rejection
  • 9.1 Article Writing
  • 9.2 Ideas for Topics

The entire experiment revolves around the research hypothesis (H 1 ) and the null hypothesis (H 0 ), so making a mistake here could ruin the whole design .

Needless to say, it can all be a little intimidating, and many students find this to be the most difficult stage of the scientific method .

In fact, it is not as difficult as it looks, and if you have followed the steps of the scientific process and found an area of research and potential research problem , then you may already have a few ideas.

It is just about making sure that you are asking the right questions and wording your hypothesis statements correctly.

Once you have nailed down a promising hypothesis, the rest of the process will flow a lot more easily.

how to write a hypothesis in college

The Three-Step Process

It can quite difficult to isolate a testable hypothesis after all of the research and study. The best way is to adopt a three-step hypothesis; this will help you to narrow things down, and is the most foolproof guide to how to write a hypothesis.

Step one is to think of a general hypothesis, including everything that you have observed and reviewed during the information gathering stage of any research design . This stage is often called developing the research problem .

how to write a hypothesis in college

An Example of How to Write a Hypothesis

A worker on a fish-farm notices that his trout seem to have more fish lice in the summer, when the water levels are low, and wants to find out why. His research leads him to believe that the amount of oxygen is the reason - fish that are oxygen stressed tend to be more susceptible to disease and parasites.

He proposes a general hypothesis.

“Water levels affect the amount of lice suffered by rainbow trout.”

This is a good general hypothesis, but it gives no guide to how to design the research or experiment . The hypothesis must be refined to give a little direction.

“Rainbow trout suffer more lice when water levels are low.”

Now there is some directionality, but the hypothesis is not really testable , so the final stage is to design an experiment around which research can be designed, i.e. a testable hypothesis.

“Rainbow trout suffer more lice in low water conditions because there is less oxygen in the water.”

This is a testable hypothesis - he has established variables , and by measuring the amount of oxygen in the water, eliminating other controlled variables , such as temperature, he can see if there is a correlation against the number of lice on the fish.

This is an example of how a gradual focusing of research helps to define how to write a hypothesis .

The Next Stage - What to Do with the Hypothesis

Once you have your hypothesis , the next stage is to design the experiment , allowing a statistical analysis of data, and allowing you to test your hypothesis .

The statistical analysis will allow you to reject either the null or the alternative hypothesis. If the alternative is rejected, then you need to go back and refine the initial hypothesis or design a completely new research program.

This is part of the scientific process, striving for greater accuracy and developing ever more refined hypotheses.

  • Psychology 101
  • Flags and Countries
  • Capitals and Countries

Martyn Shuttleworth (Aug 1, 2009). How to Write a Hypothesis. Retrieved Mar 26, 2024 from Explorable.com: https://explorable.com/how-to-write-a-hypothesis

You Are Allowed To Copy The Text

The text in this article is licensed under the Creative Commons-License Attribution 4.0 International (CC BY 4.0) .

This means you're free to copy, share and adapt any parts (or all) of the text in the article, as long as you give appropriate credit and provide a link/reference to this page.

That is it. You don't need our permission to copy the article; just include a link/reference back to this page. You can use it freely (with some kind of link), and we're also okay with people reprinting in publications like books, blogs, newsletters, course-material, papers, wikipedia and presentations (with clear attribution).

Want to stay up to date? Follow us!

Check out the official book.

Learn how to construct, style and format an Academic paper and take your skills to the next level.

how to write a hypothesis in college

(also available as ebook )

Save this course for later

Don't have time for it all now? No problem, save it as a course and come back to it later.

Footer bottom

  • Privacy Policy

how to write a hypothesis in college

  • Subscribe to our RSS Feed
  • Like us on Facebook
  • Follow us on Twitter

Integrations

What's new?

Prototype Testing

Live Website Testing

Feedback Surveys

Interview Studies

Card Sorting

Tree Testing

In-Product Prompts

Participant Management

Automated Reports

Templates Gallery

Choose from our library of pre-built mazes to copy, customize, and share with your own users

Browse all templates

Financial Services

Tech & Software

Product Designers

Product Managers

User Researchers

By use case

Concept & Idea Validation

Wireframe & Usability Test

Content & Copy Testing

Feedback & Satisfaction

Content Hub

Educational resources for product, research and design teams

Explore all resources

Question Bank

Research Maturity Model

Guides & Reports

Help Center

Future of User Research Report

The Optimal Path Podcast

Creating a research hypothesis: How to formulate and test UX expectations

User Research

Mar 21, 2024

Creating a research hypothesis: How to formulate and test UX expectations

A research hypothesis helps guide your UX research with focused predictions you can test and learn from. Here’s how to formulate your own hypotheses.

Armin Tanovic

Armin Tanovic

All great products were once just thoughts—the spark of an idea waiting to be turned into something tangible.

A research hypothesis in UX is very similar. It’s the starting point for your user research; the jumping off point for your product development initiatives.

Formulating a UX research hypothesis helps guide your UX research project in the right direction, collect insights, and evaluate not only whether an idea is worth pursuing, but how to go after it.

In this article, we’ll cover what a research hypothesis is, how it's relevant to UX research, and the best formula to create your own hypothesis and put it to the best.

Test your hypothesis with Maze

Maze lets you validate your design and test research hypotheses to move forward with authentic user insights.

how to write a hypothesis in college

What defines a research hypothesis?

A research hypothesis is a statement or prediction that needs testing to be proven or disproven.

Let’s say you’ve got an inkling that making a change to a feature icon will increase the number of users that engage with it—with some minor adjustments, this theory becomes a research hypothesis: “ Adjusting Feature X’s icon will increase daily average users by 20% ”.

A research hypothesis is the starting point that guides user research . It takes your thought and turns it into something you can quantify and evaluate. In this case, you could conduct usability tests and user surveys, and run A/B tests to see if you’re right—or, just as importantly, wrong .

A good research hypothesis has three main features:

  • Specificity: A hypothesis should clearly define what variables you’re studying and what you expect an outcome to be, without ambiguity in its wording
  • Relevance: A research hypothesis should have significance for your research project by addressing a potential opportunity for improvement
  • Testability: Your research hypothesis must be able to be tested in some way such as empirical observation or data collection

What is the difference between a research hypothesis and a research question?

Research questions and research hypotheses are often treated as one and the same, but they’re not quite identical.

A research hypothesis acts as a prediction or educated guess of outcomes , while a research question poses a query on the subject you’re investigating. Put simply, a research hypothesis is a statement, whereas a research question is (you guessed it) a question.

For example, here’s a research hypothesis: “ Implementing a navigation bar on our dashboard will improve customer satisfaction scores by 10%. ”

This statement acts as a testable prediction. It doesn’t pose a question, it’s a prediction. Here’s what the same hypothesis would look like as a research question: “ Will integrating a navigation bar on our dashboard improve customer satisfaction scores? ”

The distinction is minor, and both are focused on uncovering the truth behind the topic, but they’re not quite the same.

Why do you use a research hypothesis in UX?

Research hypotheses in UX are used to establish the direction of a particular study, research project, or test. Formulating a hypothesis and testing it ensures the UX research you conduct is methodical, focused, and actionable. It aids every phase of your research process , acting as a north star that guides your efforts toward successful product development .

Typically, UX researchers will formulate a testable hypothesis to help them fulfill a broader objective, such as improving customer experience or product usability. They’ll then conduct user research to gain insights into their prediction and confirm or reject the hypothesis.

A proven or disproven hypothesis will tell if your prediction is right, and whether you should move forward with your proposed design—or if it's back to the drawing board.

Formulating a hypothesis can be helpful in anything from prototype testing to idea validation, and design iteration. Put simply, it’s one of the first steps in conducting user research.

Whether you’re in the initial stages of product discovery for a new product, a single feature, or conducting ongoing research, a strong hypothesis presents a clear purpose and angle for your research It also helps understand which user research methodology to use to get your answers.

What are the types of research hypotheses?

Not all hypotheses are built the same—there are different types with different objectives. Understanding the different types enables you to formulate a research hypothesis that outlines the angle you need to take to prove or disprove your predictions.

Here are some of the different types of hypotheses to keep in mind.

Null and alternative hypotheses

While a normal research hypothesis predicts that a specific outcome will occur based upon a certain change of variables, a null hypothesis predicts that no difference will occur when you introduce a new condition.

By that reasoning, a null hypothesis would be:

  • Adding a new CTA button to the top of our homepage will make no difference in conversions

Null hypotheses are useful because they help outline what your test or research study is trying to dis prove, rather than prove, through a research hypothesis.

An alternative hypothesis states the exact opposite of a null hypothesis. It proposes that a certain change will occur when you introduce a new condition or variable. For example:

  • Adding a CTA button to the top of our homepage will cause a difference in conversion rates

Simple hypotheses and complex hypotheses

A simple hypothesis is a prediction that includes only two variables in a cause-and-effect sequence, with one variable dependent on the other. It predicts that you'll achieve a particular outcome based on a certain condition. The outcome is known as the dependent variable and the change causing it is the independent variable .

For example, this is a simple hypothesis:

  • Including the search function on our mobile app will increase user retention

The expected outcome of increasing user retention is based on the condition of including a new search function. But, what happens when there are more than two factors at play?

We get what’s called a complex hypothesis. Instead of a simple condition and outcome, complex hypotheses include multiple results. This makes them a perfect research hypothesis type for framing complex studies or tracking multiple KPIs based on a single action.

Building upon our previous example, a complex research hypothesis could be:

  • Including the search function on our mobile app will increase user retention and boost conversions

Directional and non-directional hypotheses

Research hypotheses can also differ in the specificity of outcomes. Put simply, any hypothesis that has a specific outcome or direction based on the relationship of its variables is a directional hypothesis . That means that our previous example of a simple hypothesis is also a directional hypothesis.

Non-directional hypotheses don’t specify the outcome or difference the variables will see. They just state that a difference exists. Following our example above, here’s what a non-directional hypothesis would look like:

  • Including the search function on our mobile app will make a difference in user retention

In this non-directional hypothesis, the direction of difference (increase/decrease) hasn’t been specified, we’ve just noted that there will be a difference.

The type of hypothesis you write helps guide your research—let’s get into it.

How to write and test your UX research hypothesis

Now we’ve covered the types of research hypothesis examples, it’s time to get practical.

Creating your research hypothesis is the first step in conducting successful user research.

Here are the four steps for writing and testing a UX research hypothesis to help you make informed, data-backed decisions for product design and development.

1. Formulate your hypothesis

Start by writing out your hypothesis in a way that’s specific and relevant to a distinct aspect of your user or product experience. Meaning: your prediction should include a design choice followed by the outcome you’d expect—this is what you’re looking to validate or reject.

Your proposed research hypothesis should also be testable through user research data analysis. There’s little point in a hypothesis you can’t test!

Let’s say your focus is your product’s user interface—and how you can improve it to better meet customer needs. A research hypothesis in this instance might be:

  • Adding a settings tab to the navigation bar will improve usability

By writing out a research hypothesis in this way, you’re able to conduct relevant user research to prove or disprove your hypothesis. You can then use the results of your research—and the validation or rejection of your hypothesis—to decide whether or not you need to make changes to your product’s interface.

2. Identify variables and choose your research method

Once you’ve got your hypothesis, you need to map out how exactly you’ll test it. Consider what variables relate to your hypothesis. In our case, the main variable of our outcome is adding a settings tab to the navigation bar.

Once you’ve defined the relevant variables, you’re in a better position to decide on the best UX research method for the job. If you’re after metrics that signal improvement, you’ll want to select a method yielding quantifiable results—like usability testing . If your outcome is geared toward what users feel, then research methods for qualitative user insights, like user interviews , are the way to go.

3. Carry out your study

It’s go time. Now you’ve got your hypothesis, identified the relevant variables, and outlined your method for testing them, you’re ready to run your study. This step involves recruiting participants for your study and reaching out to them through relevant channels like email, live website testing , or social media.

Given our hypothesis, our best bet is to conduct A/B and usability tests with a prototype that includes the additional UI elements, then compare the usability metrics to see whether users find navigation easier with or without the settings button.

We can also follow up with UX surveys to get qualitative insights and ask users how they found the task, what they preferred about each design, and to see what additional customer insights we uncover.

💡 Want more insights from your usability tests? Maze Clips enables you to gather real-time recordings and reactions of users participating in usability tests .

4. Analyze your results and compare them to your hypothesis

By this point, you’ve neatly outlined a hypothesis, chosen a research method, and carried out your study. It’s now time to analyze your findings and evaluate whether they support or reject your hypothesis.

Look at the data you’ve collected and what it means. Given that we conducted usability testing, we’ll want to look to some key usability metrics for an indication of whether the additional settings button improves usability.

For example, with the usability task of ‘ In account settings, find your profile and change your username ’, we can conduct task analysis to compare the times spent on task and misclick rates of the new design, with those same metrics from the old design.

If you also conduct follow-up surveys or interviews, you can ask users directly about their experience and analyze their answers to gather additional qualitative data . Maze AI can handle the analysis automatically, but you can also manually read through responses to get an idea of what users think about the change.

By comparing the findings to your research hypothesis, you can identify whether your research accepts or rejects your hypothesis. If the majority of users struggle with finding the settings page within usability tests, but had a higher success rate with your new prototype, you’ve proved the hypothesis.

However, it's also crucial to acknowledge if the findings refute your hypothesis rather than prove it as true. Ruling something out is just as valuable as confirming a suspicion.

In either case, make sure to draw conclusions based on the relationship between the variables and store findings in your UX research repository . You can conduct deeper analysis with techniques like thematic analysis or affinity mapping .

UX research hypotheses: four best practices to guide your research

Knowing the big steps for formulating and testing a research hypothesis ensures that your next UX research project gives you focused, impactful results and insights. But, that’s only the tip of the research hypothesis iceberg. There are some best practices you’ll want to consider when using a hypothesis to test your UX design ideas.

Here are four research hypothesis best practices to help guide testing and make your UX research systematic and actionable.

Align your hypothesis to broader business and UX goals

Before you begin to formulate your hypothesis, be sure to pause and think about how it connects to broader goals in your UX strategy . This ensures that your efforts and predictions align with your overarching design and development goals.

For example, implementing a brand new navigation menu for current account holders might work for usability, but if the wider team is focused on boosting conversion rates for first-time site viewers, there might be a different research project to prioritize.

Create clear and actionable reports for stakeholders

Once you’ve conducted your testing and proved or disproved your hypothesis, UX reporting and analysis is the next step. You’ll need to present your findings to stakeholders in a way that's clear, concise, and actionable. If your hypothesis insights come in the form of metrics and statistics, then quantitative data visualization tools and reports will help stakeholders understand the significance of your study, while setting the stage for design changes and solutions.

If you went with a research method like user interviews, a narrative UX research report including key themes and findings, proposed solutions, and your original hypothesis will help inform your stakeholders on the best course of action.

Consider different user segments

While getting enough responses is crucial for proving or disproving your hypothesis, you’ll want to consider which users will give you the highest quality and most relevant responses. Remember to consider user personas —e.g. If you’re only introducing a change for premium users, exclude testing with users who are on a free trial of your product.

You can recruit and target specific user demographics with the Maze Panel —which enables you to search for and filter participants that meet your requirements. Doing so allows you to better understand how different users will respond to your hypothesis testing. It also helps you uncover specific needs or issues different users may have.

Involve stakeholders from the start

Before testing or even formulating a research hypothesis by yourself, ensure all your stakeholders are on board. Informing everyone of your plan to formulate and test your hypothesis does three things:

Firstly, it keeps your team in the loop . They’ll be able to inform you of any relevant insights, special considerations, or existing data they already have about your particular design change idea, or KPIs to consider that would benefit the wider team.

Secondly, informing stakeholders ensures seamless collaboration across multiple departments . Together, you’ll be able to fit your testing results into your overall CX strategy , ensuring alignment with business goals and broader objectives.

Finally, getting everyone involved enables them to contribute potential hypotheses to test . You’re not the only one with ideas about what changes could positively impact the user experience, and keeping everyone in the loop brings fresh ideas and perspectives to the table.

Test your UX research hypotheses with Maze

Formulating and testing out a research hypothesis is a great way to define the scope of your UX research project clearly. It helps keep research on track by providing a single statement to come back to and anchor your research in.

Whether you run usability tests or user interviews to assess your hypothesis—Maze's suite of advanced research methods enables you to get the in-depth user and customer insights you need.

Frequently asked questions about research hypothesis

What is the difference between a hypothesis and a problem statement in UX?

A research hypothesis describes the prediction or method of solving that problem. A problem statement, on the other hand, identifies a specific issue in your design that you intend to solve. A problem statement will typically include a user persona, an issue they have, and a desired outcome they need.

How many hypotheses should a UX research problem have?

Technically, there are no limits to the amount of hypotheses you can have for a certain problem or study. However, you should limit it to one hypothesis per specific issue in UX research. This ensures that you can conduct focused testing and reach clear, actionable results.

  • Share full article

Advertisement

Supported by

Open Letters: Our New Opinion-Writing Contest

We invite students to write public-facing letters to people or groups about issues that matter to them. Contest dates: March 13 to May 1.

By The Learning Network

What’s bothering you? Who could do something about it? What could you say to them that would persuade them to care, or to make change?

And … what if we all read your letter? How could you make us care too?

These are some of the questions we’re asking you to ponder for our new Open Letter Contest. An open letter is a published letter of protest or appeal usually addressed to an individual, group or institution but intended for the general public. Think of the many “Dear Taylor Swift” open letters you can find online and on social media: Sure, they’re addressed to Ms. Swift, but they’re really a way for the writer to share opinions and feelings on feminism, or ticket sales, or the music industry, or … the list goes on.

As you might already know if you’ve read Martin Luther King’s famous Letter From Birmingham Jail , an open letter is a literary device. Though it seems on the surface to be intended for just one individual or group, and therefore usually reads like a personal letter (and can make readers feel they are somehow “listening in” on private thoughts), it is really a persuasive essay addressed to the public. This recent letter signed by over 1,000 tech leaders about the dangers of A.I. , this funny 2020 letter addressed to Harry and Meghan , and this video letter from young Asian Americans to their families about Black Lives Matter are all examples of the tradition.

Now we’re inviting you to try it yourself. Write your own open letter, to anyone you like on any issue you care about, as long as it is also appropriate and meaningful for a general Times audience.

Whom should you write to? What should you say? How do open letters work?

The rules and FAQ below, along with our Student Opinion forum and related how-to guide , can walk you through ways to get started.

This is a new contest and we expect questions. Please ask any you have in the comments and we’ll answer you there, or write to us at [email protected]. And, consider hanging this PDF one-page announcement on your class bulletin board.

Here’s what you need to know:

The challenge, a few rules, resources for students and teachers, frequently asked questions, submission form.

Write an open letter to a specific audience that calls attention to an issue or problem and prompts reflection or action on it.

Whether you choose to write to your parents, teachers, school board members or mayor; a member of Congress; the head of a corporation; an artist or entertainer; or a metonym like “Silicon Valley” or “The Kremlin,” ask yourself, What do I care about? Who can make changes, big or small, local or global, to address my issue or problem? What specifically do I want my audience to understand or do? And how can I write this as an “open letter,” compelling not just to me and the recipient, but to the general audience who will be reading my words?

The Times has published numerous open letters over the years, to both famous and ordinary people. You can find a long list of free examples in our related guide .

This contest invites students to express themselves and imagine that their words can lead to real change.

Your open letter MUST:

Focus on an issue you care about and with which you have some experience. You can write about almost anything you like, whether it’s a serious issue like bullying , or something more lighthearted like why bugs deserve respect , but we have found over the years that the most interesting student writing grows out of personal experience. Our related Student Opinion forum and how-to guide can help you come up with ideas.

Address a specific audience relevant to the issue. Choose an individual, group, organization or institution who is in a position to make change or promote understanding about your topic.

Call for action, whether the change you seek is something tangible , like asking Congress to enact a law or demanding a company stop a harmful practice, or something more abstract, like inviting your audience to reflect on something they may have never considered.

Be suitable and compelling for a wide general audience . An open letter simultaneously addresses an explicit recipient — whether Joe Biden or your gym teacher — as well as us, the general public, your implicit audience. Though your letter might seem to be meant just for one person, it is really trying to persuade all readers. Make sure you write it in such a way that it is relevant, understandable, appropriate and meaningful for anyone who might come across it in The New York Times. (Again, our related guide can help.)

Be written as a letter, in a voice and tone that is appropriate for both your audience and purpose. Are you simply taking an argumentative essay you’ve written for school already and slapping a “Dear X” on top of it and a “Sincerely, Y” on the bottom? No. A letter — even an open letter — is different from a formal essay, and your writing should reflect that. Can you be informal? Funny? If that makes sense for your purpose and audience, then yes, please.

Our related guide, and the many examples we link to, can help you think about this, but we hope the format of a letter will let you loosen up a bit and express yourself in your natural voice. (For example, you’ll be writing as “I” or “we,” and addressing your letter’s recipient as “you.”)

Also attempt to persuade a general audience. Though it is written in the form of a letter, it is an opinion piece, and you are trying to make a case and support it with evidence, as you would any argument. Remember that you are trying to change hearts and minds, so you’ll be drawing on the same rhetorical strategies as you might have for our long-running editorial contest . (Again, more on this in the related guide .)

Make your case in 460 words or fewer. Your title and sources are not part of the word count.

Inform with evidence from at least two sources, including one from The Times and one from outside The Times. We hope this contest encourages you to deepen your understanding of your topic by using multiple sources, ideally ones that offer a range of perspectives. Just make sure those sources are trustworthy .

Because this is a letter, not a formal essay, we are not asking you to provide in-text citations, but we will be asking you to list the sources you used — as many as you like — in a separate field that does not contribute to your word count. Keep in mind, however, that if you include evidence from those sources, our readers (and judges) should always be able to tell where it came from. Be careful to put quotations around any direct quotes you use, and cite the source of anything you paraphrase.

In addition to the guidelines above, here are a few more details:

You must be a student ages 13 to 19 in middle school or high school to participate , and all students must have parent or guardian permission to enter. Please see the F.A.Q. section for additional eligibility details.

The writing you submit should be fundamentally your own — it should not be plagiarized, created by someone else or generated by artificial intelligence.

Your open letter should be original for this contest. That means it should not already have been published at the time of submission, whether in a school newspaper, for another contest or anywhere else.

Keep in mind that the work you send in should be appropriate for a Times audience — that is, something that could be published in a family newspaper (so, please, no curse words).

You may work alone or in groups , but students should submit only one entry each.

You must also submit a short, informal “artist’s statement” as part of your submission, that describes your writing and research process. These statements, which will not be used to choose finalists, help us to design and refine our contests. See the F.A.Q. to learn more.

All entries must be submitted by May 1, at 11:59 p.m. Pacific time using the electronic form at the bottom of this page.

Use these resources to help you write your open letter:

Our step-by-step guide : To be used by students or teachers, this guide walks you through the process of writing an open letter.

A list of free examples of open letters published both in and outside The New York Times, which you can find in our step-by-step guide .

A writing prompt: To Whom Would You Write an Open Letter? This prompt offers students a “rehearsal space” for thinking about to whom they’d like to write, the reason they’re writing and why they think that issue is important — not only for the recipient but also for a wider audience.

Argumentative writing prompts: We publish new argumentative writing prompts for students each week in our Student Opinion and Picture Prompt columns. You can find them all, as they publish, here , or many of them, organized by topic, in our new collection of over 300 prompts .

Argumentative writing unit: This unit includes writing prompts, lesson plans, webinars and mentor texts. While it was originally written to support our Student Editorial Contest , the resources can help students make compelling arguments, cite reliable evidence and use rhetorical strategies for their open letters as well.

Our contest rubric : This is the rubric judges will use as they read submissions to this contest.

Below are answers to your questions about writing, judging, the rules and teaching with this contest. Please read these thoroughly and, if you still can’t find what you’re looking for, post your query in the comments or write to us at [email protected].

Questions About Writing

How is this contest different from your long-running Editorial Contest? Can we still use those materials?

For a decade we ran an editorial contest , and the students who participated wrote passionately about all kinds of things — A.I. , fast fashion , race , trans rights , college admissions , parental incarceration , fan fiction , snow days , memes , being messy and so much more . You can still write about the issues and ideas that fire you up — it’s just that this time around you’ll be framing your work as a letter to a person who has the power to make change on or bring understanding to that issue.

Our related guide has more about the differences between a traditional opinion essay and an open letter, but the many materials we developed for that earlier contest are also woven into the guide, as concepts like ethos, logos and pathos are still very much relevant to this challenge.

I have no idea what to write about. Where should I start?

Our Student Opinion forum can help via its many questions that encourage you to brainstorm both the audience you might write to and the topics you’d like to address.

Can I actually send my open letter?

You can! Just wait until after you have submitted your work to us to do so. (As always for our contests, you retain the copyright to the piece you submit, and can do whatever you like with it.)

Questions About Judging

How will my open letter be judged?

Your work will be read by New York Times journalists, as well as by Learning Network staff members and educators from around the United States. We will use this rubric to judge entries.

What’s the “prize”?

Having your work published on The Learning Network and being eligible to have your work published in the print New York Times.

When will the winners be announced?

About 8-10 weeks after the contest has closed.

My piece wasn’t selected as a winner. Can you tell me why?

We typically receive thousands of entries for our contests, so unfortunately, our team does not have the capacity to provide individual feedback on each student’s work.

QUESTIONS ABOUT THE RULES

Who is eligible to participate in this contest?

This contest is open to students ages 13 to 19 who are in middle school or high school around the world. College students cannot submit an entry. However, high school students (including high school postgraduate students) who are taking one or more college classes can participate. Students attending their first year of a two-year CEGEP in Quebec Province can also participate. In addition, students age 19 or under who have completed high school but are taking a gap year or are otherwise not enrolled in college can participate.

The children and stepchildren of New York Times employees are not eligible to enter this contest. Nor are students who live in the same household as those employees.

Can I have someone else check my work?

We understand that students will often revise their work based on feedback from teachers and peers. That is allowed for this contest. However, be sure that the final submission reflects the ideas, voice and writing ability of the student, not someone else.

Do I need a Works Cited page?

Yes. We provide you with a separate field to list the sources you used to inform or write your open letter. You’re allowed to format your list however you want; we will not judge your entry based on formatting in this section. Internal citations in your letter are not necessary.

Why are you asking for an Artist’s Statement about our process? What will you do with it?

All of us who work on The Learning Network are former teachers. One of the many things we miss, now that we work in a newsroom rather than a classroom, is being able to see how students are reacting to our “assignments” in real time — and to offer help, or tweaks, to make those assignments better. We’re asking you to reflect on what you did and why, and what was hard or easy about it, in large part so that we can improve our contests and the curriculum we create to support them. This is especially important for new contests, like this one.

Another reason? We have heard from many teachers that writing these statements is immensely helpful to students. Stepping back from a piece and trying to put into words what you wanted to express, and why and how you made artistic choices to do that, can help you see your piece anew and figure out how to make it stronger. For our staff, they offer important context that help us understand individual students and submissions, and learn more about the conditions under which students around the world create.

Whom can I contact if I have questions about this contest or am having issues submitting my entry?

Leave a comment on this post or write to us at [email protected].

QUESTIONS ABOUT TEACHING WITH THIS CONTEST

Do my students need a New York Times subscription to access these resources?

No. All of the resources on The Learning Network are free.

If your students don’t have a subscription to The New York Times, they can also get access to Times pieces through The Learning Network . All the activities for students on our site, including mentor texts and writing prompts, plus the Times articles they link to, are free. Students can search for articles using the search tool on our home page.

How do my students prove to me that they entered this contest?

After they press “Submit” on the form below, they will see a “Thank you for your submission.” line appear. They can take a screenshot of this message. Please note: Our system does not currently send confirmation emails.

Please read the following carefully before you submit:

Students who are 13 and older in the United States or the United Kingdom, or 16 and older elsewhere in the world, can submit their own entries. Those who are 13 to 15 and live outside the United States or the United Kingdom must have an adult submit on their behalf.

All students who are under 18 must provide a parent or guardian’s permission to enter.

You will not receive email confirmation of your submission. After you submit, you will see the message “Thank you for your submission.” That means we received your entry. If you need proof of entry for your teacher, please screenshot that message.

If you have questions about your submission, please write to us at [email protected] and provide the email address you used for submission.

Tips for Writing an Effective Application Essay

student in library on laptop

How to Write an Effective Essay

Writing an essay for college admission gives you a chance to use your authentic voice and show your personality. It's an excellent opportunity to personalize your application beyond your academic credentials, and a well-written essay can have a positive influence come decision time.

Want to know how to draft an essay for your college application ? Here are some tips to keep in mind when writing.

Tips for Essay Writing

A typical college application essay, also known as a personal statement, is 400-600 words. Although that may seem short, writing about yourself can be challenging. It's not something you want to rush or put off at the last moment. Think of it as a critical piece of the application process. Follow these tips to write an impactful essay that can work in your favor.

1. Start Early.

Few people write well under pressure. Try to complete your first draft a few weeks before you have to turn it in. Many advisers recommend starting as early as the summer before your senior year in high school. That way, you have ample time to think about the prompt and craft the best personal statement possible.

You don't have to work on your essay every day, but you'll want to give yourself time to revise and edit. You may discover that you want to change your topic or think of a better way to frame it. Either way, the sooner you start, the better.

2. Understand the Prompt and Instructions.

Before you begin the writing process, take time to understand what the college wants from you. The worst thing you can do is skim through the instructions and submit a piece that doesn't even fit the bare minimum requirements or address the essay topic. Look at the prompt, consider the required word count, and note any unique details each school wants.

3. Create a Strong Opener.

Students seeking help for their application essays often have trouble getting things started. It's a challenging writing process. Finding the right words to start can be the hardest part.

Spending more time working on your opener is always a good idea. The opening sentence sets the stage for the rest of your piece. The introductory paragraph is what piques the interest of the reader, and it can immediately set your essay apart from the others.

4. Stay on Topic.

One of the most important things to remember is to keep to the essay topic. If you're applying to 10 or more colleges, it's easy to veer off course with so many application essays.

A common mistake many students make is trying to fit previously written essays into the mold of another college's requirements. This seems like a time-saving way to avoid writing new pieces entirely, but it often backfires. The result is usually a final piece that's generic, unfocused, or confusing. Always write a new essay for every application, no matter how long it takes.

5. Think About Your Response.

Don't try to guess what the admissions officials want to read. Your essay will be easier to write─and more exciting to read─if you’re genuinely enthusiastic about your subject. Here’s an example: If all your friends are writing application essays about covid-19, it may be a good idea to avoid that topic, unless during the pandemic you had a vivid, life-changing experience you're burning to share. Whatever topic you choose, avoid canned responses. Be creative.

6. Focus on You.

Essay prompts typically give you plenty of latitude, but panel members expect you to focus on a subject that is personal (although not overly intimate) and particular to you. Admissions counselors say the best essays help them learn something about the candidate that they would never know from reading the rest of the application.

7. Stay True to Your Voice.

Use your usual vocabulary. Avoid fancy language you wouldn't use in real life. Imagine yourself reading this essay aloud to a classroom full of people who have never met you. Keep a confident tone. Be wary of words and phrases that undercut that tone.

8. Be Specific and Factual.

Capitalize on real-life experiences. Your essay may give you the time and space to explain why a particular achievement meant so much to you. But resist the urge to exaggerate and embellish. Admissions counselors read thousands of essays each year. They can easily spot a fake.

9. Edit and Proofread.

When you finish the final draft, run it through the spell checker on your computer. Then don’t read your essay for a few days. You'll be more apt to spot typos and awkward grammar when you reread it. After that, ask a teacher, parent, or college student (preferably an English or communications major) to give it a quick read. While you're at it, double-check your word count.

Writing essays for college admission can be daunting, but it doesn't have to be. A well-crafted essay could be the deciding factor─in your favor. Keep these tips in mind, and you'll have no problem creating memorable pieces for every application.

What is the format of a college application essay?

Generally, essays for college admission follow a simple format that includes an opening paragraph, a lengthier body section, and a closing paragraph. You don't need to include a title, which will only take up extra space. Keep in mind that the exact format can vary from one college application to the next. Read the instructions and prompt for more guidance.

Most online applications will include a text box for your essay. If you're attaching it as a document, however, be sure to use a standard, 12-point font and use 1.5-spaced or double-spaced lines, unless the application specifies different font and spacing.

How do you start an essay?

The goal here is to use an attention grabber. Think of it as a way to reel the reader in and interest an admissions officer in what you have to say. There's no trick on how to start a college application essay. The best way you can approach this task is to flex your creative muscles and think outside the box.

You can start with openers such as relevant quotes, exciting anecdotes, or questions. Either way, the first sentence should be unique and intrigue the reader.

What should an essay include?

Every application essay you write should include details about yourself and past experiences. It's another opportunity to make yourself look like a fantastic applicant. Leverage your experiences. Tell a riveting story that fulfills the prompt.

What shouldn’t be included in an essay?

When writing a college application essay, it's usually best to avoid overly personal details and controversial topics. Although these topics might make for an intriguing essay, they can be tricky to express well. If you’re unsure if a topic is appropriate for your essay, check with your school counselor. An essay for college admission shouldn't include a list of achievements or academic accolades either. Your essay isn’t meant to be a rehashing of information the admissions panel can find elsewhere in your application.

How can you make your essay personal and interesting?

The best way to make your essay interesting is to write about something genuinely important to you. That could be an experience that changed your life or a valuable lesson that had an enormous impact on you. Whatever the case, speak from the heart, and be honest.

Is it OK to discuss mental health in an essay?

Mental health struggles can create challenges you must overcome during your education and could be an opportunity for you to show how you’ve handled challenges and overcome obstacles. If you’re considering writing your essay for college admission on this topic, consider talking to your school counselor or with an English teacher on how to frame the essay.

Related Articles

As literacy lags nationwide, Purdue researcher highlights ways to enhance reading and writing in young children

Written By: Rebecca Hoffa, [email protected]

A mother holds a book in front of her baby, who looks at it intently.

A text message from a friend. A product label at the grocery store. A street sign. Even in the most basic elements of day-to-day life, reading is everywhere.

Cammie McBride , professor in the Purdue University Department of Human Development and Family Science and associate dean for research in the College of Health and Human Sciences , has dedicated her career to taking a global approach toward understanding how children learn to read, exploring literacy across English and Chinese languages, among others.

“Children need to learn to read and write because it helps us navigate our environments,” McBride said. “If we can’t read, that’s more difficult. If you look worldwide, illiteracy is correlated with gross domestic product and the learning of a country’s people.”

Cammie McBride headshot

Cammie McBride

From contributing to a massive open online course (MOOC) titled “Teaching Struggling Readers Around the World” to developing new resources and screening capabilities, McBride’s developmental psychology approach toward literacy ranges from cognitive linguistics, or how the brain processes language, to the relationships among parents, children and teachers and how those influence reading and writing.

McBride also serves as a co-lead on a $1.5 million grant to strengthen literacy preparation for Indiana teachers using science-based methods.

“My whole career, I’ve tried to look at how children read in different aspects,” McBride said. “I’m really interested in: Does reading develop from birth or before birth even? There are lots of aspects that go into reading that start at the very beginning. I’ve always been interested in those developmental models.”

McBride noted that one of her most interesting research findings has been enhancing understanding of a new cognitive-linguistic skill that has a direct impact for reading in Chinese as well as vocabulary in English, Dutch and other languages. The task requires children to put together morphemes, or the smallest unit of meaning in language, in ways that make sense. For example, if a teacher or parent gave the example that the sun going down in the sky is called a sunset and then asked the child what the moon going down in the sky would be called, the expectation would be the child would answer “moonset.” They’re putting together smaller units in ways that make sense.

“I think this task is really useful because we can test vocabulary to improve vocabulary, but this is another way, which is a focus on morphemes and how they come together,” McBride said. “If you understand how to put these together to make new aspects of meaning, you tend to be a better reader in Chinese, but also, this is a really good way to test for kids’ vocabulary development over time in every language. It’s a fun task — kids love to do that.”

McBride uses cognitive-linguistic skills like the example above in her research to understand methods for assessing children’s literacy and training teachers and families in what children need to learn to read. In order to read, McBride explained children must develop both oral language, such as vocabulary and forming sentences, as well as an understanding of print, such as understanding letters and their sounds. She explained that assessing children’s literacy skills early is important to keep them on track in their reading and writing development.

“These cognitive-linguistic skills are things we use in assessment and training,” McBride said. “Most 3- and 4-year-olds cannot read, and it would be weird to try to test them with reading materials before they can read, but you need to catch them quickly so that they don’t have a sense of failure and are always trying to catch up. If you test them at 3, 4 or 5 on cognitive-linguistic skills, this often can be a good way to determine if they’re at risk for reading difficulties and then give them some tools to help them improve.”

McBride mentioned dialogic reading is an effective tool parents can use to build up their child’s language skills. Rather than simply reading a book and looking at the pictures or testing the child on knowledge presented in the book, dialogic reading turns the process of reading into a conversation. Parents can ask open-ended questions, such as what the child thinks will happen next or if they’ve ever had a similar situation happen to them. The goal is to encourage two-sided communication.

If the child is struggling with reading, McBride’s go-to piece of advice is giving them more practice. While the same learning methods still can be effective with students who have a learning disorder, such as dyslexia, they may need to put more time and energy into practicing the reading process. McBride suggested literacy-based video games as a great tool to help children master literacy skills they may be struggling with. The important thing to keep in mind is to avoid burning the child out on reading.

“Keep it light because the other part of reading besides oral language and print is motivation,” McBride said. “You don’t want to get kids to feel like they’re being tested early; you want them to get interested themselves.”

After various nationwide setbacks toward literacy resulting from the COVID-19 pandemic, McBride is currently looking to take her research one step further by making literacy tests, which screen for children’s risks for reading problems and often are expensive and require a licensed educational psychologist to administer, more accessible. Her most recent work is focusing on the development of affordable online tests for children and families — a significant step in continuing to improve children’s reading preparation.

“If we want to understand if children are maybe at risk for reading and writing problems early, it’s good to have tests that can help us to determine that,” McBride said.

NEWS ALERT: MLB owners OK sale of Baltimore Orioles to group headed by billionaire David Rubenstein

WTOP News

Should college essays touch on race? Some feel the affirmative action ruling leaves them no choice

The Associated Press

March 27, 2024, 12:20 AM

  • Share This:
  • share on facebook
  • share on threads
  • share on linkedin
  • share on email

how to write a hypothesis in college

CHICAGO (AP) — When she started writing her college essay, Hillary Amofa told the story she thought admissions offices wanted to hear. About being the daughter of immigrants from Ghana and growing up in a small apartment in Chicago. About hardship and struggle.

Then she deleted it all.

“I would just find myself kind of trauma-dumping,” said the 18-year-old senior at Lincoln Park High School in Chicago. “And I’m just like, this doesn’t really say anything about me as a person.”

When the Supreme Court ended affirmative action in higher education, it left the college essay as one of few places where race can play a role in admissions decisions. For many students of color, instantly more was riding on the already high-stakes writing assignment. Some say they felt pressure to exploit their hardships as they competed for a spot on campus.

Amofa was just starting to think about her essay when the court issued its decision, and it left her with a wave of questions. Could she still write about her race? Could she be penalized for it? She wanted to tell colleges about her heritage but she didn’t want to be defined by it.

In English class, Amofa and her classmates read sample essays that all seemed to focus on some trauma or hardship. It left her with the impression she had to write about her life’s hardest moments to show how far she’d come. But she and some of her classmates wondered if their lives had been hard enough to catch the attention of admissions offices.

“For a lot of students, there’s a feeling of, like, having to go through something so horrible to feel worthy of going to school, which is kind of sad,” said Amofa, the daughter of a hospital technician and an Uber driver.

This year’s senior class is the first in decades to navigate college admissions without affirmative action . The Supreme Court upheld the practice in decisions going back to the 1970s, but this court’s conservative supermajority found it is unconstitutional for colleges to give students extra weight because of their race alone.

Still, the decision left room for race to play an indirect role: Chief Justice John Roberts wrote universities can still consider how an applicant’s life was shaped by their race, “so long as that discussion is concretely tied to a quality of character or unique ability.”

“A benefit to a student who overcame racial discrimination, for example, must be tied to that student’s courage and determination,” he wrote.

Scores of colleges responded with new essay prompts asking about students’ backgrounds. Brown University asked applicants how “an aspect of your growing up has inspired or challenged you.” Rice University asked students how their perspectives were shaped by their “background, experiences, upbringing, and/or racial identity.”

WONDERING IF SCHOOLS ‘EXPECT A SOB STORY’

When Darrian Merritt started writing his essay, he knew the stakes were higher than ever because of the court’s decision. His first instinct was to write about events that led to him going to live with his grandmother as a child.

Those were painful memories, but he thought they might play well at schools like Yale, Stanford and Vanderbilt.

“I feel like the admissions committee might expect a sob story or a tragic story,” said Merritt, a senior in Cleveland. “And if you don’t provide that, then maybe they’re not going to feel like you went through enough to deserve having a spot at the university. I wrestled with that a lot.”

He wrote drafts focusing on his childhood, but it never amounted to more than a collection of memories. Eventually he abandoned the idea and aimed for an essay that would stand out for its positivity.

Merritt wrote about a summer camp where he started to feel more comfortable in his own skin. He described embracing his personality and defying his tendency to please others. The essay had humor — it centered on a water gun fight where he had victory in sight but, in a comedic twist, slipped and fell. But the essay also reflects on his feelings of not being “Black enough” and getting made fun of for listening to “white people music.”

“I was like, ‘OK, I’m going to write this for me, and we’re just going to see how it goes,’” he said. “It just felt real, and it felt like an honest story.”

The essay describes a breakthrough as he learned “to take ownership of myself and my future by sharing my true personality with the people I encounter. … I realized that the first chapter of my own story had just been written.”

A RULING PROMPTS PIVOTS ON ESSAY TOPICS

Like many students, Max Decker of Portland, Oregon, had drafted a college essay on one topic, only to change direction after the Supreme Court ruling in June.

Decker initially wrote about his love for video games. In a childhood surrounded by constant change, navigating his parents’ divorce, the games he took from place to place on his Nintendo DS were a source of comfort.

But the essay he submitted to colleges focused on the community he found through Word is Bond, a leadership group for young Black men in Portland.

As the only biracial, Jewish kid with divorced parents in a predominantly white, Christian community, Decker wrote he constantly felt like the odd one out. On a trip with Word is Bond to Capitol Hill, he and friends who looked just like him shook hands with lawmakers. The experience, he wrote, changed how he saw himself.

“It’s because I’m different that I provide something precious to the world, not the other way around,” he wrote.

As a first-generation college student, Decker thought about the subtle ways his peers seemed to know more about navigating the admissions process . They made sure to get into advanced classes at the start of high school, and they knew how to secure glowing letters of recommendation.

If writing about race would give him a slight edge and show admissions officers a fuller picture of his achievements, he wanted to take that small advantage.

His first memory about race, Decker said, was when he went to get a haircut in elementary school and the barber made rude comments about his curly hair. Until recently, the insecurity that moment created led him to keep his hair buzzed short.

Through Word is Bond, Decker said he found a space to explore his identity as a Black man. It was one of the first times he was surrounded by Black peers and saw Black role models. It filled him with a sense of pride in his identity. No more buzzcut.

The pressure to write about race involved a tradeoff with other important things in his life, Decker said. That included his passion for journalism, like the piece he wrote on efforts to revive a once-thriving Black neighborhood in Portland. In the end, he squeezed in 100 characters about his journalism under the application’s activities section.

“My final essay, it felt true to myself. But the difference between that and my other essay was the fact that it wasn’t the truth that I necessarily wanted to share,” said Decker, whose top college choice is Tulane, in New Orleans, because of the region’s diversity. “It felt like I just had to limit the truth I was sharing to what I feel like the world is expecting of me.”

SPELLING OUT THE IMPACT OF RACE

Before the Supreme Court ruling, it seemed a given to Imani Laird that colleges would consider the ways that race had touched her life. But now, she felt like she had to spell it out.

As she started her essay, she reflected on how she had faced bias or felt overlooked as a Black student in predominantly white spaces.

There was the year in math class when the teacher kept calling her by the name of another Black student. There were the comments that she’d have an easier time getting into college because she was Black .

“I didn’t have it easier because of my race,” said Laird, a senior at Newton South High School in the Boston suburbs who was accepted at Wellesley and Howard University, and is waiting to hear from several Ivy League colleges. “I had stuff I had to overcome.”

In her final essays, she wrote about her grandfather, who served in the military but was denied access to GI Bill benefits because of his race.

She described how discrimination fueled her ambition to excel and pursue a career in public policy.

“So, I never settled for mediocrity,” she wrote. “Regardless of the subject, my goal in class was not just to participate but to excel. Beyond academics, I wanted to excel while remembering what started this motivation in the first place.”

WILL SCHOOLS LOSE RACIAL DIVERSITY?

Amofa used to think affirmative action was only a factor at schools like Harvard and Yale. After the court’s ruling, she was surprised to find that race was taken into account even at some public universities she was applying to.

Now, without affirmative action, she wondered if mostly white schools will become even whiter.

It’s been on her mind as she chooses between Indiana University and the University of Dayton, both of which have relatively few Black students. When she was one of the only Black students in her grade school, she could fall back on her family and Ghanaian friends at church. At college, she worries about loneliness.

“That’s what I’m nervous about,” she said. “Going and just feeling so isolated, even though I’m constantly around people.”

The first drafts of her essay focused on growing up in a low-income family, sharing a bedroom with her brother and grandmother. But it didn’t tell colleges about who she is now, she said.

Her final essay tells how she came to embrace her natural hair . She wrote about going to a mostly white grade school where classmates made jokes about her afro. When her grandmother sent her back with braids or cornrows, they made fun of those too.

Over time, she ignored their insults and found beauty in the styles worn by women in her life. She now runs a business doing braids and other hairstyles in her neighborhood.

“I stopped seeing myself through the lens of the European traditional beauty standards and started seeing myself through the lens that I created,” Amofa wrote.

“Criticism will persist, but it loses its power when you know there’s a crown on your head!”

Ma reported from Portland, Oregon.

The Associated Press’ education coverage receives financial support from multiple private foundations. AP is solely responsible for all content. Find AP’s standards for working with philanthropies, a list of supporters and funded coverage areas at AP.org .

Copyright © 2024 The Associated Press. All rights reserved. This material may not be published, broadcast, written or redistributed.

Related News

Looking at a solar eclipse can be dangerous without eclipse glasses. Here’s what to know

Looking at a solar eclipse can be dangerous without eclipse glasses. Here’s what to know

Should college essays touch on race? Some feel the affirmative action ruling leaves them no choice

The British royal family learns that if you don’t fill an information vacuum, someone else will

Recommended.

'All hands on deck': Divers plunge in search of 6 workers feared dead after Baltimore bridge collapse

'All hands on deck': Divers plunge in search of 6 workers feared dead after Baltimore bridge collapse

Previous accident, propulsion and mechanical issues reported in ship that hit Key Bridge

Previous accident, propulsion and mechanical issues reported in ship that hit Key Bridge

Skill game backers ask Youngkin to deliver on vow to support their industry

Skill game backers ask Youngkin to deliver on vow to support their industry

Related categories:.

how to write a hypothesis in college

IMAGES

  1. How to write a hypothesis in 3 steps!

    how to write a hypothesis in college

  2. How to Write a Hypothesis in 12 Steps 2023

    how to write a hypothesis in college

  3. 10 Steps: How to Write a Hypothesis Statement in 2024

    how to write a hypothesis in college

  4. How to Write a Hypothesis: The Ultimate Guide with Examples

    how to write a hypothesis in college

  5. How to Write a Hypothesis

    how to write a hypothesis in college

  6. How To Write A Hypothesis For A Research Proposal: Ultimate Guide

    how to write a hypothesis in college

VIDEO

  1. Bivariate Analysis: Hypothesis tests (Parametric Non-parametric tests)

  2. Calculating Independent Hypothesis Test Values in Excel

  3. MATH 1342

  4. HOW TO WRITE HYPOTHESIS IN SYNOPSIS

  5. Writing a Hypothesis

  6. MATH 1342

COMMENTS

  1. How to Write a Strong Hypothesis

    Developing a hypothesis (with example) Step 1. Ask a question. Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question.

  2. 5.2

    Alternative Hypothesis. The statement that there is some difference in the population (s), denoted as H a or H 1. When writing hypotheses there are three things that we need to know: (1) the parameter that we are testing (2) the direction of the test (non-directional, right-tailed or left-tailed), and (3) the value of the hypothesized parameter.

  3. How to Write a Strong Hypothesis

    Step 5: Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  4. Formulating Strong Hypotheses

    There are some important things to consider when building a compelling, testable hypothesis. Clearly state the prediction you are proposing. Make sure that the hypothesis clearly defines the topic and the focus of the study. Mask wearing and its effect on virus case load. Aim to write the hypothesis as an if-then statement.

  5. What Is a Hypothesis and How Do I Write One?

    Merriam Webster defines a hypothesis as "an assumption or concession made for the sake of argument.". In other words, a hypothesis is an educated guess. Scientists make a reasonable assumption--or a hypothesis--then design an experiment to test whether it's true or not.

  6. How to Write a Great Hypothesis

    Some examples of how to write a hypothesis include: "Staying up late will lead to worse test performance the next day." "People who consume one apple each day will visit the doctor fewer times each year." "Breaking study sessions up into three 20-minute sessions will lead to better test results than a single 60-minute study session."

  7. How to Write a Hypothesis 101: A Step-by-Step Guide

    Step 3: Build the Hypothetical Relationship. In understanding how to compose a hypothesis, constructing the relationship between the variables is key. Based on your research question and variables, predict the expected outcome or connection.

  8. How to Write a Strong Hypothesis in 6 Simple Steps

    Learning how to write a hypothesis comes down to knowledge and strategy. So where do you start? Learn how to make your hypothesis strong step-by-step here.

  9. How To Write A Hypotheses

    How To Write A Good Research Hypothesis. Writing a hypothesis involves a systematic process that guides your research and provides a clear and testable statement about the expected relationship between variables. Go through the MLA vs. APA guidelines before writing. Here are the steps to help you how to write a hypothesis:

  10. How to Write a Research Hypothesis: Good & Bad Examples

    Another example for a directional one-tailed alternative hypothesis would be that. H1: Attending private classes before important exams has a positive effect on performance. Your null hypothesis would then be that. H0: Attending private classes before important exams has no/a negative effect on performance.

  11. How to Write a Hypothesis: Types, Steps and Examples

    Search for facts, past studies, theories, etc. Based on the collected information, you should be able to make a logical and intelligent guess. 3. Formulate a Hypothesis. Based on the initial research, you should have a certain idea of what you may find throughout the course of your research.

  12. How to Write a Hypothesis

    Define a research question. The first step in formulating a hypothesis is to brainstorm a research question. Use your writing skills to write a research question that's specific, clear, focused, and manageable. Make sure you have the resources to conduct whatever experiment you'll need to answer the question.

  13. Hypothesis ~ Definition, Development & Examples

    Definition: Hypothesis. A hypothesis, plural hypotheses, is a tentative explanation or prediction about a phenomenon or the relationship between variables that can be tested through observation and experimentation.According to Oxford Languages, the term hypothesis is "a supposition or proposed explanation made based on limited evidence as a starting point for further investigation" or "a ...

  14. How To Write a Hypothesis in a Research Paper with Examples

    Developing a hypothesis is an important step in scientific research, as it sets the foundation for designing experiments and testing theories. Let's explore the step-by-step process of developing a hypothesis, using the example of studying the effects of exercise on sleep quality. Step 1. Ask a Question.

  15. Hypothesis Examples

    Here are some research hypothesis examples: If you leave the lights on, then it takes longer for people to fall asleep. If you refrigerate apples, they last longer before going bad. If you keep the curtains closed, then you need less electricity to heat or cool the house (the electric bill is lower). If you leave a bucket of water uncovered ...

  16. What is a Research Hypothesis and How to Write a Hypothesis

    The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem. 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a 'if-then' structure. 3.

  17. Step 5C: Draft your hypothesis :: Science Fair Wizard

    A hypothesis is a statement that predicts the outcome of your experiment, and is informed by the research you have done on your topic.. A testable question is one that allows you to make a comparison. In scientific inquiry, this is done by setting up a test in which you will change one factor of your experiment and observe its effect on the rest of your experiment.

  18. How to Write a Hypothesis for a Research Paper + Examples

    Ensure that your hypothesis is realistic and can be tested within the constraints of your available resources, time, and ethical considerations. Avoid value judgments: Be neutral and objective. Avoid including personal beliefs, value judgments, or subjective opinions. Stick to empirical statements based on evidence.

  19. How to Write a Hypothesis: 13 Steps (with Pictures)

    1. Select a topic. Pick a topic that interests you, and that you think it would be good to know more about. [2] If you are writing a hypothesis for a school assignment, this step may be taken care of for you. 2. Read existing research. Gather all the information you can about the topic you've selected.

  20. Hypothesis Testing

    Table of contents. Step 1: State your null and alternate hypothesis. Step 2: Collect data. Step 3: Perform a statistical test. Step 4: Decide whether to reject or fail to reject your null hypothesis. Step 5: Present your findings. Other interesting articles. Frequently asked questions about hypothesis testing.

  21. How to Write a Hypothesis

    Step 1: Begin your hypothesis section by asking a question and introducing the importance of your subject. Step 2: Collect all the related information that will help you provide your thesis. Step 3: Formulate your methodology and continue with the answers that you may provide in future research.

  22. How to Write a Hypothesis

    The entire experiment revolves around the research hypothesis (H 1) and the null hypothesis (H 0), so making a mistake here could ruin the whole design.. Needless to say, it can all be a little intimidating, and many students find this to be the most difficult stage of the scientific method.. In fact, it is not as difficult as it looks, and if you have followed the steps of the scientific ...

  23. Research Hypotheses

    What is a Research Hypothesis? Many times in your research courses, you will be asked to write a hypothesis statement. These are different from standard thesis statements in that they introduce a specific prediction to be supported by the research you will conduct, and they propose an expected or predicted relationship between two or more variables.

  24. How to Create a Research Hypothesis for UX: Step-by-Step

    Here are the four steps for writing and testing a UX research hypothesis to help you make informed, data-backed decisions for product design and development. 1. Formulate your hypothesis. Start by writing out your hypothesis in a way that's specific and relevant to a distinct aspect of your user or product experience.

  25. Open Letters: Our New Opinion-Writing Contest

    If you have questions about your submission, please write to us at [email protected] and provide the email address you used for submission. We invite students to write public-facing letters ...

  26. Tips for Writing an Effective Application Essay

    Follow these tips to write an impactful essay that can work in your favor. 1. Start Early. Few people write well under pressure. Try to complete your first draft a few weeks before you have to turn it in. Many advisers recommend starting as early as the summer before your senior year in high school.

  27. As literacy lags nationwide, Purdue researcher highlights ways to

    Cammie McBride, professor in the Purdue University Department of Human Development and Family Science and associate dean for research in the College of Health and Human Sciences, has dedicated her career to taking a global approach toward understanding how children learn to read, exploring literacy across English and Chinese languages, among others.

  28. Should college essays touch on race? Some feel the affirmative ...

    The pressure to write about race involved a tradeoff with other important things in his life, Decker said. That included his passion for journalism, like the piece he wrote on efforts to revive a ...