• Privacy Policy

Research Method

Home » Data Interpretation – Process, Methods and Questions

Data Interpretation – Process, Methods and Questions

Table of Contents

Data Interpretation

Data Interpretation

Definition :

Data interpretation refers to the process of making sense of data by analyzing and drawing conclusions from it. It involves examining data in order to identify patterns, relationships, and trends that can help explain the underlying phenomena being studied. Data interpretation can be used to make informed decisions and solve problems across a wide range of fields, including business, science, and social sciences.

Data Interpretation Process

Here are the steps involved in the data interpretation process:

  • Define the research question : The first step in data interpretation is to clearly define the research question. This will help you to focus your analysis and ensure that you are interpreting the data in a way that is relevant to your research objectives.
  • Collect the data: The next step is to collect the data. This can be done through a variety of methods such as surveys, interviews, observation, or secondary data sources.
  • Clean and organize the data : Once the data has been collected, it is important to clean and organize it. This involves checking for errors, inconsistencies, and missing data. Data cleaning can be a time-consuming process, but it is essential to ensure that the data is accurate and reliable.
  • Analyze the data: The next step is to analyze the data. This can involve using statistical software or other tools to calculate summary statistics, create graphs and charts, and identify patterns in the data.
  • Interpret the results: Once the data has been analyzed, it is important to interpret the results. This involves looking for patterns, trends, and relationships in the data. It also involves drawing conclusions based on the results of the analysis.
  • Communicate the findings : The final step is to communicate the findings. This can involve creating reports, presentations, or visualizations that summarize the key findings of the analysis. It is important to communicate the findings in a way that is clear and concise, and that is tailored to the audience’s needs.

Types of Data Interpretation

There are various types of data interpretation techniques used for analyzing and making sense of data. Here are some of the most common types:

Descriptive Interpretation

This type of interpretation involves summarizing and describing the key features of the data. This can involve calculating measures of central tendency (such as mean, median, and mode), measures of dispersion (such as range, variance, and standard deviation), and creating visualizations such as histograms, box plots, and scatterplots.

Inferential Interpretation

This type of interpretation involves making inferences about a larger population based on a sample of the data. This can involve hypothesis testing, where you test a hypothesis about a population parameter using sample data, or confidence interval estimation, where you estimate a range of values for a population parameter based on sample data.

Predictive Interpretation

This type of interpretation involves using data to make predictions about future outcomes. This can involve building predictive models using statistical techniques such as regression analysis, time-series analysis, or machine learning algorithms.

Exploratory Interpretation

This type of interpretation involves exploring the data to identify patterns and relationships that were not previously known. This can involve data mining techniques such as clustering analysis, principal component analysis, or association rule mining.

Causal Interpretation

This type of interpretation involves identifying causal relationships between variables in the data. This can involve experimental designs, such as randomized controlled trials, or observational studies, such as regression analysis or propensity score matching.

Data Interpretation Methods

There are various methods for data interpretation that can be used to analyze and make sense of data. Here are some of the most common methods:

Statistical Analysis

This method involves using statistical techniques to analyze the data. Statistical analysis can involve descriptive statistics (such as measures of central tendency and dispersion), inferential statistics (such as hypothesis testing and confidence interval estimation), and predictive modeling (such as regression analysis and time-series analysis).

Data Visualization

This method involves using visual representations of the data to identify patterns and trends. Data visualization can involve creating charts, graphs, and other visualizations, such as heat maps or scatterplots.

Text Analysis

This method involves analyzing text data, such as survey responses or social media posts, to identify patterns and themes. Text analysis can involve techniques such as sentiment analysis, topic modeling, and natural language processing.

Machine Learning

This method involves using algorithms to identify patterns in the data and make predictions or classifications. Machine learning can involve techniques such as decision trees, neural networks, and random forests.

Qualitative Analysis

This method involves analyzing non-numeric data, such as interviews or focus group discussions, to identify themes and patterns. Qualitative analysis can involve techniques such as content analysis, grounded theory, and narrative analysis.

Geospatial Analysis

This method involves analyzing spatial data, such as maps or GPS coordinates, to identify patterns and relationships. Geospatial analysis can involve techniques such as spatial autocorrelation, hot spot analysis, and clustering.

Applications of Data Interpretation

Data interpretation has a wide range of applications across different fields, including business, healthcare, education, social sciences, and more. Here are some examples of how data interpretation is used in different applications:

  • Business : Data interpretation is widely used in business to inform decision-making, identify market trends, and optimize operations. For example, businesses may analyze sales data to identify the most popular products or customer demographics, or use predictive modeling to forecast demand and adjust pricing accordingly.
  • Healthcare : Data interpretation is critical in healthcare for identifying disease patterns, evaluating treatment effectiveness, and improving patient outcomes. For example, healthcare providers may use electronic health records to analyze patient data and identify risk factors for certain diseases or conditions.
  • Education : Data interpretation is used in education to assess student performance, identify areas for improvement, and evaluate the effectiveness of instructional methods. For example, schools may analyze test scores to identify students who are struggling and provide targeted interventions to improve their performance.
  • Social sciences : Data interpretation is used in social sciences to understand human behavior, attitudes, and perceptions. For example, researchers may analyze survey data to identify patterns in public opinion or use qualitative analysis to understand the experiences of marginalized communities.
  • Sports : Data interpretation is increasingly used in sports to inform strategy and improve performance. For example, coaches may analyze performance data to identify areas for improvement or use predictive modeling to assess the likelihood of injuries or other risks.

When to use Data Interpretation

Data interpretation is used to make sense of complex data and to draw conclusions from it. It is particularly useful when working with large datasets or when trying to identify patterns or trends in the data. Data interpretation can be used in a variety of settings, including scientific research, business analysis, and public policy.

In scientific research, data interpretation is often used to draw conclusions from experiments or studies. Researchers use statistical analysis and data visualization techniques to interpret their data and to identify patterns or relationships between variables. This can help them to understand the underlying mechanisms of their research and to develop new hypotheses.

In business analysis, data interpretation is used to analyze market trends and consumer behavior. Companies can use data interpretation to identify patterns in customer buying habits, to understand market trends, and to develop marketing strategies that target specific customer segments.

In public policy, data interpretation is used to inform decision-making and to evaluate the effectiveness of policies and programs. Governments and other organizations use data interpretation to track the impact of policies and programs over time, to identify areas where improvements are needed, and to develop evidence-based policy recommendations.

In general, data interpretation is useful whenever large amounts of data need to be analyzed and understood in order to make informed decisions.

Data Interpretation Examples

Here are some real-time examples of data interpretation:

  • Social media analytics : Social media platforms generate vast amounts of data every second, and businesses can use this data to analyze customer behavior, track sentiment, and identify trends. Data interpretation in social media analytics involves analyzing data in real-time to identify patterns and trends that can help businesses make informed decisions about marketing strategies and customer engagement.
  • Healthcare analytics: Healthcare organizations use data interpretation to analyze patient data, track outcomes, and identify areas where improvements are needed. Real-time data interpretation can help healthcare providers make quick decisions about patient care, such as identifying patients who are at risk of developing complications or adverse events.
  • Financial analysis: Real-time data interpretation is essential for financial analysis, where traders and analysts need to make quick decisions based on changing market conditions. Financial analysts use data interpretation to track market trends, identify opportunities for investment, and develop trading strategies.
  • Environmental monitoring : Real-time data interpretation is important for environmental monitoring, where data is collected from various sources such as satellites, sensors, and weather stations. Data interpretation helps to identify patterns and trends that can help predict natural disasters, track changes in the environment, and inform decision-making about environmental policies.
  • Traffic management: Real-time data interpretation is used for traffic management, where traffic sensors collect data on traffic flow, congestion, and accidents. Data interpretation helps to identify areas where traffic congestion is high, and helps traffic management authorities make decisions about road maintenance, traffic signal timing, and other strategies to improve traffic flow.

Data Interpretation Questions

Data Interpretation Questions samples:

  • Medical : What is the correlation between a patient’s age and their risk of developing a certain disease?
  • Environmental Science: What is the trend in the concentration of a certain pollutant in a particular body of water over the past 10 years?
  • Finance : What is the correlation between a company’s stock price and its quarterly revenue?
  • Education : What is the trend in graduation rates for a particular high school over the past 5 years?
  • Marketing : What is the correlation between a company’s advertising budget and its sales revenue?
  • Sports : What is the trend in the number of home runs hit by a particular baseball player over the past 3 seasons?
  • Social Science: What is the correlation between a person’s level of education and their income level?

In order to answer these questions, you would need to analyze and interpret the data using statistical methods, graphs, and other visualization tools.

Purpose of Data Interpretation

The purpose of data interpretation is to make sense of complex data by analyzing and drawing insights from it. The process of data interpretation involves identifying patterns and trends, making comparisons, and drawing conclusions based on the data. The ultimate goal of data interpretation is to use the insights gained from the analysis to inform decision-making.

Data interpretation is important because it allows individuals and organizations to:

  • Understand complex data : Data interpretation helps individuals and organizations to make sense of complex data sets that would otherwise be difficult to understand.
  • Identify patterns and trends : Data interpretation helps to identify patterns and trends in data, which can reveal important insights about the underlying processes and relationships.
  • Make informed decisions: Data interpretation provides individuals and organizations with the information they need to make informed decisions based on the insights gained from the data analysis.
  • Evaluate performance : Data interpretation helps individuals and organizations to evaluate their performance over time and to identify areas where improvements can be made.
  • Communicate findings: Data interpretation allows individuals and organizations to communicate their findings to others in a clear and concise manner, which is essential for informing stakeholders and making changes based on the insights gained from the analysis.

Characteristics of Data Interpretation

Here are some characteristics of data interpretation:

  • Contextual : Data interpretation is always contextual, meaning that the interpretation of data is dependent on the context in which it is analyzed. The same data may have different meanings depending on the context in which it is analyzed.
  • Iterative : Data interpretation is an iterative process, meaning that it often involves multiple rounds of analysis and refinement as more data becomes available or as new insights are gained from the analysis.
  • Subjective : Data interpretation is often subjective, as it involves the interpretation of data by individuals who may have different perspectives and biases. It is important to acknowledge and address these biases when interpreting data.
  • Analytical : Data interpretation involves the use of analytical tools and techniques to analyze and draw insights from data. These may include statistical analysis, data visualization, and other data analysis methods.
  • Evidence-based : Data interpretation is evidence-based, meaning that it is based on the data and the insights gained from the analysis. It is important to ensure that the data used in the analysis is accurate, relevant, and reliable.
  • Actionable : Data interpretation is actionable, meaning that it provides insights that can be used to inform decision-making and to drive action. The ultimate goal of data interpretation is to use the insights gained from the analysis to improve performance or to achieve specific goals.

Advantages of Data Interpretation

Data interpretation has several advantages, including:

  • Improved decision-making: Data interpretation provides insights that can be used to inform decision-making. By analyzing data and drawing insights from it, individuals and organizations can make informed decisions based on evidence rather than intuition.
  • Identification of patterns and trends: Data interpretation helps to identify patterns and trends in data, which can reveal important insights about the underlying processes and relationships. This information can be used to improve performance or to achieve specific goals.
  • Evaluation of performance: Data interpretation helps individuals and organizations to evaluate their performance over time and to identify areas where improvements can be made. By analyzing data, organizations can identify strengths and weaknesses and make changes to improve their performance.
  • Communication of findings: Data interpretation allows individuals and organizations to communicate their findings to others in a clear and concise manner, which is essential for informing stakeholders and making changes based on the insights gained from the analysis.
  • Better resource allocation: Data interpretation can help organizations allocate resources more efficiently by identifying areas where resources are needed most. By analyzing data, organizations can identify areas where resources are being underutilized or where additional resources are needed to improve performance.
  • Improved competitiveness : Data interpretation can give organizations a competitive advantage by providing insights that help to improve performance, reduce costs, or identify new opportunities for growth.

Limitations of Data Interpretation

Data interpretation has some limitations, including:

  • Limited by the quality of data: The quality of data used in data interpretation can greatly impact the accuracy of the insights gained from the analysis. Poor quality data can lead to incorrect conclusions and decisions.
  • Subjectivity: Data interpretation can be subjective, as it involves the interpretation of data by individuals who may have different perspectives and biases. This can lead to different interpretations of the same data.
  • Limited by analytical tools: The analytical tools and techniques used in data interpretation can also limit the accuracy of the insights gained from the analysis. Different analytical tools may yield different results, and some tools may not be suitable for certain types of data.
  • Time-consuming: Data interpretation can be a time-consuming process, particularly for large and complex data sets. This can make it difficult to quickly make decisions based on the insights gained from the analysis.
  • Incomplete data: Data interpretation can be limited by incomplete data sets, which may not provide a complete picture of the situation being analyzed. Incomplete data can lead to incorrect conclusions and decisions.
  • Limited by context: Data interpretation is always contextual, meaning that the interpretation of data is dependent on the context in which it is analyzed. The same data may have different meanings depending on the context in which it is analyzed.

Difference between Data Interpretation and Data Analysis

Data interpretation and data analysis are two different but closely related processes in data-driven decision-making.

Data analysis refers to the process of examining and examining data using statistical and computational methods to derive insights and conclusions from it. It involves cleaning, transforming, and modeling the data to uncover patterns, relationships, and trends that can help in understanding the underlying phenomena.

Data interpretation, on the other hand, refers to the process of making sense of the findings from the data analysis by contextualizing them within the larger problem domain. It involves identifying the key takeaways from the data analysis, assessing their relevance and significance to the problem at hand, and communicating the insights in a clear and actionable manner.

In short, data analysis is about uncovering insights from the data, while data interpretation is about making sense of those insights and translating them into actionable recommendations.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Theoretical Framework

Theoretical Framework – Types, Examples and...

Research Findings

Research Findings – Types Examples and Writing...

Appendix in Research Paper

Appendix in Research Paper – Examples and...

Thesis

Thesis – Structure, Example and Writing Guide

Research Gap

Research Gap – Types, Examples and How to...

Research Techniques

Research Techniques – Methods, Types and Examples

10XSheets Logo

What is Data Interpretation? Tools, Techniques, Examples

By Hady ElHady

July 14, 2023

Get Started With a Prebuilt Model

Start with a free template and upgrade when needed.

In today’s data-driven world, the ability to interpret and extract valuable insights from data is crucial for making informed decisions. Data interpretation involves analyzing and making sense of data to uncover patterns, relationships, and trends that can guide strategic actions.

Whether you’re a business professional, researcher, or data enthusiast, this guide will equip you with the knowledge and techniques to master the art of data interpretation.

What is Data Interpretation?

Data interpretation is the process of analyzing and making sense of data to extract valuable insights and draw meaningful conclusions. It involves examining patterns, relationships, and trends within the data to uncover actionable information. Data interpretation goes beyond merely collecting and organizing data; it is about extracting knowledge and deriving meaningful implications from the data at hand.

Why is Data Interpretation Important?

In today’s data-driven world, data interpretation holds immense importance across various industries and domains. Here are some key reasons why data interpretation is crucial:

  • Informed Decision-Making: Data interpretation enables informed decision-making by providing evidence-based insights. It helps individuals and organizations make choices supported by data-driven evidence, rather than relying on intuition or assumptions .
  • Identifying Opportunities and Risks: Effective data interpretation helps identify opportunities for growth and innovation. By analyzing patterns and trends within the data, organizations can uncover new market segments, consumer preferences, and emerging trends. Simultaneously, data interpretation also helps identify potential risks and challenges that need to be addressed proactively.
  • Optimizing Performance: By analyzing data and extracting insights, organizations can identify areas for improvement and optimize their performance. Data interpretation allows for identifying bottlenecks, inefficiencies, and areas of optimization across various processes, such as supply chain management, production, and customer service.
  • Enhancing Customer Experience: Data interpretation plays a vital role in understanding customer behavior and preferences. By analyzing customer data, organizations can personalize their offerings, improve customer experience, and tailor marketing strategies to target specific customer segments effectively.
  • Predictive Analytics and Forecasting: Data interpretation enables predictive analytics and forecasting, allowing organizations to anticipate future trends and make strategic plans accordingly. By analyzing historical data patterns, organizations can make predictions and forecast future outcomes, facilitating proactive decision-making and risk mitigation.
  • Evidence-Based Research and Policy Making: In fields such as healthcare, social sciences, and public policy, data interpretation plays a crucial role in conducting evidence-based research and policy-making. By analyzing relevant data, researchers and policymakers can identify trends, assess the effectiveness of interventions, and make informed decisions that impact society positively.
  • Competitive Advantage: Organizations that excel in data interpretation gain a competitive edge. By leveraging data insights, organizations can make informed strategic decisions, innovate faster, and respond promptly to market changes. This enables them to stay ahead of their competitors in today’s fast-paced business environment.

In summary, data interpretation is essential for leveraging the power of data and transforming it into actionable insights. It enables organizations and individuals to make informed decisions, identify opportunities and risks, optimize performance, enhance customer experience, predict future trends, and gain a competitive advantage in their respective domains.

The Role of Data Interpretation in Decision-Making Processes

Data interpretation plays a crucial role in decision-making processes across organizations and industries. It empowers decision-makers with valuable insights and helps guide their actions. Here are some key roles that data interpretation fulfills in decision-making:

  • Informing Strategic Planning : Data interpretation provides decision-makers with a comprehensive understanding of the current state of affairs and the factors influencing their organization or industry. By analyzing relevant data, decision-makers can assess market trends, customer preferences, and competitive landscapes. These insights inform the strategic planning process, guiding the formulation of goals, objectives, and action plans.
  • Identifying Problem Areas and Opportunities: Effective data interpretation helps identify problem areas and opportunities for improvement. By analyzing data patterns and trends, decision-makers can identify bottlenecks, inefficiencies, or underutilized resources. This enables them to address challenges and capitalize on opportunities, enhancing overall performance and competitiveness.
  • Risk Assessment and Mitigation: Data interpretation allows decision-makers to assess and mitigate risks. By analyzing historical data, market trends, and external factors, decision-makers can identify potential risks and vulnerabilities. This understanding helps in developing risk management strategies and contingency plans to mitigate the impact of risks and uncertainties.
  • Facilitating Evidence-Based Decision-Making: Data interpretation enables evidence-based decision-making by providing objective insights and factual evidence. Instead of relying solely on intuition or subjective opinions, decision-makers can base their choices on concrete data-driven evidence. This leads to more accurate and reliable decision-making, reducing the likelihood of biases or errors.
  • Measuring and Evaluating Performance: Data interpretation helps decision-makers measure and evaluate the performance of various aspects of their organization. By analyzing key performance indicators (KPIs) and relevant metrics, decision-makers can track progress towards goals, assess the effectiveness of strategies and initiatives, and identify areas for improvement. This data-driven evaluation enables evidence-based adjustments and ensures that resources are allocated optimally.
  • Enabling Predictive Analytics and Forecasting: Data interpretation plays a critical role in predictive analytics and forecasting. Decision-makers can analyze historical data patterns to make predictions and forecast future trends. This capability empowers organizations to anticipate market changes, customer behavior, and emerging opportunities. By making informed decisions based on predictive insights, decision-makers can stay ahead of the curve and proactively respond to future developments.
  • Supporting Continuous Improvement: Data interpretation facilitates a culture of continuous improvement within organizations. By regularly analyzing data, decision-makers can monitor performance, identify areas for enhancement, and implement data-driven improvements. This iterative process of analyzing data, making adjustments, and measuring outcomes enables organizations to continuously refine their strategies and operations.

In summary, data interpretation is integral to effective decision-making. It informs strategic planning, identifies problem areas and opportunities, assesses and mitigates risks, facilitates evidence-based decision-making, measures performance, enables predictive analytics, and supports continuous improvement. By harnessing the power of data interpretation, decision-makers can make well-informed, data-driven decisions that lead to improved outcomes and success in their endeavors.

Understanding Data

Before delving into data interpretation, it’s essential to understand the fundamentals of data. Data can be categorized into qualitative and quantitative types, each requiring different analysis methods. Qualitative data represents non-numerical information, such as opinions or descriptions, while quantitative data consists of measurable quantities.

Types of Data

  • Qualitative data: Includes observations, interviews, survey responses, and other subjective information.
  • Quantitative data: Comprises numerical data collected through measurements, counts, or ratings.

Data Collection Methods

To perform effective data interpretation, you need to be aware of the various methods used to collect data. These methods can include surveys, experiments, observations, interviews, and more. Proper data collection techniques ensure the accuracy and reliability of the data.

Data Sources and Reliability

When working with data, it’s important to consider the source and reliability of the data. Reliable sources include official statistics, reputable research studies, and well-designed surveys. Assessing the credibility of the data source helps you determine its accuracy and validity.

Data Preprocessing and Cleaning

Before diving into data interpretation, it’s crucial to preprocess and clean the data to remove any inconsistencies or errors. This step involves identifying missing values, outliers, and data inconsistencies, as well as handling them appropriately. Data preprocessing ensures that the data is in a suitable format for analysis.

Exploratory Data Analysis: Unveiling Insights from Data

Exploratory Data Analysis (EDA) is a vital step in data interpretation, helping you understand the data’s characteristics and uncover initial insights. By employing various graphical and statistical techniques, you can gain a deeper understanding of the data patterns and relationships.

Univariate Analysis

Univariate analysis focuses on examining individual variables in isolation, revealing their distribution and basic characteristics. Here are some common techniques used in univariate analysis:

  • Histograms: Graphical representations of the frequency distribution of a variable. Histograms display data in bins or intervals, providing a visual depiction of the data’s distribution.
  • Box plots: Box plots summarize the distribution of a variable by displaying its quartiles, median, and any potential outliers. They offer a concise overview of the data’s central tendency and spread.
  • Frequency distributions: Tabular representations that show the number of occurrences or frequencies of different values or ranges of a variable.

Bivariate Analysis

Bivariate analysis explores the relationship between two variables, examining how they interact and influence each other. By visualizing and analyzing the connections between variables, you can identify correlations and patterns. Some common techniques for bivariate analysis include:

  • Scatter plots: Graphical representations that display the relationship between two continuous variables. Scatter plots help identify potential linear or nonlinear associations between the variables.
  • Correlation analysis: Statistical measure of the strength and direction of the relationship between two variables. Correlation coefficients, such as Pearson’s correlation coefficient, range from -1 to 1, with higher absolute values indicating stronger correlations.
  • Heatmaps: Visual representations that use color intensity to show the strength of relationships between two categorical variables. Heatmaps help identify patterns and associations between variables.

Multivariate Analysis

Multivariate analysis involves the examination of three or more variables simultaneously. This analysis technique provides a deeper understanding of complex relationships and interactions among multiple variables. Some common methods used in multivariate analysis include:

  • Dimensionality reduction techniques: Approaches like Principal Component Analysis (PCA) or t-Distributed Stochastic Neighbor Embedding (t-SNE) reduce high-dimensional data into lower dimensions, simplifying analysis and visualization.
  • Cluster analysis: Grouping data points based on similarities or dissimilarities. Cluster analysis helps identify patterns or subgroups within the data.

Descriptive Statistics: Understanding Data’s Central Tendency and Variability

Descriptive statistics provides a summary of the main features of a dataset, focusing on measures of central tendency and variability. These statistics offer a comprehensive overview of the data’s characteristics and aid in understanding its distribution and spread.

Measures of Central Tendency

Measures of central tendency describe the central or average value around which the data tends to cluster. Here are some commonly used measures of central tendency:

  • Mean: The arithmetic average of a dataset, calculated by summing all values and dividing by the total number of observations.
  • Median: The middle value in a dataset when arranged in ascending or descending order. The median is less sensitive to extreme values than the mean.
  • Mode: The most frequently occurring value in a dataset.

Measures of Dispersion

Measures of dispersion quantify the spread or variability of the data points. Understanding variability is essential for assessing the data’s reliability and drawing meaningful conclusions. Common measures of dispersion include:

  • Range: The difference between the maximum and minimum values in a dataset, providing a simple measure of spread.
  • Variance: The average squared deviation from the mean, measuring the dispersion of data points around the mean.
  • Standard Deviation: The square root of the variance, representing the average distance between each data point and the mean.

Percentiles and Quartiles

Percentiles and quartiles divide the dataset into equal parts, allowing you to understand the distribution of values within specific ranges. They provide insights into the relative position of individual data points in comparison to the entire dataset.

  • Percentiles: Divisions of data into 100 equal parts, indicating the percentage of values that fall below a given value. The median corresponds to the 50th percentile.
  • Quartiles: Divisions of data into four equal parts, denoted as the first quartile (Q1), median (Q2), and third quartile (Q3). The interquartile range (IQR) measures the spread between Q1 and Q3.

Skewness and Kurtosis

Skewness and kurtosis measure the shape and distribution of data. They provide insights into the symmetry, tail heaviness, and peakness of the distribution.

  • Skewness: Measures the asymmetry of the data distribution. Positive skewness indicates a longer tail on the right side, while negative skewness suggests a longer tail on the left side.
  • Kurtosis: Measures the peakedness or flatness of the data distribution. Positive kurtosis indicates a sharper peak and heavier tails, while negative kurtosis suggests a flatter peak and lighter tails.

Inferential Statistics: Drawing Inferences and Making Hypotheses

Inferential statistics involves making inferences and drawing conclusions about a population based on a sample of data. It allows you to generalize findings beyond the observed data and make predictions or test hypotheses. This section covers key techniques and concepts in inferential statistics.

Hypothesis Testing

Hypothesis testing involves making statistical inferences about population parameters based on sample data. It helps determine the validity of a claim or hypothesis by examining the evidence provided by the data. The hypothesis testing process typically involves the following steps:

  • Formulate hypotheses: Define the null hypothesis (H0) and alternative hypothesis (Ha) based on the research question or claim.
  • Select a significance level: Determine the acceptable level of error (alpha) to guide the decision-making process.
  • Collect and analyze data: Gather and analyze the sample data using appropriate statistical tests.
  • Calculate the test statistic: Compute the test statistic based on the selected test and the sample data.
  • Determine the critical region: Identify the critical region based on the significance level and the test statistic’s distribution.
  • Make a decision: Compare the test statistic with the critical region and either reject or fail to reject the null hypothesis.
  • Draw conclusions: Interpret the results and make conclusions based on the decision made in the previous step.

Confidence Intervals

Confidence intervals provide a range of values within which the population parameter is likely to fall. They quantify the uncertainty associated with estimating population parameters based on sample data. The construction of a confidence interval involves:

  • Select a confidence level: Choose the desired level of confidence, typically expressed as a percentage (e.g., 95% confidence level).
  • Compute the sample statistic: Calculate the sample statistic (e.g., sample mean) from the sample data.
  • Determine the margin of error: Determine the margin of error, which represents the maximum likely distance between the sample statistic and the population parameter.
  • Construct the confidence interval: Establish the upper and lower bounds of the confidence interval using the sample statistic and the margin of error.
  • Interpret the confidence interval: Interpret the confidence interval in the context of the problem, acknowledging the level of confidence and the potential range of population values.

Parametric and Non-parametric Tests

In inferential statistics, different tests are used based on the nature of the data and the assumptions made about the population distribution. Parametric tests assume specific population distributions, such as the normal distribution, while non-parametric tests make fewer assumptions. Some commonly used parametric and non-parametric tests include:

  • t-tests: Compare means between two groups or assess differences in paired observations.
  • Analysis of Variance (ANOVA): Compare means among multiple groups.
  • Chi-square test: Assess the association between categorical variables.
  • Mann-Whitney U test: Compare medians between two independent groups.
  • Kruskal-Wallis test: Compare medians among multiple independent groups.
  • Spearman’s rank correlation: Measure the strength and direction of monotonic relationships between variables.

Correlation and Regression Analysis

Correlation and regression analysis explore the relationship between variables, helping understand how changes in one variable affect another. These analyses are particularly useful in predicting and modeling outcomes based on explanatory variables.

  • Correlation analysis: Determines the strength and direction of the linear relationship between two continuous variables using correlation coefficients, such as Pearson’s correlation coefficient.
  • Regression analysis: Models the relationship between a dependent variable and one or more independent variables, allowing you to estimate the impact of the independent variables on the dependent variable. It provides insights into the direction, magnitude, and significance of these relationships.

Data Interpretation Techniques: Unlocking Insights for Informed Decisions

Data interpretation techniques enable you to extract actionable insights from your data, empowering you to make informed decisions. We’ll explore key techniques that facilitate pattern recognition, trend analysis , comparative analysis , predictive modeling, and causal inference.

Pattern Recognition and Trend Analysis

Identifying patterns and trends in data helps uncover valuable insights that can guide decision-making. Several techniques aid in recognizing patterns and analyzing trends:

  • Time series analysis: Analyzes data points collected over time to identify recurring patterns and trends.
  • Moving averages: Smooths out fluctuations in data, highlighting underlying trends and patterns.
  • Seasonal decomposition: Separates a time series into its seasonal, trend, and residual components.
  • Cluster analysis: Groups similar data points together, identifying patterns or segments within the data.
  • Association rule mining: Discovers relationships and dependencies between variables, uncovering valuable patterns and trends.

Comparative Analysis

Comparative analysis involves comparing different subsets of data or variables to identify similarities, differences, or relationships. This analysis helps uncover insights into the factors that contribute to variations in the data.

  • Cross-tabulation: Compares two or more categorical variables to understand the relationships and dependencies between them.
  • ANOVA (Analysis of Variance): Assesses differences in means among multiple groups to identify significant variations.
  • Comparative visualizations: Graphical representations, such as bar charts or box plots, help compare data across categories or groups.

Predictive Modeling and Forecasting

Predictive modeling uses historical data to build mathematical models that can predict future outcomes. This technique leverages machine learning algorithms to uncover patterns and relationships in data, enabling accurate predictions.

  • Regression models: Build mathematical equations to predict the value of a dependent variable based on independent variables.
  • Time series forecasting: Utilizes historical time series data to predict future values, considering factors like trend, seasonality, and cyclical patterns.
  • Machine learning algorithms: Employ advanced algorithms, such as decision trees, random forests, or neural networks, to generate accurate predictions based on complex data patterns.

Causal Inference and Experimentation

Causal inference aims to establish cause-and-effect relationships between variables, helping determine the impact of certain factors on an outcome. Experimental design and controlled studies are essential for establishing causal relationships.

  • Randomized controlled trials (RCTs): Divide participants into treatment and control groups to assess the causal effects of an intervention.
  • Quasi-experimental designs: Apply treatment to specific groups, allowing for some level of control but not full randomization.
  • Difference-in-differences analysis: Compares changes in outcomes between treatment and control groups before and after an intervention or treatment.

Data Visualization Techniques: Communicating Insights Effectively

Data visualization is a powerful tool for presenting data in a visually appealing and informative manner. Visual representations help simplify complex information, enabling effective communication and understanding.

Importance of Data Visualization

Data visualization serves multiple purposes in data interpretation and analysis. It allows you to:

  • Simplify complex data: Visual representations simplify complex information, making it easier to understand and interpret.
  • Spot patterns and trends: Visualizations help identify patterns, trends, and anomalies that may not be apparent in raw data.
  • Communicate insights: Visualizations are effective in conveying insights to different stakeholders and audiences.
  • Support decision-making: Well-designed visualizations facilitate informed decision-making by providing a clear understanding of the data.

Choosing the Right Visualization Method

Selecting the appropriate visualization method is crucial to effectively communicate your data. Different types of data and insights are best represented using specific visualization techniques. Consider the following factors when choosing a visualization method:

  • Data type: Determine whether the data is categorical, ordinal, or numerical.
  • Insights to convey: Identify the key messages or patterns you want to communicate.
  • Audience and context: Consider the knowledge level and preferences of the audience, as well as the context in which the visualization will be presented.

Common Data Visualization Tools and Software

Several tools and software applications simplify the process of creating visually appealing and interactive data visualizations. Some widely used tools include:

  • Tableau: A powerful business intelligence and data visualization tool that allows you to create interactive dashboards, charts, and maps.
  • Power BI: Microsoft’s business analytics tool that enables data visualization, exploration, and collaboration.
  • Python libraries: Matplotlib, Seaborn, and Plotly are popular Python libraries for creating static and interactive visualizations.
  • R programming: R offers a wide range of packages, such as ggplot2 and Shiny, for creating visually appealing data visualizations.

Best Practices for Creating Effective Visualizations

Creating effective visualizations requires attention to design principles and best practices. By following these guidelines, you can ensure that your visualizations effectively communicate insights:

  • Simplify and declutter: Eliminate unnecessary elements, labels, or decorations that may distract from the main message.
  • Use appropriate chart types: Select chart types that best represent your data and the relationships you want to convey.
  • Highlight important information: Use color, size, or annotations to draw attention to key insights or trends in your data.
  • Ensure readability and accessibility: Use clear labels, appropriate font sizes, and sufficient contrast to make your visualizations easily readable.
  • Tell a story: Organize your visualizations in a logical order and guide the viewer’s attention to the most important aspects of the data.
  • Iterate and refine: Continuously refine and improve your visualizations based on feedback and testing.

Data Interpretation in Specific Domains: Unlocking Domain-Specific Insights

Data interpretation plays a vital role across various industries and domains. Let’s explore how data interpretation is applied in specific fields, providing real-world examples and applications.

Marketing and Consumer Behavior

In the marketing field, data interpretation helps businesses understand consumer behavior, market trends, and the effectiveness of marketing campaigns. Key applications include:

  • Customer segmentation: Identifying distinct customer groups based on demographics, preferences, or buying patterns.
  • Market research : Analyzing survey data or social media sentiment to gain insights into consumer opinions and preferences.
  • Campaign analysis: Assessing the impact and ROI of marketing campaigns through data analysis and interpretation.

Financial Analysis and Investment Decisions

Data interpretation is crucial in financial analysis and investment decision-making. It enables the identification of market trends, risk assessment , and portfolio optimization. Key applications include:

  • Financial statement analysis: Interpreting financial statements to assess a company’s financial health , profitability , and growth potential.
  • Risk analysis: Evaluating investment risks by analyzing historical data, market trends, and financial indicators.
  • Portfolio management: Utilizing data analysis to optimize investment portfolios based on risk-return trade-offs and diversification.

Healthcare and Medical Research

Data interpretation plays a significant role in healthcare and medical research, aiding in understanding patient outcomes, disease patterns, and treatment effectiveness. Key applications include:

  • Clinical trials: Analyzing clinical trial data to assess the safety and efficacy of new treatments or interventions.
  • Epidemiological studies: Interpreting population-level data to identify disease risk factors and patterns.
  • Healthcare analytics: Leveraging patient data to improve healthcare delivery, optimize resource allocation, and enhance patient outcomes.

Social Sciences and Public Policy

Data interpretation is integral to social sciences and public policy, informing evidence-based decision-making and policy formulation. Key applications include:

  • Survey analysis: Interpreting survey data to understand public opinion, social attitudes, and behavior patterns.
  • Policy evaluation: Analyzing data to assess the effectiveness and impact of public policies or interventions.
  • Crime analysis: Utilizing data interpretation techniques to identify crime patterns, hotspots, and trends, aiding law enforcement and policy formulation.

Data Interpretation Tools and Software: Empowering Your Analysis

Several software tools facilitate data interpretation, analysis, and visualization, providing a range of features and functionalities. Understanding and leveraging these tools can enhance your data interpretation capabilities.

Spreadsheet Software

Spreadsheet software like Excel and Google Sheets offer a wide range of data analysis and interpretation functionalities. These tools allow you to:

  • Perform calculations: Use formulas and functions to compute descriptive statistics, create pivot tables, or analyze data.
  • Visualize data: Create charts, graphs, and tables to visualize and summarize data effectively.
  • Manipulate and clean data: Utilize built-in functions and features to clean, transform, and preprocess data.

Statistical Software

Statistical software packages, such as R and Python, provide a more comprehensive and powerful environment for data interpretation. These tools offer advanced statistical analysis capabilities, including:

  • Data manipulation: Perform data transformations, filtering, and merging to prepare data for analysis.
  • Statistical modeling: Build regression models, conduct hypothesis tests, and perform advanced statistical analyses.
  • Visualization: Generate high-quality visualizations and interactive plots to explore and present data effectively.

Business Intelligence Tools

Business intelligence (BI) tools, such as Tableau and Power BI, enable interactive data exploration, analysis, and visualization. These tools provide:

  • Drag-and-drop functionality: Easily create interactive dashboards, reports, and visualizations without extensive coding.
  • Data integration: Connect to multiple data sources and perform data blending for comprehensive analysis.
  • Real-time data analysis: Analyze and visualize live data streams for up-to-date insights and decision-making.

Data Mining and Machine Learning Tools

Data mining and machine learning tools offer advanced algorithms and techniques for extracting insights from complex datasets. Some popular tools include:

  • Python libraries: Scikit-learn, TensorFlow, and PyTorch provide comprehensive machine learning and data mining functionalities.
  • R packages: Packages like caret, randomForest, and xgboost offer a wide range of algorithms for predictive modeling and data mining.
  • Big data tools: Apache Spark, Hadoop, and Apache Flink provide distributed computing frameworks for processing and analyzing large-scale datasets.

Common Challenges and Pitfalls in Data Interpretation: Navigating the Data Maze

Data interpretation comes with its own set of challenges and potential pitfalls. Being aware of these challenges can help you avoid common errors and ensure the accuracy and validity of your interpretations.

Sampling Bias and Data Quality Issues

Sampling bias occurs when the sample data is not representative of the population, leading to biased interpretations. Common types of sampling bias include selection bias, non-response bias, and volunteer bias. To mitigate these issues, consider:

  • Random sampling: Implement random sampling techniques to ensure representativeness.
  • Sample size: Use appropriate sample sizes to reduce sampling errors and increase the accuracy of interpretations.
  • Data quality checks: Scrutinize data for completeness, accuracy, and consistency before analysis.

Overfitting and Spurious Correlations

Overfitting occurs when a model fits the noise or random variations in the data instead of the underlying patterns. Spurious correlations, on the other hand, arise when variables appear to be related but are not causally connected. To avoid these issues:

  • Use appropriate model complexity: Avoid overcomplicating models and select the level of complexity that best fits the data.
  • Validate models: Test the model’s performance on unseen data to ensure generalizability.
  • Consider causal relationships: Be cautious in interpreting correlations and explore causal mechanisms before inferring causation.

Misinterpretation of Statistical Results

Misinterpretation of statistical results can lead to inaccurate conclusions and misguided actions. Common pitfalls include misreading p-values, misinterpreting confidence intervals, and misattributing causality. To prevent misinterpretation:

  • Understand statistical concepts: Familiarize yourself with key statistical concepts, such as p-values, confidence intervals, and effect sizes.
  • Provide context: Consider the broader context, study design, and limitations when interpreting statistical results.
  • Consult experts: Seek guidance from statisticians or domain experts to ensure accurate interpretation.

Simpson’s Paradox and Confounding Variables

Simpson’s paradox occurs when a trend or relationship observed within subgroups of data reverses when the groups are combined. Confounding variables, or lurking variables, can distort or confound the interpretation of relationships between variables. To address these challenges:

  • Account for confounding variables: Identify and account for potential confounders when analyzing relationships between variables.
  • Analyze subgroups: Analyze data within subgroups to identify patterns and trends, ensuring the validity of interpretations.
  • Contextualize interpretations: Consider the potential impact of confounding variables and provide nuanced interpretations.

Best Practices for Effective Data Interpretation: Making Informed Decisions

Effective data interpretation relies on following best practices throughout the entire process, from data collection to drawing conclusions. By adhering to these best practices, you can enhance the accuracy and validity of your interpretations.

Clearly Define Research Questions and Objectives

Before embarking on data interpretation, clearly define your research questions and objectives. This clarity will guide your analysis, ensuring you focus on the most relevant aspects of the data.

Use Appropriate Statistical Methods for the Data Type

Select the appropriate statistical methods based on the nature of your data. Different data types require different analysis techniques, so choose the methods that best align with your data characteristics.

Conduct Sensitivity Analysis and Robustness Checks

Perform sensitivity analysis and robustness checks to assess the stability and reliability of your results. Varying assumptions, sample sizes, or methodologies can help validate the robustness of your interpretations.

Communicate Findings Accurately and Effectively

When communicating your data interpretations, consider your audience and their level of understanding. Present your findings in a clear, concise, and visually appealing manner to effectively convey the insights derived from your analysis.

Data Interpretation Examples: Applying Techniques to Real-World Scenarios

To gain a better understanding of how data interpretation techniques can be applied in practice, let’s explore some real-world examples. These examples demonstrate how different industries and domains leverage data interpretation to extract meaningful insights and drive decision-making.

Example 1: Retail Sales Analysis

A retail company wants to analyze its sales data to uncover patterns and optimize its marketing strategies. By applying data interpretation techniques, they can:

  • Perform sales trend analysis : Analyze sales data over time to identify seasonal patterns, peak sales periods, and fluctuations in customer demand.
  • Conduct customer segmentation: Segment customers based on purchase behavior, demographics, or preferences to personalize marketing campaigns and offers.
  • Analyze product performance: Examine sales data for each product category to identify top-selling items, underperforming products, and opportunities for cross-selling or upselling.
  • Evaluate marketing campaigns: Analyze the impact of marketing initiatives on sales by comparing promotional periods, advertising channels, or customer responses.
  • Forecast future sales: Utilize historical sales data and predictive models to forecast future sales trends, helping the company optimize inventory management and resource allocation.

Example 2: Healthcare Outcome Analysis

A healthcare organization aims to improve patient outcomes and optimize resource allocation. Through data interpretation, they can:

  • Analyze patient data: Extract insights from electronic health records, medical history, and treatment outcomes to identify factors impacting patient outcomes.
  • Identify risk factors: Analyze patient populations to identify common risk factors associated with specific medical conditions or adverse events.
  • Conduct comparative effectiveness research: Compare different treatment methods or interventions to assess their impact on patient outcomes and inform evidence-based treatment decisions.
  • Optimize resource allocation: Analyze healthcare utilization patterns to allocate resources effectively, optimize staffing levels, and improve operational efficiency.
  • Evaluate intervention effectiveness: Analyze intervention programs to assess their effectiveness in improving patient outcomes, such as reducing readmission rates or hospital-acquired infections.

Example 3: Financial Investment Analysis

An investment firm wants to make data-driven investment decisions and assess portfolio performance. By applying data interpretation techniques, they can:

  • Perform market trend analysis : Analyze historical market data, economic indicators, and sector performance to identify investment opportunities and predict market trends.
  • Conduct risk analysis: Assess the risk associated with different investment options by analyzing historical returns, volatility, and correlations with market indices.
  • Perform portfolio optimization: Utilize quantitative models and optimization techniques to construct diversified portfolios that maximize returns while managing risk.
  • Monitor portfolio performance: Analyze portfolio returns, compare them against benchmarks, and conduct attribution analysis to identify the sources of portfolio performance.
  • Perform scenario analysis : Assess the impact of potential market scenarios, economic changes, or geopolitical events on investment portfolios to inform risk management strategies.

These examples illustrate how data interpretation techniques can be applied across various industries and domains. By leveraging data effectively, organizations can unlock valuable insights, optimize strategies, and make informed decisions that drive success.

Data interpretation is a fundamental skill for unlocking the power of data and making informed decisions. By understanding the various techniques, best practices, and challenges in data interpretation, you can confidently navigate the complex landscape of data analysis and uncover valuable insights.

As you embark on your data interpretation journey, remember to embrace curiosity, rigor, and a continuous learning mindset. The ability to extract meaningful insights from data will empower you to drive positive change in your organization or field.

Get Started With a Prebuilt Template!

Looking to streamline your business financial modeling process with a prebuilt customizable template? Say goodbye to the hassle of building a financial model from scratch and get started right away with one of our premium templates.

  • Save time with no need to create a financial model from scratch.
  • Reduce errors with prebuilt formulas and calculations.
  • Customize to your needs by adding/deleting sections and adjusting formulas.
  • Automatically calculate key metrics for valuable insights.
  • Make informed decisions about your strategy and goals with a clear picture of your business performance and financial health .

Marketplace Financial Model Template - Contents and Instructions

Marketplace Financial Model Template

E-Commerce Financial Model Template - Getting Started and Instructions

E-Commerce Financial Model Template

SaaS Financial Model Template - About

SaaS Financial Model Template

Standard Financial Model Template - Getting Started and Instructions

Standard Financial Model Template

E-Commerce Profit and Loss P&L Statement Template - Actuals

E-Commerce Profit and Loss Statement

SaaS Profit and Loss Statement P&L Template - Actuals

SaaS Profit and Loss Statement

Marketplace Profit and Loss Statement P&L Template - Contents and Instructions

Marketplace Profit and Loss Statement

Startup Profit and Loss Statement P&L Template - Contents and Instructions

Startup Profit and Loss Statement

Startup Financial Model Template - Content and Instructions

Startup Financial Model Template

Excel and Google Sheets Templates and Financial Models

Expert Templates For You

Don’t settle for mediocre templates. Get started with premium spreadsheets and financial models customizable to your unique business needs to help you save time and streamline your processes.

Receive Exclusive Updates

Get notified of new templates and business resources to help grow your business. Join our community of forward-thinking entrepreneurs and stay ahead of the game!

[email protected]

© Copyright 2024 | 10XSheets | All Rights Reserved

Your email *

Your message

Send a copy to your email

Data Interpretation: Definition, Method, Benefits & Examples

In today's digital world, any business owner understands the importance of collecting, analyzing, and interpreting data. Some statistical methods are always employed in this process. Continue reading to learn how to make the most of your data.

Whatagraph marketing reporting tool

Apr 20 2021 ● 7 min read

Data Interpretation: Definition, Method, Benefits & Examples

Table of Contents

What is data interpretation, data interpretation examples, steps of data interpretation, what should users question during data interpretation, data interpretation methods, qualitative data interpretation method, quantitative data interpretation method, benefits of data interpretation.

Syracuse University defined data interpretation as the process of assigning meaning to the collected information and determining the conclusions, significance, and implications of the findings. In other words, normalizing data, aka giving meaning to the collected 'cleaned' raw data .

Data interpretation is the final step of data analysis . This is where you turn results into actionable items. To better understand it, here are 2 instances of interpreting data:

40 data sources

Let's say you've got four age groups of the user base. So a company can notice which age group is most engaged with their content or product. Based on bar charts or pie charts, they can either: develop a marketing strategy to make their product more appealing to non-involved groups or develop an outreach strategy that expands on their core user base.

Another case of data interpretation is how companies use recruitment CRM . They use it to source, track, and manage their entire hiring pipeline to see how they can automate their workflow better. This helps companies save time and improve productivity.

Interpreting data: Performance by gender

Interpreting data: Performance by gender

Data interpretation is conducted in 4 steps:

  • Assembling the information you need (like bar graphs and pie charts);
  • Developing findings or isolating the most relevant inputs;
  • Developing conclusions;
  • Coming up with recommendations or actionable solutions.

Considering how these findings dictate the course of action, data analysts must be accurate with their conclusions and examine the raw data from multiple angles. Different variables may allude to various problems, so having the ability to backtrack data and repeat the analysis using different templates is an integral part of a successful business strategy.

To interpret data accurately, users should be aware of potential pitfalls present within this process. You need to ask yourself if you are mistaking correlation for causation. If two things occur together, it does not indicate that one caused the other.

40+ data

The 2nd thing you need to be aware of is your own confirmation bias . This occurs when you try to prove a point or a theory and focus only on the patterns or findings that support that theory while discarding those that do not.

The 3rd problem is irrelevant data. To be specific, you need to make sure that the data you have collected and analyzed is relevant to the problem you are trying to solve.

Data analysts or data analytics tools help people make sense of the numerical data that has been aggregated, transformed, and displayed. There are two main methods for data interpretation: quantitative and qualitative.

This is a method for breaking down or analyzing so-called qualitative data, also known as categorical data. It is important to note that no bar graphs or line charts are used in this method. Instead, they rely on text. Because qualitative data is collected through person-to-person techniques, it isn't easy to present using a numerical approach.

Surveys are used to collect data because they allow you to assign numerical values to answers, making them easier to analyze. If we rely solely on the text, it would be a time-consuming and error-prone process. This is why it must be transformed .

This data interpretation is applied when we are dealing with quantitative or numerical data. Since we are dealing with numbers, the values can be displayed in a bar chart or pie chart. There are two main types: Discrete and Continuous. Moreover, numbers are easier to analyze since they involve statistical modeling techniques like mean and standard deviation.

Mean is an average value of a particular data set obtained or calculated by dividing the sum of the values within that data set by the number of values within that same set.

Standard Deviation is a technique is used to ascertain how responses align with or deviate from the average value or mean. It relies on the meaning to describe the consistency of the replies within a particular data set. You can use this when calculating the average pay for a certain profession and then displaying the upper and lower values in the data set.

As stated, some tools can do this automatically, especially when it comes to quantitative data. Whatagraph is one such tool as it can aggregate data from multiple sources using different system integrations. It will also automatically organize and analyze that which will later be displayed in pie charts, line charts, or bar charts, however you wish.

white label customize

Multiple data interpretation benefits explain its significance within the corporate world, medical industry, and financial industry:

data-interpretation-marketing

Anticipating needs and identifying trends . Data analysis provides users with relevant insights that they can use to forecast trends. It would be based on customer concerns and expectations .

For example, a large number of people are concerned about privacy and the leakage of personal information . Products that provide greater protection and anonymity are more likely to become popular.

Data-analysis-interpretation

Clear foresight. Companies that analyze and aggregate data better understand their own performance and how consumers perceive them. This provides them with a better understanding of their shortcomings, allowing them to work on solutions that will significantly improve their performance.

Published on Apr 20 2021

Indrė is a copywriter at Whatagraph with extensive experience in search engine optimization and public relations. She holds a degree in International Relations, while her professional background includes different marketing and advertising niches. She manages to merge marketing strategy and public speaking while educating readers on how to automate their businesses.

Create your first marketing report using Whatagraph

Related articles

Best Client Reporting Tools for Marketers in 2024

Agency guides · 12 mins

12 Best Client Reporting Tools for Marketing Agencies in 2024

YouTube Analytics Report - An Ultimate Guide for Marketers

Marketing analytics & reporting · 10 mins

How to Create an Insightful YouTube Analytics Report

Whatagraph Integrations

Data analytics · 5 mins

Whatagraph Integrations

Best Social Media Analytic Tools for Marketers in 2024

Marketing analytics & reporting · 12 mins

19 Best Social Media Analytics Tools for Marketers in 2024

Best Dashboard Reporting Tools for Marketers in 2024

12 Best Dashboard Reporting Tools and Software for Marketers in 2024

Best Facebook Analytics Tools

14 Best Facebook Analytics Tools for Marketers in 2024

Get marketing insights direct to your inbox.

By submitting this form, you agree to our privacy policy

  • What is Data Interpretation? + [Types, Method & Tools]

busayo.longe

  • Data Collection

Data interpretation and analysis are fast becoming more valuable with the prominence of digital communication, which is responsible for a large amount of data being churned out daily. According to the WEF’s “A Day in Data” Report , the accumulated digital universe of data is set to reach 44 ZB (Zettabyte) in 2020.

Based on this report, it is clear that for any business to be successful in today’s digital world, the founders need to know or employ people who know how to analyze complex data, produce actionable insights and adapt to new market trends. Also, all these need to be done in milliseconds.

So, what is data interpretation and analysis, and how do you leverage this knowledge to help your business or research? All this and more will be revealed in this article.

What is Data Interpretation?

Data interpretation is the process of reviewing data through some predefined processes which will help assign some meaning to the data and arrive at a relevant conclusion. It involves taking the result of data analysis, making inferences on the relations studied, and using them to conclude.

Therefore, before one can talk about interpreting data, they need to be analyzed first. What then, is data analysis?

Data analysis is the process of ordering, categorizing, manipulating, and summarizing data to obtain answers to research questions. It is usually the first step taken towards data interpretation.

It is evident that the interpretation of data is very important, and as such needs to be done properly. Therefore, researchers have identified some data interpretation methods to aid this process.

What are Data Interpretation Methods?

Data interpretation methods are how analysts help people make sense of numerical data that has been collected, analyzed and presented. Data, when collected in raw form, may be difficult for the layman to understand, which is why analysts need to break down the information gathered so that others can make sense of it.

For example, when founders are pitching to potential investors, they must interpret data (e.g. market size, growth rate, etc.) for better understanding. There are 2 main methods in which this can be done, namely; quantitative methods and qualitative methods . 

Qualitative Data Interpretation Method 

The qualitative data interpretation method is used to analyze qualitative data, which is also known as categorical data . This method uses texts, rather than numbers or patterns to describe data.

Qualitative data is usually gathered using a wide variety of person-to-person techniques , which may be difficult to analyze compared to the quantitative research method .

Unlike the quantitative data which can be analyzed directly after it has been collected and sorted, qualitative data needs to first be coded into numbers before it can be analyzed.  This is because texts are usually cumbersome, and will take more time, and result in a lot of errors if analyzed in their original state. Coding done by the analyst should also be documented so that it can be reused by others and also analyzed. 

There are 2 main types of qualitative data, namely; nominal and ordinal data . These 2 data types are both interpreted using the same method, but ordinal data interpretation is quite easier than that of nominal data .

In most cases, ordinal data is usually labeled with numbers during the process of data collection, and coding may not be required. This is different from nominal data that still needs to be coded for proper interpretation.

Quantitative Data Interpretation Method

The quantitative data interpretation method is used to analyze quantitative data, which is also known as numerical data . This data type contains numbers and is therefore analyzed with the use of numbers and not texts.

Quantitative data are of 2 main types, namely; discrete and continuous data. Continuous data is further divided into interval data and ratio data, with all the data types being numeric .

Due to its natural existence as a number, analysts do not need to employ the coding technique on quantitative data before it is analyzed. The process of analyzing quantitative data involves statistical modelling techniques such as standard deviation, mean and median.

Some of the statistical methods used in analyzing quantitative data are highlighted below:

The mean is a numerical average for a set of data and is calculated by dividing the sum of the values by the number of values in a dataset. It is used to get an estimate of a large population from the dataset obtained from a sample of the population. 

For example, online job boards in the US use the data collected from a group of registered users to estimate the salary paid to people of a particular profession. The estimate is usually made using the average salary submitted on their platform for each profession.

  • Standard deviation

This technique is used to measure how well the responses align with or deviates from the mean. It describes the degree of consistency within the responses; together with the mean, it provides insight into data sets.

In the job board example highlighted above, if the average salary of writers in the US is $20,000 per annum, and the standard deviation is 5.0, we can easily deduce that the salaries for the professionals are far away from each other. This will birth other questions like why the salaries deviate from each other that much. 

With this question, we may conclude that the sample contains people with few years of experience, which translates to a lower salary, and people with many years of experience, translating to a higher salary. However, it does not contain people with mid-level experience.

  • Frequency distribution

This technique is used to assess the demography of the respondents or the number of times a particular response appears in research.  It is extremely keen on determining the degree of intersection between data points.

Some other interpretation processes of quantitative data include:

  • Regression analysis
  • Cohort analysis
  • Predictive and prescriptive analysis

Tips for Collecting Accurate Data for Interpretation  

  • Identify the Required Data Type

 Researchers need to identify the type of data required for particular research. Is it nominal, ordinal, interval, or ratio data ? 

The key to collecting the required data to conduct research is to properly understand the research question. If the researcher can understand the research question, then he can identify the kind of data that is required to carry out the research.

For example, when collecting customer feedback, the best data type to use is the ordinal data type . Ordinal data can be used to access a customer’s feelings about a brand and is also easy to interpret.

  • Avoid Biases

There are different kinds of biases a researcher might encounter when collecting data for analysis. Although biases sometimes come from the researcher, most of the biases encountered during the data collection process is caused by the respondent. 

There are 2 main biases, that can be caused by the President, namely; response bias and non-response bias . Researchers may not be able to eliminate these biases, but there are ways in which they can be avoided and reduced to a minimum.

Response biases are biases that are caused by respondents intentionally giving wrong answers to responses, while non-response bias occurs when the respondents don’t give answers to questions at all. Biases are capable of affecting the process of data interpretation .

  • Use Close Ended Surveys

Although open-ended surveys are capable of giving detailed information about the questions and allowing respondents to fully express themselves, it is not the best kind of survey for data interpretation. It requires a lot of coding before the data can be analyzed.

Close-ended surveys , on the other hand, restrict the respondents’ answers to some predefined options, while simultaneously eliminating irrelevant data.  This way, researchers can easily analyze and interpret data.

However, close-ended surveys may not be applicable in some cases, like when collecting respondents’ personal information like name, credit card details, phone number, etc.

Visualization Techniques in Data Analysis

One of the best practices of data interpretation is the visualization of the dataset. Visualization makes it easy for a layman to understand the data, and also encourages people to view the data, as it provides a visually appealing summary of the data.

There are different techniques of data visualization, some of which are highlighted below.

Bar graphs are graphs that interpret the relationship between 2 or more variables using rectangular bars. These rectangular bars can be drawn either vertically or horizontally, but they are mostly drawn vertically.

The graph contains the horizontal axis (x) and the vertical axis (y), with the former representing the independent variable while the latter is the dependent variable. Bar graphs can be grouped into different types, depending on how the rectangular bars are placed on the graph.

Some types of bar graphs are highlighted below:

  • Grouped Bar Graph

The grouped bar graph is used to show more information about variables that are subgroups of the same group with each subgroup bar placed side-by-side like in a histogram.

  • Stacked Bar Graph

A stacked bar graph is a grouped bar graph with its rectangular bars stacked on top of each other rather than placed side by side.

  • Segmented Bar Graph

Segmented bar graphs are stacked bar graphs where each rectangular bar shows 100% of the dependent variable. It is mostly used when there is an intersection between the variable categories.

Advantages of a Bar Graph

  • It helps to summarize a large data
  • Estimations of key values c.an be made at a glance
  • Can be easily understood

Disadvantages of a Bar Graph

  • It may require additional explanation.
  • It can be easily manipulated.
  • It doesn’t properly describe the dataset.

A pie chart is a circular graph used to represent the percentage of occurrence of a variable using sectors. The size of each sector is dependent on the frequency or percentage of the corresponding variables.

There are different variants of the pie charts, but for the sake of this article, we will be restricting ourselves to only 3. For better illustration of these types, let us consider the following examples.

Pie Chart Example : There are a total of 50 students in a class, and out of them, 10 students like Football, 25 students like snooker, and 15 students like Badminton. 

  • Simple Pie Chart

The simple pie chart is the most basic type of pie chart, which is used to depict the general representation of a bar chart. 

  • Doughnut Pie Chart

Doughnut pie is a variant of the pie chart, with a blank center allowing for additional information about the data as a whole to be included.

  • 3D Pie Chart

3D pie chart is used to give the chart a 3D look and is often used for aesthetic purposes. It is usually difficult to reach because of the distortion of perspective due to the third dimension.

Advantages of a Pie Chart 

  • It is visually appealing.
  • Best for comparing small data samples.

Disadvantages of a Pie Chart

  • It can only compare small sample sizes.
  • Unhelpful with observing trends over time.

Tables are used to represent statistical data by placing them in rows and columns. They are one of the most common statistical visualization techniques and are of 2 main types, namely; simple and complex tables.

  • Simple Tables

Simple tables summarize information on a single characteristic and may also be called a univariate table. An example of a simple table showing the number of employed people in a community concerning their age group.

  • Complex Tables

As its name suggests, complex tables summarize complex information and present them in two or more intersecting categories. A complex table example is a table showing the number of employed people in a population concerning their age group and sex as shown in the table below.

Advantages of Tables

  • Can contain large data sets
  • Helpful in comparing 2 or more similar things

Disadvantages of Tables

  • They do not give detailed information.
  • Maybe time-consuming.

Line graphs or charts are a type of graph that displays information as a series of points, usually connected by a straight line. Some of the types of line graphs are highlighted below.

  • Simple Line Graphs

Simple line graphs show the trend of data over time, and may also be used to compare categories. Let us assume we got the sales data of a firm for each quarter and are to visualize it using a line graph to estimate sales for the next year.

  • Line Graphs with Markers

These are similar to line graphs but have visible markers illustrating the data points

  • Stacked Line Graphs

Stacked line graphs are line graphs where the points do not overlap, and the graphs are therefore placed on top of each other. Consider that we got the quarterly sales data for each product sold by the company and are to visualize it to predict company sales for the next year.

Advantages of a Line Graph

  • Great for visualizing trends and changes over time.
  • It is simple to construct and read.

Disadvantage of a Line Graph

  • It can not compare different variables at a single place or time.
Read: 11 Types of Graphs & Charts + [Examples]

What are the Steps in Interpreting Data?

After data collection, you’d want to know the result of your findings. Ultimately, the findings of your data will be largely dependent on the questions you’ve asked in your survey or your initial study questions. Here are the four steps for accurately interpreting data

1. Gather the data

The very first step in interpreting data is having all the relevant data assembled. You can do this by visualizing it first either in a bar, graph, or pie chart. The purpose of this step is to accurately analyze the data without any bias. 

Now is the time to remember the details of how you conducted the research. Were there any flaws or changes that occurred when gathering this data? Did you keep any observatory notes and indicators?

Once you have your complete data, you can move to the next stage

2. Develop your findings

This is the summary of your observations. Here, you observe this data thoroughly to find trends, patterns, or behavior. If you are researching about a group of people through a sample population, this is where you analyze behavioral patterns. The purpose of this step is to compare these deductions before drawing any conclusions. You can compare these deductions with each other, similar data sets in the past, or general deductions in your industry. 

3. Derive Conclusions

Once you’ve developed your findings from your data sets, you can then draw conclusions based on trends you’ve discovered. Your conclusions should answer the questions that led you to your research. If they do not answer these questions ask why? It may lead to further research or subsequent questions.

4. Give recommendations

For every research conclusion, there has to be a recommendation. This is the final step in data interpretation because recommendations are a summary of your findings and conclusions. For recommendations, it can only go in one of two ways. You can either recommend a line of action or recommend that further research be conducted. 

How to Collect Data with Surveys or Questionnaires

As a business owner who wants to regularly track the number of sales made in your business, you need to know how to collect data. Follow these 4 easy steps to collect real-time sales data for your business using Formplus.

Step 1 – Register on Formplus

  • Visit Formplus on your PC or mobile device.
  • Click on the Start for Free button to start collecting data for your business.

Step 2 – Start Creating Surveys For Free

  • Go to the Forms tab beside your Dashboard in the Formplus menu.
  • Click on Create Form to start creating your survey
  • Take advantage of the dynamic form fields to add questions to your survey.
  • You can also add payment options that allow you to receive payments using Paypal, Flutterwave, and Stripe.

Step 3 – Customize Your Survey and Start Collecting Data

  • Go to the Customise tab to beautify your survey by adding colours, background images, fonts, or even a custom CSS.
  • You can also add your brand logo, colour and other things to define your brand identity.
  • Preview your form, share, and start collecting data.

Step 4 – Track Responses Real-time

  • Track your sales data in real-time in the Analytics section.

Why Use Formplus to Collect Data?  

The responses to each form can be accessed through the analytics section, which automatically analyzes the responses collected through Formplus forms. This section visualizes the collected data using tables and graphs, allowing analysts to easily arrive at an actionable insight without going through the rigorous process of analyzing the data.

  • 30+ Form Fields

There is no restriction on the kind of data that can be collected by researchers through the available form fields. Researchers can collect both quantitative and qualitative data types simultaneously through a single questionnaire.

  • Data Storage

 The data collected through Formplus are safely stored and secured in the Formplus database. You can also choose to store this data in an external storage device.

  • Real-time access

Formplus gives real-time access to information, making sure researchers are always informed of the current trends and changes in data. That way, researchers can easily measure a shift in market trends that inform important decisions.  

  • WordPress Integration

Users can now embed Formplus forms into their WordPress posts and pages using a shortcode. This can be done by installing the Formplus plugin into your WordPress websites.

Advantages and Importance of Data Interpretation  

  • Data interpretation is important because it helps make data-driven decisions.
  • It saves costs by providing costing opportunities
  • The insights and findings gotten from interpretation can be used to spot trends in a sector or industry.

Conclusion   

Data interpretation and analysis is an important aspect of working with data sets in any field or research and statistics. They both go hand in hand, as the process of data interpretation involves the analysis of data.

The process of data interpretation is usually cumbersome, and should naturally become more difficult with the best amount of data that is being churned out daily. However, with the accessibility of data analysis tools and machine learning techniques, analysts are gradually finding it easier to interpret data.

Data interpretation is very important, as it helps to acquire useful information from a pool of irrelevant ones while making informed decisions. It is found useful for individuals, businesses, and researchers.

Logo

Connect to Formplus, Get Started Now - It's Free!

  • data analysis
  • data interpretation
  • data interpretation methods
  • how to analyse data
  • how to interprete data
  • qualitative data
  • quantitative data
  • busayo.longe

Formplus

You may also like:

What is a Panel Survey?

Introduction Panel surveys are a type of survey conducted over a long period measuring consumer behavior and perception of a product, an...

analysis and interpretation of data in research example

Qualitative vs Quantitative Data:15 Differences & Similarities

Quantitative and qualitative data differences & similarities in definitions, examples, types, analysis, data collection techniques etc.

Collecting Voice of Customer Data: 9 Techniques that Work

In this article, we’ll show you nine(9) practical ways to collect voice of customer data from your clients.

15 Reasons to Choose Quantitative over Qualitative Research

This guide tells you everything you need to know about qualitative and quantitative research, it differences,types, when to use it, how...

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Dissertation
  • How to Write a Results Section | Tips & Examples

How to Write a Results Section | Tips & Examples

Published on August 30, 2022 by Tegan George . Revised on July 18, 2023.

A results section is where you report the main findings of the data collection and analysis you conducted for your thesis or dissertation . You should report all relevant results concisely and objectively, in a logical order. Don’t include subjective interpretations of why you found these results or what they mean—any evaluation should be saved for the discussion section .

Instantly correct all language mistakes in your text

Upload your document to correct all your mistakes in minutes

upload-your-document-ai-proofreader

Table of contents

How to write a results section, reporting quantitative research results, reporting qualitative research results, results vs. discussion vs. conclusion, checklist: research results, other interesting articles, frequently asked questions about results sections.

When conducting research, it’s important to report the results of your study prior to discussing your interpretations of it. This gives your reader a clear idea of exactly what you found and keeps the data itself separate from your subjective analysis.

Here are a few best practices:

  • Your results should always be written in the past tense.
  • While the length of this section depends on how much data you collected and analyzed, it should be written as concisely as possible.
  • Only include results that are directly relevant to answering your research questions . Avoid speculative or interpretative words like “appears” or “implies.”
  • If you have other results you’d like to include, consider adding them to an appendix or footnotes.
  • Always start out with your broadest results first, and then flow into your more granular (but still relevant) ones. Think of it like a shoe store: first discuss the shoes as a whole, then the sneakers, boots, sandals, etc.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

If you conducted quantitative research , you’ll likely be working with the results of some sort of statistical analysis .

Your results section should report the results of any statistical tests you used to compare groups or assess relationships between variables . It should also state whether or not each hypothesis was supported.

The most logical way to structure quantitative results is to frame them around your research questions or hypotheses. For each question or hypothesis, share:

  • A reminder of the type of analysis you used (e.g., a two-sample t test or simple linear regression ). A more detailed description of your analysis should go in your methodology section.
  • A concise summary of each relevant result, both positive and negative. This can include any relevant descriptive statistics (e.g., means and standard deviations ) as well as inferential statistics (e.g., t scores, degrees of freedom , and p values ). Remember, these numbers are often placed in parentheses.
  • A brief statement of how each result relates to the question, or whether the hypothesis was supported. You can briefly mention any results that didn’t fit with your expectations and assumptions, but save any speculation on their meaning or consequences for your discussion  and conclusion.

A note on tables and figures

In quantitative research, it’s often helpful to include visual elements such as graphs, charts, and tables , but only if they are directly relevant to your results. Give these elements clear, descriptive titles and labels so that your reader can easily understand what is being shown. If you want to include any other visual elements that are more tangential in nature, consider adding a figure and table list .

As a rule of thumb:

  • Tables are used to communicate exact values, giving a concise overview of various results
  • Graphs and charts are used to visualize trends and relationships, giving an at-a-glance illustration of key findings

Don’t forget to also mention any tables and figures you used within the text of your results section. Summarize or elaborate on specific aspects you think your reader should know about rather than merely restating the same numbers already shown.

A two-sample t test was used to test the hypothesis that higher social distance from environmental problems would reduce the intent to donate to environmental organizations, with donation intention (recorded as a score from 1 to 10) as the outcome variable and social distance (categorized as either a low or high level of social distance) as the predictor variable.Social distance was found to be positively correlated with donation intention, t (98) = 12.19, p < .001, with the donation intention of the high social distance group 0.28 points higher, on average, than the low social distance group (see figure 1). This contradicts the initial hypothesis that social distance would decrease donation intention, and in fact suggests a small effect in the opposite direction.

Example of using figures in the results section

Figure 1: Intention to donate to environmental organizations based on social distance from impact of environmental damage.

In qualitative research , your results might not all be directly related to specific hypotheses. In this case, you can structure your results section around key themes or topics that emerged from your analysis of the data.

For each theme, start with general observations about what the data showed. You can mention:

  • Recurring points of agreement or disagreement
  • Patterns and trends
  • Particularly significant snippets from individual responses

Next, clarify and support these points with direct quotations. Be sure to report any relevant demographic information about participants. Further information (such as full transcripts , if appropriate) can be included in an appendix .

When asked about video games as a form of art, the respondents tended to believe that video games themselves are not an art form, but agreed that creativity is involved in their production. The criteria used to identify artistic video games included design, story, music, and creative teams.One respondent (male, 24) noted a difference in creativity between popular video game genres:

“I think that in role-playing games, there’s more attention to character design, to world design, because the whole story is important and more attention is paid to certain game elements […] so that perhaps you do need bigger teams of creative experts than in an average shooter or something.”

Responses suggest that video game consumers consider some types of games to have more artistic potential than others.

Your results section should objectively report your findings, presenting only brief observations in relation to each question, hypothesis, or theme.

It should not  speculate about the meaning of the results or attempt to answer your main research question . Detailed interpretation of your results is more suitable for your discussion section , while synthesis of your results into an overall answer to your main research question is best left for your conclusion .

I have completed my data collection and analyzed the results.

I have included all results that are relevant to my research questions.

I have concisely and objectively reported each result, including relevant descriptive statistics and inferential statistics .

I have stated whether each hypothesis was supported or refuted.

I have used tables and figures to illustrate my results where appropriate.

All tables and figures are correctly labelled and referred to in the text.

There is no subjective interpretation or speculation on the meaning of the results.

You've finished writing up your results! Use the other checklists to further improve your thesis.

If you want to know more about AI for academic writing, AI tools, or research bias, make sure to check out some of our other articles with explanations and examples or go directly to our tools!

Research bias

  • Survivorship bias
  • Self-serving bias
  • Availability heuristic
  • Halo effect
  • Hindsight bias
  • Deep learning
  • Generative AI
  • Machine learning
  • Reinforcement learning
  • Supervised vs. unsupervised learning

 (AI) Tools

  • Grammar Checker
  • Paraphrasing Tool
  • Text Summarizer
  • AI Detector
  • Plagiarism Checker
  • Citation Generator

The results chapter of a thesis or dissertation presents your research results concisely and objectively.

In quantitative research , for each question or hypothesis , state:

  • The type of analysis used
  • Relevant results in the form of descriptive and inferential statistics
  • Whether or not the alternative hypothesis was supported

In qualitative research , for each question or theme, describe:

  • Recurring patterns
  • Significant or representative individual responses
  • Relevant quotations from the data

Don’t interpret or speculate in the results chapter.

Results are usually written in the past tense , because they are describing the outcome of completed actions.

The results chapter or section simply and objectively reports what you found, without speculating on why you found these results. The discussion interprets the meaning of the results, puts them in context, and explains why they matter.

In qualitative research , results and discussion are sometimes combined. But in quantitative research , it’s considered important to separate the objective results from your interpretation of them.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

George, T. (2023, July 18). How to Write a Results Section | Tips & Examples. Scribbr. Retrieved August 14, 2024, from https://www.scribbr.com/dissertation/results/

Is this article helpful?

Tegan George

Tegan George

Other students also liked, what is a research methodology | steps & tips, how to write a discussion section | tips & examples, how to write a thesis or dissertation conclusion, what is your plagiarism score.

Google Sheets

In this article:

What is Data Interpretation? Methods, Examples & Tools

analysis and interpretation of data in research example

by Hady ElHady | Mar 13, 2024

Data interpretation is the process of making sense of data and turning it into actionable insights. With the rise of big data and advanced technologies, it has become more important than ever to be able to effectively interpret and understand data.

In today’s fast-paced business environment, companies rely on data to make informed decisions and drive growth. However, with the sheer volume of data available, it can be challenging to know where to start and how to make the most of it.

This guide provides a comprehensive overview of data interpretation, covering everything from the basics of what it is to the benefits and best practices.

What is Data Interpretation?

Data interpretation refers to the process of taking raw data and transforming it into useful information. This involves analyzing the data to identify patterns, trends, and relationships, and then presenting the results in a meaningful way. Data interpretation is an essential part of data analysis, and it is used in a wide range of fields, including business, marketing, healthcare, and many more.

Importance of Data Interpretation in Today’s World

Data interpretation is critical to making informed decisions and driving growth in today’s data-driven world. With the increasing availability of data, companies can now gain valuable insights into their operations, customer behavior, and market trends. Data interpretation allows businesses to make informed decisions, identify new opportunities, and improve overall efficiency.

Types of Data Interpretation

There are three main types of data interpretation: quantitative, qualitative, and mixed methods.

Quantitative Data Interpretation

Quantitative data interpretation refers to the process of analyzing numerical data. This type of data is often used to measure and quantify specific characteristics, such as sales figures, customer satisfaction ratings, and employee productivity.

Qualitative Data Interpretation

Qualitative data interpretation refers to the process of analyzing non-numerical data, such as text, images, and audio. This data type is often used to gain a deeper understanding of customer attitudes and opinions and to identify patterns and trends.

Mixed Methods Data Interpretation

Mixed methods data interpretation combines both quantitative and qualitative data to provide a more comprehensive understanding of a particular subject. This approach is particularly useful when analyzing data that has both numerical and non-numerical components, such as customer feedback data.

Methods of Data Interpretation

There are several data interpretation methods, including descriptive statistics, inferential statistics, and visualization techniques.

Descriptive Statistics

Descriptive statistics involve summarizing and presenting data in a way that makes it easy to understand. This can include calculating measures such as mean, median, mode, and standard deviation.

Inferential Statistics

Inferential statistics involves making inferences and predictions about a population based on a sample of data. This type of data interpretation involves the use of statistical models and algorithms to identify patterns and relationships in the data.

Visualization Techniques

Visualization techniques involve creating visual representations of data, such as graphs, charts, and maps. These techniques are particularly useful for communicating complex data in an easy-to-understand manner and identifying data patterns and trends.

How To Share Only One Tab in Google Sheets - What is Data Interpretation? Methods, Examples & Tools

How To Share Only One Tab in Google Sheets

When sharing a Google Sheets spreadsheet Google usually tries to share the entire document. Here’s how to share only one tab instead.

READ MORE →

Benefits of Data Interpretation

Data interpretation plays a crucial role in decision-making and helps organizations make informed choices. There are numerous benefits of data interpretation, including:

  • Improved decision-making: Data interpretation provides organizations with the information they need to make informed decisions. By analyzing data, organizations can identify trends, patterns, and relationships that they may not have been able to see otherwise.
  • Increased efficiency: By automating the data interpretation process, organizations can save time and improve their overall efficiency. With the right tools and methods, data interpretation can be completed quickly and accurately, providing organizations with the information they need to make decisions more efficiently.
  • Better collaboration: Data interpretation can help organizations work more effectively with others, such as stakeholders, partners, and clients. By providing a common understanding of the data and its implications, organizations can collaborate more effectively and make better decisions.
  • Increased accuracy: Data interpretation helps to ensure that data is accurate and consistent, reducing the risk of errors and miscommunication. By using data interpretation techniques, organizations can identify errors and inconsistencies in their data, making it possible to correct them and ensure the accuracy of their information.
  • Enhanced transparency: Data interpretation can also increase transparency, helping organizations demonstrate their commitment to ethical and responsible data management. By providing clear and concise information, organizations can build trust and credibility with their stakeholders.
  • Better resource allocation: Data interpretation can help organizations make better decisions about resource allocation. By analyzing data, organizations can identify areas where they are spending too much time or money and make adjustments to optimize their resources.
  • Improved planning and forecasting: Data interpretation can also help organizations plan for the future. By analyzing historical data, organizations can identify trends and patterns that inform their forecasting and planning efforts.

Data Interpretation Process

Data interpretation is a process that involves several steps, including:

  • Data collection: The first step in data interpretation is to collect data from various sources, such as surveys, databases, and websites. This data should be relevant to the issue or problem the organization is trying to solve.
  • Data preparation: Once data is collected, it needs to be prepared for analysis. This may involve cleaning the data to remove errors, missing values, or outliers. It may also include transforming the data into a more suitable format for analysis.
  • Data analysis: The next step is to analyze the data using various techniques, such as statistical analysis, visualization, and modeling. This analysis should be focused on uncovering trends, patterns, and relationships in the data.
  • Data interpretation: Once the data has been analyzed, it needs to be interpreted to determine what the results mean. This may involve identifying key insights, drawing conclusions, and making recommendations.
  • Data communication: The final step in the data interpretation process is to communicate the results and insights to others. This may involve creating visualizations, reports, or presentations to share the results with stakeholders.

Data Interpretation Use Cases

Data interpretation can be applied in a variety of settings and industries. Here are a few examples of how data interpretation can be used:

  • Marketing: Marketers use data interpretation to analyze customer behavior, preferences, and trends to inform marketing strategies and campaigns.
  • Healthcare: Healthcare professionals use data interpretation to analyze patient data, including medical histories and test results, to diagnose and treat illnesses.
  • Financial Services: Financial services companies use data interpretation to analyze financial data, such as investment performance, to inform investment decisions and strategies.
  • Retail: Retail companies use data interpretation to analyze sales data, customer behavior, and market trends to inform merchandising and pricing strategies.
  • Manufacturing: Manufacturers use data interpretation to analyze production data, such as machine performance and inventory levels, to inform production and inventory management decisions.

These are just a few examples of how data interpretation can be applied in various settings. The possibilities are endless, and data interpretation can provide valuable insights in any industry where data is collected and analyzed.

Data Interpretation Tools

Data interpretation is a crucial step in the data analysis process, and the right tools can make a significant difference in accuracy and efficiency. Here are a few tools that can help you with data interpretation:

  • Share parts of your spreadsheet, including sheets or even cell ranges, with different collaborators or stakeholders.
  • Review and approve edits by collaborators to their respective sheets before merging them back with your master spreadsheet.
  • Integrate popular tools and connect your tech stack to sync data from different sources, giving you a timely, holistic view of your data.
  • Google Sheets: Google Sheets is a free, web-based spreadsheet application that allows users to create, edit, and format spreadsheets. It provides a range of features for data interpretation, including functions, charts, and pivot tables.
  • Microsoft Excel: Microsoft Excel is a spreadsheet software widely used for data interpretation. It provides various functions and features to help you analyze and interpret data, including sorting, filtering, pivot tables, and charts.
  • Tableau: Tableau is a data visualization tool that helps you see and understand your data. It allows you to connect to various data sources and create interactive dashboards and visualizations to communicate insights.
  • Power BI: Power BI is a business analytics service that provides interactive visualizations and business intelligence capabilities with an easy interface for end users to create their own reports and dashboards.
  • R: R is a programming language and software environment for statistical computing and graphics. It is widely used by statisticians, data scientists, and researchers to analyze and interpret data.

Each of these tools has its strengths and weaknesses, and the right tool for you will depend on your specific needs and requirements. Consider the size and complexity of your data, the analysis methods you need to use, and the level of customization you require, before making a decision.

How to Password Protect a Google Sheet 2022 02 14 135021 vqvh - What is Data Interpretation? Methods, Examples & Tools

How to Password-Protect a Google Sheet?

If you work with important data in Google Sheets, you probably want an extra layer of protection. Here's how you can password protect a Google Sheet

Data Interpretation Challenges and Solutions

Data interpretation can be a complex and challenging process, but there are several solutions that can help overcome some of the most common difficulties.

Overcoming Bias in Data

Data interpretation can often be biased based on the data sources and the people who interpret it. It is important to eliminate these biases to get a clear and accurate understanding of the data. This can be achieved by diversifying the data sources, involving multiple stakeholders in the data interpretation process, and regularly reviewing the data interpretation methodology.

Dealing with Missing Data

Missing data can often result in inaccuracies in the data interpretation process. To overcome this challenge, data scientists can use imputation methods to fill in missing data or use statistical models that can account for missing data.

Addressing Data Privacy Concerns

Data privacy is a crucial concern in today’s data-driven world. To address this, organizations should ensure that their data interpretation processes align with data privacy regulations and that the data being analyzed is adequately secured.

Data Interpretation Examples

Data interpretation is used in a variety of industries and for a range of purposes. Here are a few examples:

Sales Trend Analysis

Sales trend analysis is a common use of data interpretation in the business world. This type of analysis involves looking at sales data over time to identify trends and patterns, which can then be used to make informed business decisions.

Customer Segmentation

Customer segmentation is a data interpretation technique that categorizes customers into segments based on common characteristics. This can be used to create more targeted marketing campaigns and to improve customer engagement.

Predictive Maintenance

Predictive maintenance is a data interpretation technique that uses machine learning algorithms to predict when equipment is likely to fail. This can help organizations proactively address potential issues and reduce downtime.

Fraud Detection

Fraud detection is a use case for data interpretation involving data and machine learning algorithms to identify patterns and anomalies that may indicate fraudulent activity.

Data Interpretation Best Practices

To ensure that data interpretation processes are as effective and accurate as possible, it is recommended to follow some best practices.

Maintaining Data Quality

Data quality is critical to the accuracy of data interpretation. To maintain data quality, organizations should regularly review and validate their data, eliminate data biases, and address missing data.

Choosing the Right Tools

Choosing the right data interpretation tools is crucial to the success of the data interpretation process. Organizations should consider factors such as cost, compatibility with existing tools and processes, and the complexity of the data to be analyzed when choosing the right data interpretation tool. Layer, an add-on that equips teams with the tools to increase efficiency and data quality in their processes on top of Google Sheets, is an excellent choice for organizations looking to optimize their data interpretation process.

Effective Communication of Results

Data interpretation results need to be communicated effectively to stakeholders in a way they can understand. This can be achieved by using visual aids such as charts and graphs and presenting the results clearly and concisely.

Ongoing Learning and Development

The world of data interpretation is constantly evolving, and organizations must stay up to date with the latest developments and best practices. Ongoing learning and development initiatives, such as attending workshops and conferences, can help organizations stay ahead of the curve.

Data Interpretation Tips

Regardless of the data interpretation method used, following best practices can help ensure accurate and reliable results. These best practices include:

  • Validate data sources: It is essential to validate the data sources used to ensure they are accurate, up-to-date, and relevant. This helps to minimize the potential for errors in the data interpretation process.
  • Use appropriate statistical techniques: The choice of statistical methods used for data interpretation should be suitable for the type of data being analyzed. For example, regression analysis is often used for analyzing trends in large data sets, while chi-square tests are used for categorical data.
  • Graph and visualize data: Graphical representations of data can help to quickly identify patterns and trends. Visualization tools like histograms, scatter plots, and bar graphs can make the data more understandable and easier to interpret.
  • Document and explain results: Results from data interpretation should be documented and presented in a clear and concise manner. This includes providing context for the results and explaining how they were obtained.
  • Use a robust data interpretation tool: Data interpretation tools can help to automate the process and minimize the risk of errors. However, choosing a reliable, user-friendly tool that provides the features and functionalities needed to support the data interpretation process is vital.

Data interpretation is a crucial aspect of data analysis and enables organizations to turn large amounts of data into actionable insights. The guide covered the definition, importance, types, methods, benefits, process, analysis, tools, use cases, and best practices of data interpretation.

As technology continues to advance, the methods and tools used in data interpretation will also evolve. Predictive analytics and artificial intelligence will play an increasingly important role in data interpretation as organizations strive to automate and streamline their data analysis processes. In addition, big data and the Internet of Things (IoT) will lead to the generation of vast amounts of data that will need to be analyzed and interpreted effectively.

Data interpretation is a critical skill that enables organizations to make informed decisions based on data. It is essential that organizations invest in data interpretation and the development of their in-house data interpretation skills, whether through training programs or the use of specialized tools like Layer. By staying up-to-date with the latest trends and best practices in data interpretation, organizations can maximize the value of their data and drive growth and success.

Related Posts

50 Best Productivity Apps and Tools in 2023

50 Best Productivity Apps and Tools in 2023

Productivity tools and apps have become increasingly popular in recent years as more and more people strive to optimize their workflows and get more done in less time. These tools range from time management apps that help you stay on top of your schedule to communication and collaboration tools that make it easier to work […]

What Does a Data Analyst Do? (2023 Career Guide)

What Does a Data Analyst Do? (2023 Career Guide)

What Is a Data Analyst?A data analyst is a professional who understands data, uses data to solve problems, and provides insights on data-driven decisions. Data analysts work with large amounts of data and extract useful information from it through business intelligence or data analysis tools. They use statistical techniques to identify trends in data sets, […]

Top 15 Marketing Automation Tools in 2024

Top 15 Marketing Automation Tools in 2024

Top 11 Project Management Software of 2024

Top 11 Project Management Software of 2024

What Is Data Mining? (2024 Beginner’s Guide)

What Is Data Mining? (2024 Beginner’s Guide)

Try sheetgo.

Automate your process on top of spreadsheets

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

analysis and interpretation of data in research example

Home Market Research

Data Analysis in Research: Types & Methods

data-analysis-in-research

Content Index

Why analyze data in research?

Types of data in research, finding patterns in the qualitative data, methods used for data analysis in qualitative research, preparing data for analysis, methods used for data analysis in quantitative research, considerations in research data analysis, what is data analysis in research.

Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. 

Three essential things occur during the data analysis process — the first is data organization . Summarization and categorization together contribute to becoming the second known method used for data reduction. It helps find patterns and themes in the data for easy identification and linking. The third and last way is data analysis – researchers do it in both top-down and bottom-up fashion.

LEARN ABOUT: Research Process Steps

On the other hand, Marshall and Rossman describe data analysis as a messy, ambiguous, and time-consuming but creative and fascinating process through which a mass of collected data is brought to order, structure and meaning.

We can say that “the data analysis and data interpretation is a process representing the application of deductive and inductive logic to the research and data analysis.”

Researchers rely heavily on data as they have a story to tell or research problems to solve. It starts with a question, and data is nothing but an answer to that question. But, what if there is no question to ask? Well! It is possible to explore data even without a problem – we call it ‘Data Mining’, which often reveals some interesting patterns within the data that are worth exploring.

Irrelevant to the type of data researchers explore, their mission and audiences’ vision guide them to find the patterns to shape the story they want to tell. One of the essential things expected from researchers while analyzing data is to stay open and remain unbiased toward unexpected patterns, expressions, and results. Remember, sometimes, data analysis tells the most unforeseen yet exciting stories that were not expected when initiating data analysis. Therefore, rely on the data you have at hand and enjoy the journey of exploratory research. 

Create a Free Account

Every kind of data has a rare quality of describing things after assigning a specific value to it. For analysis, you need to organize these values, processed and presented in a given context, to make it useful. Data can be in different forms; here are the primary data types.

  • Qualitative data: When the data presented has words and descriptions, then we call it qualitative data . Although you can observe this data, it is subjective and harder to analyze data in research, especially for comparison. Example: Quality data represents everything describing taste, experience, texture, or an opinion that is considered quality data. This type of data is usually collected through focus groups, personal qualitative interviews , qualitative observation or using open-ended questions in surveys.
  • Quantitative data: Any data expressed in numbers of numerical figures are called quantitative data . This type of data can be distinguished into categories, grouped, measured, calculated, or ranked. Example: questions such as age, rank, cost, length, weight, scores, etc. everything comes under this type of data. You can present such data in graphical format, charts, or apply statistical analysis methods to this data. The (Outcomes Measurement Systems) OMS questionnaires in surveys are a significant source of collecting numeric data.
  • Categorical data: It is data presented in groups. However, an item included in the categorical data cannot belong to more than one group. Example: A person responding to a survey by telling his living style, marital status, smoking habit, or drinking habit comes under the categorical data. A chi-square test is a standard method used to analyze this data.

Learn More : Examples of Qualitative Data in Education

Data analysis in qualitative research

Data analysis and qualitative data research work a little differently from the numerical data as the quality data is made up of words, descriptions, images, objects, and sometimes symbols. Getting insight from such complicated information is a complicated process. Hence it is typically used for exploratory research and data analysis .

Although there are several ways to find patterns in the textual information, a word-based method is the most relied and widely used global technique for research and data analysis. Notably, the data analysis process in qualitative research is manual. Here the researchers usually read the available data and find repetitive or commonly used words. 

For example, while studying data collected from African countries to understand the most pressing issues people face, researchers might find  “food”  and  “hunger” are the most commonly used words and will highlight them for further analysis.

LEARN ABOUT: Level of Analysis

The keyword context is another widely used word-based technique. In this method, the researcher tries to understand the concept by analyzing the context in which the participants use a particular keyword.  

For example , researchers conducting research and data analysis for studying the concept of ‘diabetes’ amongst respondents might analyze the context of when and how the respondent has used or referred to the word ‘diabetes.’

The scrutiny-based technique is also one of the highly recommended  text analysis  methods used to identify a quality data pattern. Compare and contrast is the widely used method under this technique to differentiate how a specific text is similar or different from each other. 

For example: To find out the “importance of resident doctor in a company,” the collected data is divided into people who think it is necessary to hire a resident doctor and those who think it is unnecessary. Compare and contrast is the best method that can be used to analyze the polls having single-answer questions types .

Metaphors can be used to reduce the data pile and find patterns in it so that it becomes easier to connect data with theory.

Variable Partitioning is another technique used to split variables so that researchers can find more coherent descriptions and explanations from the enormous data.

LEARN ABOUT: Qualitative Research Questions and Questionnaires

There are several techniques to analyze the data in qualitative research, but here are some commonly used methods,

  • Content Analysis:  It is widely accepted and the most frequently employed technique for data analysis in research methodology. It can be used to analyze the documented information from text, images, and sometimes from the physical items. It depends on the research questions to predict when and where to use this method.
  • Narrative Analysis: This method is used to analyze content gathered from various sources such as personal interviews, field observation, and  surveys . The majority of times, stories, or opinions shared by people are focused on finding answers to the research questions.
  • Discourse Analysis:  Similar to narrative analysis, discourse analysis is used to analyze the interactions with people. Nevertheless, this particular method considers the social context under which or within which the communication between the researcher and respondent takes place. In addition to that, discourse analysis also focuses on the lifestyle and day-to-day environment while deriving any conclusion.
  • Grounded Theory:  When you want to explain why a particular phenomenon happened, then using grounded theory for analyzing quality data is the best resort. Grounded theory is applied to study data about the host of similar cases occurring in different settings. When researchers are using this method, they might alter explanations or produce new ones until they arrive at some conclusion.

LEARN ABOUT: 12 Best Tools for Researchers

Data analysis in quantitative research

The first stage in research and data analysis is to make it for the analysis so that the nominal data can be converted into something meaningful. Data preparation consists of the below phases.

Phase I: Data Validation

Data validation is done to understand if the collected data sample is per the pre-set standards, or it is a biased data sample again divided into four different stages

  • Fraud: To ensure an actual human being records each response to the survey or the questionnaire
  • Screening: To make sure each participant or respondent is selected or chosen in compliance with the research criteria
  • Procedure: To ensure ethical standards were maintained while collecting the data sample
  • Completeness: To ensure that the respondent has answered all the questions in an online survey. Else, the interviewer had asked all the questions devised in the questionnaire.

Phase II: Data Editing

More often, an extensive research data sample comes loaded with errors. Respondents sometimes fill in some fields incorrectly or sometimes skip them accidentally. Data editing is a process wherein the researchers have to confirm that the provided data is free of such errors. They need to conduct necessary checks and outlier checks to edit the raw edit and make it ready for analysis.

Phase III: Data Coding

Out of all three, this is the most critical phase of data preparation associated with grouping and assigning values to the survey responses . If a survey is completed with a 1000 sample size, the researcher will create an age bracket to distinguish the respondents based on their age. Thus, it becomes easier to analyze small data buckets rather than deal with the massive data pile.

LEARN ABOUT: Steps in Qualitative Research

After the data is prepared for analysis, researchers are open to using different research and data analysis methods to derive meaningful insights. For sure, statistical analysis plans are the most favored to analyze numerical data. In statistical analysis, distinguishing between categorical data and numerical data is essential, as categorical data involves distinct categories or labels, while numerical data consists of measurable quantities. The method is again classified into two groups. First, ‘Descriptive Statistics’ used to describe data. Second, ‘Inferential statistics’ that helps in comparing the data .

Descriptive statistics

This method is used to describe the basic features of versatile types of data in research. It presents the data in such a meaningful way that pattern in the data starts making sense. Nevertheless, the descriptive analysis does not go beyond making conclusions. The conclusions are again based on the hypothesis researchers have formulated so far. Here are a few major types of descriptive analysis methods.

Measures of Frequency

  • Count, Percent, Frequency
  • It is used to denote home often a particular event occurs.
  • Researchers use it when they want to showcase how often a response is given.

Measures of Central Tendency

  • Mean, Median, Mode
  • The method is widely used to demonstrate distribution by various points.
  • Researchers use this method when they want to showcase the most commonly or averagely indicated response.

Measures of Dispersion or Variation

  • Range, Variance, Standard deviation
  • Here the field equals high/low points.
  • Variance standard deviation = difference between the observed score and mean
  • It is used to identify the spread of scores by stating intervals.
  • Researchers use this method to showcase data spread out. It helps them identify the depth until which the data is spread out that it directly affects the mean.

Measures of Position

  • Percentile ranks, Quartile ranks
  • It relies on standardized scores helping researchers to identify the relationship between different scores.
  • It is often used when researchers want to compare scores with the average count.

For quantitative research use of descriptive analysis often give absolute numbers, but the in-depth analysis is never sufficient to demonstrate the rationale behind those numbers. Nevertheless, it is necessary to think of the best method for research and data analysis suiting your survey questionnaire and what story researchers want to tell. For example, the mean is the best way to demonstrate the students’ average scores in schools. It is better to rely on the descriptive statistics when the researchers intend to keep the research or outcome limited to the provided  sample  without generalizing it. For example, when you want to compare average voting done in two different cities, differential statistics are enough.

Descriptive analysis is also called a ‘univariate analysis’ since it is commonly used to analyze a single variable.

Inferential statistics

Inferential statistics are used to make predictions about a larger population after research and data analysis of the representing population’s collected sample. For example, you can ask some odd 100 audiences at a movie theater if they like the movie they are watching. Researchers then use inferential statistics on the collected  sample  to reason that about 80-90% of people like the movie. 

Here are two significant areas of inferential statistics.

  • Estimating parameters: It takes statistics from the sample research data and demonstrates something about the population parameter.
  • Hypothesis test: I t’s about sampling research data to answer the survey research questions. For example, researchers might be interested to understand if the new shade of lipstick recently launched is good or not, or if the multivitamin capsules help children to perform better at games.

These are sophisticated analysis methods used to showcase the relationship between different variables instead of describing a single variable. It is often used when researchers want something beyond absolute numbers to understand the relationship between variables.

Here are some of the commonly used methods for data analysis in research.

  • Correlation: When researchers are not conducting experimental research or quasi-experimental research wherein the researchers are interested to understand the relationship between two or more variables, they opt for correlational research methods.
  • Cross-tabulation: Also called contingency tables,  cross-tabulation  is used to analyze the relationship between multiple variables.  Suppose provided data has age and gender categories presented in rows and columns. A two-dimensional cross-tabulation helps for seamless data analysis and research by showing the number of males and females in each age category.
  • Regression analysis: For understanding the strong relationship between two variables, researchers do not look beyond the primary and commonly used regression analysis method, which is also a type of predictive analysis used. In this method, you have an essential factor called the dependent variable. You also have multiple independent variables in regression analysis. You undertake efforts to find out the impact of independent variables on the dependent variable. The values of both independent and dependent variables are assumed as being ascertained in an error-free random manner.
  • Frequency tables: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Analysis of variance: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Researchers must have the necessary research skills to analyze and manipulation the data , Getting trained to demonstrate a high standard of research practice. Ideally, researchers must possess more than a basic understanding of the rationale of selecting one statistical method over the other to obtain better data insights.
  • Usually, research and data analytics projects differ by scientific discipline; therefore, getting statistical advice at the beginning of analysis helps design a survey questionnaire, select data collection methods , and choose samples.

LEARN ABOUT: Best Data Collection Tools

  • The primary aim of data research and analysis is to derive ultimate insights that are unbiased. Any mistake in or keeping a biased mind to collect data, selecting an analysis method, or choosing  audience  sample il to draw a biased inference.
  • Irrelevant to the sophistication used in research data and analysis is enough to rectify the poorly defined objective outcome measurements. It does not matter if the design is at fault or intentions are not clear, but lack of clarity might mislead readers, so avoid the practice.
  • The motive behind data analysis in research is to present accurate and reliable data. As far as possible, avoid statistical errors, and find a way to deal with everyday challenges like outliers, missing data, data altering, data mining , or developing graphical representation.

LEARN MORE: Descriptive Research vs Correlational Research The sheer amount of data generated daily is frightening. Especially when data analysis has taken center stage. in 2018. In last year, the total data supply amounted to 2.8 trillion gigabytes. Hence, it is clear that the enterprises willing to survive in the hypercompetitive world must possess an excellent capability to analyze complex research data, derive actionable insights, and adapt to the new market needs.

LEARN ABOUT: Average Order Value

QuestionPro is an online survey platform that empowers organizations in data analysis and research and provides them a medium to collect data by creating appealing surveys.

MORE LIKE THIS

Jotform vs SurveyMonkey

Jotform vs SurveyMonkey: Which Is Best in 2024

Aug 15, 2024

analysis and interpretation of data in research example

360 Degree Feedback Spider Chart is Back!

Aug 14, 2024

Jotform vs Wufoo

Jotform vs Wufoo: Comparison of Features and Prices

Aug 13, 2024

analysis and interpretation of data in research example

Product or Service: Which is More Important? — Tuesday CX Thoughts

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence

Banner

Research Methods

  • Getting Started
  • What is Research Design?
  • Research Approach
  • Research Methodology
  • Data Collection
  • Data Analysis & Interpretation
  • Population & Sampling
  • Theories, Theoretical Perspective & Theoretical Framework
  • Useful Resources

Further Resources

Cover Art

Data Analysis & Interpretation

  • Quantitative Data

Qualitative Data

  • Mixed Methods

You will need to tidy, analyse and interpret the data you collected to give meaning to it, and to answer your research question.  Your choice of methodology points the way to the most suitable method of analysing your data.

analysis and interpretation of data in research example

If the data is numeric you can use a software package such as SPSS, Excel Spreadsheet or “R” to do statistical analysis.  You can identify things like mean, median and average or identify a causal or correlational relationship between variables.  

The University of Connecticut has useful information on statistical analysis.

If your research set out to test a hypothesis your research will either support or refute it, and you will need to explain why this is the case.  You should also highlight and discuss any issues or actions that may have impacted on your results, either positively or negatively.  To fully contribute to the body of knowledge in your area be sure to discuss and interpret your results within the context of your research and the existing literature on the topic.

Data analysis for a qualitative study can be complex because of the variety of types of data that can be collected. Qualitative researchers aren’t attempting to measure observable characteristics, they are often attempting to capture an individual’s interpretation of a phenomena or situation in a particular context or setting.  This data could be captured in text from an interview or focus group, a movie, images, or documents.   Analysis of this type of data is usually done by analysing each artefact according to a predefined and outlined criteria for analysis and then by using a coding system.  The code can be developed by the researcher before analysis or the researcher may develop a code from the research data.  This can be done by hand or by using thematic analysis software such as NVivo.

Interpretation of qualitative data can be presented as a narrative.  The themes identified from the research can be organised and integrated with themes in the existing literature to give further weight and meaning to the research.  The interpretation should also state if the aims and objectives of the research were met.   Any shortcomings with research or areas for further research should also be discussed (Creswell,2009)*.

For further information on analysing and presenting qualitative date, read this article in Nature .

Mixed Methods Data

Data analysis for mixed methods involves aspects of both quantitative and qualitative methods.  However, the sequencing of data collection and analysis is important in terms of the mixed method approach that you are taking.  For example, you could be using a convergent, sequential or transformative model which directly impacts how you use different data to inform, support or direct the course of your study.

The intention in using mixed methods is to produce a synthesis of both quantitative and qualitative information to give a detailed picture of a phenomena in a particular context or setting. To fully understand how best to produce this synthesis it might be worth looking at why researchers choose this method.  Bergin**(2018) states that researchers choose mixed methods because it allows them to triangulate, illuminate or discover a more diverse set of findings.  Therefore, when it comes to interpretation you will need to return to the purpose of your research and discuss and interpret your data in that context. As with quantitative and qualitative methods, interpretation of data should be discussed within the context of the existing literature.

Bergin’s book is available in the Library to borrow. Bolton LTT collection 519.5 BER

Creswell’s book is available in the Library to borrow.  Bolton LTT collection 300.72 CRE

For more information on data analysis look at Sage Research Methods database on the library website.

*Creswell, John W.(2009)  Research design: qualitative, and mixed methods approaches.  Sage, Los Angeles, pp 183

**Bergin, T (2018), Data analysis: quantitative, qualitative and mixed methods. Sage, Los Angeles, pp182

  • << Previous: Data Collection
  • Next: Population & Sampling >>
  • Last Updated: Sep 7, 2023 3:09 PM
  • URL: https://tudublin.libguides.com/research_methods

Data Analysis and Interpretation: Revealing and explaining trends

by Anne E. Egger, Ph.D., Anthony Carpi, Ph.D.

Listen to this reading

Did you know that scientists don't always agree on what data mean? Different scientists can look at the same set of data and come up with different explanations for it, and disagreement among scientists doesn't point to bad science.

Data collection is the systematic recording of information; data analysis involves working to uncover patterns and trends in datasets; data interpretation involves explaining those patterns and trends.

Scientists interpret data based on their background knowledge and experience; thus, different scientists can interpret the same data in different ways.

By publishing their data and the techniques they used to analyze and interpret those data, scientists give the community the opportunity to both review the data and use them in future research.

Before you decide what to wear in the morning, you collect a variety of data: the season of the year, what the forecast says the weather is going to be like, which clothes are clean and which are dirty, and what you will be doing during the day. You then analyze those data . Perhaps you think, "It's summer, so it's usually warm." That analysis helps you determine the best course of action, and you base your apparel decision on your interpretation of the information. You might choose a t-shirt and shorts on a summer day when you know you'll be outside, but bring a sweater with you if you know you'll be in an air-conditioned building.

Though this example may seem simplistic, it reflects the way scientists pursue data collection, analysis , and interpretation . Data (the plural form of the word datum) are scientific observations and measurements that, once analyzed and interpreted, can be developed into evidence to address a question. Data lie at the heart of all scientific investigations, and all scientists collect data in one form or another. The weather forecast that helped you decide what to wear, for example, was an interpretation made by a meteorologist who analyzed data collected by satellites. Data may take the form of the number of bacteria colonies growing in soup broth (see our Experimentation in Science module), a series of drawings or photographs of the different layers of rock that form a mountain range (see our Description in Science module), a tally of lung cancer victims in populations of cigarette smokers and non-smokers (see our Comparison in Science module), or the changes in average annual temperature predicted by a model of global climate (see our Modeling in Science module).

Scientific data collection involves more care than you might use in a casual glance at the thermometer to see what you should wear. Because scientists build on their own work and the work of others, it is important that they are systematic and consistent in their data collection methods and make detailed records so that others can see and use the data they collect.

But collecting data is only one step in a scientific investigation, and scientific knowledge is much more than a simple compilation of data points. The world is full of observations that can be made, but not every observation constitutes a useful piece of data. For example, your meteorologist could record the outside air temperature every second of the day, but would that make the forecast any more accurate than recording it once an hour? Probably not. All scientists make choices about which data are most relevant to their research and what to do with those data: how to turn a collection of measurements into a useful dataset through processing and analysis , and how to interpret those analyzed data in the context of what they already know. The thoughtful and systematic collection, analysis, and interpretation of data allow them to be developed into evidence that supports scientific ideas, arguments, and hypotheses .

Data collection, analysis , and interpretation: Weather and climate

The weather has long been a subject of widespread data collection, analysis , and interpretation . Accurate measurements of air temperature became possible in the mid-1700s when Daniel Gabriel Fahrenheit invented the first standardized mercury thermometer in 1714 (see our Temperature module). Air temperature, wind speed, and wind direction are all critical navigational information for sailors on the ocean, but in the late 1700s and early 1800s, as sailing expeditions became common, this information was not easy to come by. The lack of reliable data was of great concern to Matthew Fontaine Maury, the superintendent of the Depot of Charts and Instruments of the US Navy. As a result, Maury organized the first international Maritime Conference , held in Brussels, Belgium, in 1853. At this meeting, international standards for taking weather measurements on ships were established and a system for sharing this information between countries was founded.

Defining uniform data collection standards was an important step in producing a truly global dataset of meteorological information, allowing data collected by many different people in different parts of the world to be gathered together into a single database. Maury's compilation of sailors' standardized data on wind and currents is shown in Figure 1. The early international cooperation and investment in weather-related data collection has produced a valuable long-term record of air temperature that goes back to the 1850s.

Figure 1: Plate XV from Maury, Matthew F. 1858. The Winds. Chapter in Explanations and Sailing Directions. Washington: Hon. Isaac Toucey.

Figure 1: Plate XV from Maury, Matthew F. 1858. The Winds. Chapter in Explanations and Sailing Directions. Washington: Hon. Isaac Toucey.

This vast store of information is considered "raw" data: tables of numbers (dates and temperatures), descriptions (cloud cover), location, etc. Raw data can be useful in and of itself – for example, if you wanted to know the air temperature in London on June 5, 1801. But the data alone cannot tell you anything about how temperature has changed in London over the past two hundred years, or how that information is related to global-scale climate change. In order for patterns and trends to be seen, data must be analyzed and interpreted first. The analyzed and interpreted data may then be used as evidence in scientific arguments, to support a hypothesis or a theory .

Good data are a potential treasure trove – they can be mined by scientists at any time – and thus an important part of any scientific investigation is accurate and consistent recording of data and the methods used to collect those data. The weather data collected since the 1850s have been just such a treasure trove, based in part upon the standards established by Matthew Maury . These standards provided guidelines for data collections and recording that assured consistency within the dataset . At the time, ship captains were able to utilize the data to determine the most reliable routes to sail across the oceans. Many modern scientists studying climate change have taken advantage of this same dataset to understand how global air temperatures have changed over the recent past. In neither case can one simply look at the table of numbers and observations and answer the question – which route to take, or how global climate has changed. Instead, both questions require analysis and interpretation of the data.

Comprehension Checkpoint

  • Data analysis: A complex and challenging process

Though it may sound straightforward to take 150 years of air temperature data and describe how global climate has changed, the process of analyzing and interpreting those data is actually quite complex. Consider the range of temperatures around the world on any given day in January (see Figure 2): In Johannesburg, South Africa, where it is summer, the air temperature can reach 35° C (95° F), and in Fairbanks, Alaska at that same time of year, it is the middle of winter and air temperatures might be -35° C (-31° F). Now consider that over huge expanses of the ocean, where no consistent measurements are available. One could simply take an average of all of the available measurements for a single day to get a global air temperature average for that day, but that number would not take into account the natural variability within and uneven distribution of those measurements.

Figure 2: Satellite image composite of average air temperatures (in degrees Celsius) across the globe on January 2, 2008 (http://www.ssec.wisc.edu/data/).

Figure 2: Satellite image composite of average air temperatures (in degrees Celsius) across the globe on January 2, 2008 (http://www.ssec.wisc.edu/data/).

Defining a single global average temperature requires scientists to make several decisions about how to process all of those data into a meaningful set of numbers. In 1986, climatologists Phil Jones, Tom Wigley, and Peter Wright published one of the first attempts to assess changes in global mean surface air temperature from 1861 to 1984 (Jones, Wigley, & Wright, 1986). The majority of their paper – three out of five pages – describes the processing techniques they used to correct for the problems and inconsistencies in the historical data that would not be related to climate. For example, the authors note:

Early SSTs [sea surface temperatures] were measured using water collected in uninsulated, canvas buckets, while more recent data come either from insulated bucket or cooling water intake measurements, with the latter considered to be 0.3-0.7° C warmer than uninsulated bucket measurements.

Correcting for this bias may seem simple, just adding ~0.5° C to early canvas bucket measurements, but it becomes more complicated than that because, the authors continue, the majority of SST data do not include a description of what kind of bucket or system was used.

Similar problems were encountered with marine air temperature data . Historical air temperature measurements over the ocean were taken aboard ships, but the type and size of ship could affect the measurement because size "determines the height at which observations were taken." Air temperature can change rapidly with height above the ocean. The authors therefore applied a correction for ship size in their data. Once Jones, Wigley, and Wright had made several of these kinds of corrections, they analyzed their data using a spatial averaging technique that placed measurements within grid cells on the Earth's surface in order to account for the fact that there were many more measurements taken on land than over the oceans.

Developing this grid required many decisions based on their experience and judgment, such as how large each grid cell needed to be and how to distribute the cells over the Earth. They then calculated the mean temperature within each grid cell, and combined all of these means to calculate a global average air temperature for each year. Statistical techniques such as averaging are commonly used in the research process and can help identify trends and relationships within and between datasets (see our Statistics in Science module). Once these spatially averaged global mean temperatures were calculated, the authors compared the means over time from 1861 to 1984.

A common method for analyzing data that occur in a series, such as temperature measurements over time, is to look at anomalies, or differences from a pre-defined reference value . In this case, the authors compared their temperature values to the mean of the years 1970-1979 (see Figure 3). This reference mean is subtracted from each annual mean to produce the jagged lines in Figure 3, which display positive or negative anomalies (values greater or less than zero). Though this may seem to be a circular or complex way to display these data, it is useful because the goal is to show change in mean temperatures rather than absolute values.

Figure 3: The black line shows global temperature anomalies, or differences between averaged yearly temperature measurements and the reference value for the entire globe. The smooth, red line is a filtered 10-year average. (Based on Figure 5 in Jones et al., 1986).

Figure 3: The black line shows global temperature anomalies, or differences between averaged yearly temperature measurements and the reference value for the entire globe. The smooth, red line is a filtered 10-year average. (Based on Figure 5 in Jones et al., 1986).

Putting data into a visual format can facilitate additional analysis (see our Using Graphs and Visual Data module). Figure 3 shows a lot of variability in the data: There are a number of spikes and dips in global temperature throughout the period examined. It can be challenging to see trends in data that have so much variability; our eyes are drawn to the extreme values in the jagged lines like the large spike in temperature around 1876 or the significant dip around 1918. However, these extremes do not necessarily reflect long-term trends in the data.

In order to more clearly see long-term patterns and trends, Jones and his co-authors used another processing technique and applied a filter to the data by calculating a 10-year running average to smooth the data. The smooth lines in the graph represent the filtered data. The smooth line follows the data closely, but it does not reach the extreme values .

Data processing and analysis are sometimes misinterpreted as manipulating data to achieve the desired results, but in reality, the goal of these methods is to make the data clearer, not to change it fundamentally. As described above, in addition to reporting data, scientists report the data processing and analysis methods they use when they publish their work (see our Understanding Scientific Journals and Articles module), allowing their peers the opportunity to assess both the raw data and the techniques used to analyze them.

  • Data interpretation: Uncovering and explaining trends in the data

The analyzed data can then be interpreted and explained. In general, when scientists interpret data, they attempt to explain the patterns and trends uncovered through analysis , bringing all of their background knowledge, experience, and skills to bear on the question and relating their data to existing scientific ideas. Given the personal nature of the knowledge they draw upon, this step can be subjective, but that subjectivity is scrutinized through the peer review process (see our Peer Review in Science module). Based on the smoothed curves, Jones, Wigley, and Wright interpreted their data to show a long-term warming trend. They note that the three warmest years in the entire dataset are 1980, 1981, and 1983. They do not go further in their interpretation to suggest possible causes for the temperature increase, however, but merely state that the results are "extremely interesting when viewed in the light of recent ideas of the causes of climate change."

  • Making data available

The process of data collection, analysis , and interpretation happens on multiple scales. It occurs over the course of a day, a year, or many years, and may involve one or many scientists whose priorities change over time. One of the fundamentally important components of the practice of science is therefore the publication of data in the scientific literature (see our Utilizing the Scientific Literature module). Properly collected and archived data continues to be useful as new research questions emerge. In fact, some research involves re-analysis of data with new techniques, different ways of looking at the data, or combining the results of several studies.

For example, in 1997, the Collaborative Group on Hormonal Factors in Breast Cancer published a widely-publicized study in the prestigious medical journal The Lancet entitled, "Breast cancer and hormone replacement therapy: collaborative reanalysis of data from 51 epidemiological studies of 52,705 women with breast cancer and 108,411 women without breast cancer" (Collaborative Group on Hormonal Factors in Breast Cancer, 1997). The possible link between breast cancer and hormone replacement therapy (HRT) had been studied for years, with mixed results: Some scientists suggested a small increase of cancer risk associated with HRT as early as 1981 (Brinton et al., 1981), but later research suggested no increased risk (Kaufman et al., 1984). By bringing together results from numerous studies and reanalyzing the data together, the researchers concluded that women who were treated with hormone replacement therapy were more like to develop breast cancer. In describing why the reanalysis was used, the authors write:

The increase in the relative risk of breast cancer associated with each year of [HRT] use in current and recent users is small, so inevitably some studies would, by chance alone, show significant associations and others would not. Combination of the results across many studies has the obvious advantage of reducing such random fluctuations.

In many cases, data collected for other purposes can be used to address new questions. The initial reason for collecting weather data, for example, was to better predict winds and storms to help assure safe travel for trading ships. It is only more recently that interest shifted to long-term changes in the weather, but the same data easily contribute to answering both of those questions.

  • Technology for sharing data advances science

One of the most exciting advances in science today is the development of public databases of scientific information that can be accessed and used by anyone. For example, climatic and oceanographic data , which are generally very expensive to obtain because they require large-scale operations like drilling ice cores or establishing a network of buoys across the Pacific Ocean, are shared online through several web sites run by agencies responsible for maintaining and distributing those data, such as the Carbon Dioxide Information Analysis Center run by the US Department of Energy (see Research under the Resources tab). Anyone can download those data to conduct their own analyses and make interpretations . Likewise, the Human Genome Project has a searchable database of the human genome, where researchers can both upload and download their data (see Research under the Resources tab).

The number of these widely available datasets has grown to the point where the National Institute of Standards and Technology actually maintains a database of databases. Some organizations require their participants to make their data publicly available, such as the Incorporated Research Institutions for Seismology (IRIS): The instrumentation branch of IRIS provides support for researchers by offering seismic instrumentation, equipment maintenance and training, and logistical field support for experiments . Anyone can apply to use the instruments as long as they provide IRIS with the data they collect during their seismic experiments. IRIS then makes these data available to the public.

Making data available to other scientists is not a new idea, but having those data available on the Internet in a searchable format has revolutionized the way that scientists can interact with the data, allowing for research efforts that would have been impossible before. This collective pooling of data also allows for new kinds of analysis and interpretation on global scales and over long periods of time. In addition, making data easily accessible helps promote interdisciplinary research by opening the doors to exploration by diverse scientists in many fields.

Table of Contents

  • Data collection, analysis, and interpretation: Weather and climate
  • Different interpretations in the scientific community
  • Debate over data interpretation spurs further research

Activate glossary term highlighting to easily identify key terms within the module. Once highlighted, you can click on these terms to view their definitions.

Activate NGSS annotations to easily identify NGSS standards within the module. Once highlighted, you can click on them to view these standards.

  • Submit your COVID-19 Pandemic Research
  • Research Leap Manual on Academic Writing
  • Conduct Your Survey Easily
  • Research Tools for Primary and Secondary Research
  • Useful and Reliable Article Sources for Researchers
  • Tips on writing a Research Paper
  • Stuck on Your Thesis Statement?
  • Out of the Box
  • How to Organize the Format of Your Writing
  • Argumentative Versus Persuasive. Comparing the 2 Types of Academic Writing Styles
  • Very Quick Academic Writing Tips and Advices
  • Top 4 Quick Useful Tips for Your Introduction
  • Have You Chosen the Right Topic for Your Research Paper?
  • Follow These Easy 8 Steps to Write an Effective Paper
  • 7 Errors in your thesis statement
  • How do I even Write an Academic Paper?
  • Useful Tips for Successful Academic Writing

Promoting Digital Technologies to Enhance Human Resource Progress in Banking

Enhancing customer loyalty in the e-food industry: examining customer perspectives on lock-in strategies, self-disruption as a strategy for leveraging a bank’s sustainability during disruptive periods: a perspective from the caribbean financial institutions.

  • Chinese Direct Investments in Germany
  • Evaluation of German Life Insurers Based on Published Solvency and Financial Condition Reports: An Alternative Model
  • A Comparative Analysis of E-commerce Consumer Purchasing Decisions: Taobao in Shanghai and Daraz in Dhaka
  • Information Security Management System Practices in Kenya
  • The Influence of Risk Management Culture and Process on Competitive Advantage: Mediation Role of Employee Engagement in Construction Companies in Senegal
  • Slide Share

Research leap

Understanding statistical analysis: A beginner’s guide to data interpretation

Statistical analysis is a crucial part of research in many fields. It is used to analyze data and draw conclusions about the population being studied. However, statistical analysis can be complex and intimidating for beginners. In this article, we will provide a beginner’s guide to statistical analysis and data interpretation, with the aim of helping researchers understand the basics of statistical methods and their application in research.

What is Statistical Analysis?

Statistical analysis is a collection of methods used to analyze data. These methods are used to summarize data, make predictions, and draw conclusions about the population being studied. Statistical analysis is used in a variety of fields, including medicine, social sciences, economics, and more.

Statistical analysis can be broadly divided into two categories: descriptive statistics and inferential statistics. Descriptive statistics are used to summarize data, while inferential statistics are used to draw conclusions about the population based on a sample of data.

Descriptive Statistics

Descriptive statistics are used to summarize data. This includes measures such as the mean, median, mode, and standard deviation. These measures provide information about the central tendency and variability of the data. For example, the mean provides information about the average value of the data, while the standard deviation provides information about the variability of the data.

Inferential Statistics

Inferential statistics are used to draw conclusions about the population based on a sample of data. This involves making inferences about the population based on the sample data. For example, a researcher might use inferential statistics to test whether there is a significant difference between two groups in a study.

Statistical Analysis Techniques

There are many different statistical analysis techniques that can be used in research. Some of the most common techniques include:

Correlation Analysis: This involves analyzing the relationship between two or more variables.

Regression Analysis: This involves analyzing the relationship between a dependent variable and one or more independent variables.

T-Tests: This is a statistical test used to compare the means of two groups.

Analysis of Variance (ANOVA): This is a statistical test used to compare the means of three or more groups.

Chi-Square Test: This is a statistical test used to determine whether there is a significant association between two categorical variables.

Data Interpretation

Once data has been analyzed, it must be interpreted. This involves making sense of the data and drawing conclusions based on the results of the analysis. Data interpretation is a crucial part of statistical analysis, as it is used to draw conclusions and make recommendations based on the data.

When interpreting data, it is important to consider the context in which the data was collected. This includes factors such as the sample size, the sampling method, and the population being studied. It is also important to consider the limitations of the data and the statistical methods used.

Best Practices for Statistical Analysis

To ensure that statistical analysis is conducted correctly and effectively, there are several best practices that should be followed. These include:

Clearly define the research question : This is the foundation of the study and will guide the analysis.

Choose appropriate statistical methods: Different statistical methods are appropriate for different types of data and research questions.

Use reliable and valid data: The data used for analysis should be reliable and valid. This means that it should accurately represent the population being studied and be collected using appropriate methods.

Ensure that the data is representative: The sample used for analysis should be representative of the population being studied. This helps to ensure that the results of the analysis are applicable to the population.

Follow ethical guidelines : Researchers should follow ethical guidelines when conducting research. This includes obtaining informed consent from participants, protecting their privacy, and ensuring that the study does not cause harm.

Statistical analysis and data interpretation are essential tools for any researcher. Whether you are conducting research in the social sciences, natural sciences, or humanities, understanding statistical methods and interpreting data correctly is crucial to drawing accurate conclusions and making informed decisions. By following the best practices for statistical analysis and data interpretation outlined in this article, you can ensure that your research is based on sound statistical principles and is therefore more credible and reliable. Remember to start with a clear research question, use appropriate statistical methods, and always interpret your data in context. With these guidelines in mind, you can confidently approach statistical analysis and data interpretation and make meaningful contributions to your field of study.

Suggested Articles

data analysis

Types of data analysis software In research work, received cluster of results and dispersion in…

analysis and interpretation of data in research example

How to use quantitative data analysis software   Data analysis differentiates the scientist from the…

analysis and interpretation of data in research example

Using free research Qualitative Data Analysis Software is a great way to save money, highlight…

Learn about ethical standards and conducting research in an ethical and responsible manner.

Research is a vital part of advancing knowledge in any field, but it must be…

Related Posts

analysis and interpretation of data in research example

Comments are closed.

Log in using your username and password

  • Search More Search for this keyword Advanced search
  • Latest content
  • Current issue
  • Write for Us
  • BMJ Journals

You are here

  • Volume 17, Issue 1
  • Qualitative data analysis: a practical example
  • Article Text
  • Article info
  • Citation Tools
  • Rapid Responses
  • Article metrics

Download PDF

  • Helen Noble 1 ,
  • Joanna Smith 2
  • 1 School of Nursing and Midwifery, Queens's University Belfast , Belfast , UK
  • 2 Department of Health Sciences , University of Huddersfield , Huddersfield , UK
  • Correspondence to : Dr Helen Noble School of Nursing and Midwifery, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; helen.noble{at}qub.ac.uk

https://doi.org/10.1136/eb-2013-101603

Statistics from Altmetric.com

Request permissions.

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

The aim of this paper is to equip readers with an understanding of the principles of qualitative data analysis and offer a practical example of how analysis might be undertaken in an interview-based study.

What is qualitative data analysis?

What are the approaches in undertaking qualitative data analysis.

Although qualitative data analysis is inductive and focuses on meaning, approaches in analysing data are diverse with different purposes and ontological (concerned with the nature of being) and epistemological (knowledge and understanding) underpinnings. 2 Identifying an appropriate approach in analysing qualitative data analysis to meet the aim of a study can be challenging. One way to understand qualitative data analysis is to consider the processes involved. 3 Approaches can be divided into four broad groups: quasistatistical approaches such as content analysis; the use of frameworks or matrices such as a framework approach and thematic analysis; interpretative approaches that include interpretative phenomenological analysis and grounded theory; and sociolinguistic approaches such as discourse analysis and conversation analysis. However, there are commonalities across approaches. Data analysis is an interactive process, where data are systematically searched and analysed in order to provide an illuminating description of phenomena; for example, the experience of carers supporting dying patients with renal disease 4 or student nurses’ experiences following assignment referral. 5 Data analysis is an iterative or recurring process, essential to the creativity of the analysis, development of ideas, clarifying meaning and the reworking of concepts as new insights ‘emerge’ or are identified in the data.

Do you need data software packages when analysing qualitative data?

Qualitative data software packages are not a prerequisite for undertaking qualitative analysis but a range of programmes are available that can assist the qualitative researcher. Software programmes vary in design and application but can be divided into text retrievers, code and retrieve packages and theory builders. 6 NVivo and NUD*IST are widely used because they have sophisticated code and retrieve functions and modelling capabilities, which speed up the process of managing large data sets and data retrieval. Repetitions within data can be quantified and memos and hyperlinks attached to data. Analytical processes can be mapped and tracked and linkages across data visualised leading to theory development. 6 Disadvantages of using qualitative data software packages include the complexity of the software and some programmes are not compatible with standard text format. Extensive coding and categorising can result in data becoming unmanageable and researchers may find visualising data on screen inhibits conceptualisation of the data.

How do you begin analysing qualitative data?

Despite the diversity of qualitative methods, the subsequent analysis is based on a common set of principles and for interview data includes: transcribing the interviews; immersing oneself within the data to gain detailed insights into the phenomena being explored; developing a data coding system; and linking codes or units of data to form overarching themes/concepts, which may lead to the development of theory. 2 Identifying recurring and significant themes, whereby data are methodically searched to identify patterns in order to provide an illuminating description of a phenomenon, is a central skill in undertaking qualitative data analysis. Table 1 contains an extract of data taken from a research study which included interviews with carers of people with end-stage renal disease managed without dialysis. The extract is taken from a carer who is trying to understand why her mother was not offered dialysis. The first stage of data analysis involves the process of initial coding, whereby each line of the data is considered to identify keywords or phrases; these are sometimes known as in vivo codes (highlighted) because they retain participants’ words.

  • View inline

Data extract containing units of data and line-by-line coding

When transcripts have been broken down into manageable sections, the researcher sorts and sifts them, searching for types, classes, sequences, processes, patterns or wholes. The next stage of data analysis involves bringing similar categories together into broader themes. Table 2 provides an example of the early development of codes and categories and how these link to form broad initial themes.

Development of initial themes from descriptive codes

Table 3 presents an example of further category development leading to final themes which link to an overarching concept.

Development of final themes and overarching concept

How do qualitative researchers ensure data analysis procedures are transparent and robust?

In congruence with quantitative researchers, ensuring qualitative studies are methodologically robust is essential. Qualitative researchers need to be explicit in describing how and why they undertook the research. However, qualitative research is criticised for lacking transparency in relation to the analytical processes employed, which hinders the ability of the reader to critically appraise study findings. 7 In the three tables presented the progress from units of data to coding to theme development is illustrated. ‘Not involved in treatment decisions’ appears in each table and informs one of the final themes. Documenting the movement from units of data to final themes allows for transparency of data analysis. Although other researchers may interpret the data differently, appreciating and understanding how the themes were developed is an essential part of demonstrating the robustness of the findings. Qualitative researchers must demonstrate rigour, associated with openness, relevance to practice and congruence of the methodological approch. 2 In summary qualitative research is complex in that it produces large amounts of data and analysis is time consuming and complex. High-quality data analysis requires a researcher with expertise, vision and veracity.

  • Cheater F ,
  • Robshaw M ,
  • McLafferty E ,
  • Maggs-Rapport F

Competing interests None.

Read the full text or download the PDF:

U.S. flag

Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

THE CDC FIELD EPIDEMIOLOGY MANUAL

Analyzing and Interpreting Data

Richard C. Dicker

  • Planning the Analysis
  • Analyzing Data from a Field Investigation
  • Summary Exposure Tables

Stratified Analysis

  • Confounding
  • Effect Modification
  • Dose-Response
  • Interpreting Data from a Field Investigation

Field investigations are usually conducted to identify the factors that increased a person’s risk for a disease or other health outcome. In certain field investigations, identifying the cause is sufficient; if the cause can be eliminated, the problem is solved. In other investigations, the goal is to quantify the association between exposure (or any population characteristic) and the health outcome to guide interventions or advance knowledge. Both types of field investigations require suitable, but not necessarily sophisticated, analytic methods. This chapter describes the strategy for planning an analysis, methods for conducting the analysis, and guidelines for interpreting the results.

A thoughtfully planned and carefully executed analysis is as crucial for a field investigation as it is for a protocol-based study. Planning is necessary to ensure that the appropriate hypotheses will be considered and that the relevant data will be collected, recorded, managed, analyzed, and interpreted to address those hypotheses. Therefore, the time to decide what data to collect and how to analyze those data is before you design your questionnaire, not after you have collected the data.

An analysis plan is a document that guides how you progress from raw data to the final report. It describes where you are starting (data sources and data sets), how you will look at and analyze the data, and where you need to finish (final report). It lays out the key components of the analysis in a logical sequence and provides a guide to follow during the actual analysis.

An analysis plan includes some or most of the content listed in Box 8.1 . Some of the listed elements are more likely to appear in an analysis plan for a protocol-based planned study, but even an outbreak investigation should include the key components in a more abbreviated analysis plan, or at least in a series of table shells.

  • List of the research questions or hypotheses
  • Source(s) of data
  • Description of population or groups (inclusion or exclusion criteria)
  • Source of data or data sets, particularly for secondary data analysis or population denominators
  • Type of study
  • How data will be manipulated
  • Data sets to be used or merged
  • New variables to be created
  • Key variables (attach data dictionary of all variables)
  • Demographic and exposure variables
  • Outcome or endpoint variables
  • Stratification variables (e.g., potential confounders or effect modifiers)
  • How variables will be analyzed (e.g., as a continuous variable or grouped in categories)
  • How to deal with missing values
  • Order of analysis (e.g., frequency distributions, two-way tables, stratified analysis, dose-response, or group analysis)
  • Measures of occurrence, association, tests of significance, or confidence intervals to be used
  • Table shells to be used in analysis
  • Tables shells to be included in final report
  • Research question or hypotheses . The analysis plan usually begins with the research questions or hypotheses you plan to address. Well-reasoned research questions or hypotheses lead directly to the variables that need to be analyzed and the methods of analysis. For example, the question, “What caused the outbreak of gastroenteritis?” might be a suitable objective for a field investigation, but it is not a specific research question. A more specific question—for example, “Which foods were more likely to have been consumed by case-patients than by controls?”—indicates that key variables will be food items and case–control status and that the analysis method will be a two-by-two table for each food.
  • Analytic strategies . Different types of studies (e.g., cohort, case–control, or cross-sectional) are analyzed with different measures and methods. Therefore, the analysis strategy must be consistent with how the data will be collected. For example, data from a simple retrospective cohort study should be analyzed by calculating and comparing attack rates among exposure groups. Data from a case–control study must be analyzed by comparing exposures among case-patients and controls, and the data must account for matching in the analysis if matching was used in the design. Data from a cross-sectional study or survey might need to incorporate weights or design effects in the analysis.The analysis plan should specify which variables are most important—exposures and outcomes of interest, other known risk factors, study design factors (e.g., matching variables), potential confounders, and potential effect modifiers.
  • Data dictionary . A data dictionary is a document that provides key information about each variable. Typically, a data dictionary lists each variable’s name, a brief description, what type of variable it is (e.g., numeric, text, or date), allowable values, and an optional comment. Data dictionaries can be organized in different ways, but a tabular format with one row per variable, and columns for name, description, type, legal value, and comment is easy to organize (see example in Table 8.1 from an outbreak investigation of oropharyngeal tularemia [ 1 ]). A supplement to the data dictionary might include a copy of the questionnaire with the variable names written next to each question.
  • Get to know your data . Plan to get to know your data by reviewing (1) the frequency of responses and descriptive statistics for each variable; (2) the minimum, maximum, and average values for each variable; (3) whether any variables have the same response for every record; and (4) whether any variables have many or all missing values. These patterns will influence how you analyze these variables or drop them from the analysis altogether.
  • Table shells . The next step in developing the analysis plan is designing the table shells. A table shell, sometimes called a dummy table , is a table (e.g., frequency distribution or two-by-two table) that is titled and fully labeled but contains no data. The numbers will be filled in as the analysis progresses. Table shells provide a guide to the analysis, so their sequence should proceed in logical order from simple (e.g., descriptive epidemiology) to more complex (e.g., analytic epidemiology) ( Box 8.2 ). Each table shell should indicate which measures (e.g., attack rates, risk ratios [RR] or odds ratios [ORs], 95% confidence intervals [CIs]) and statistics (e.g., chi-square and p value) should accompany the table. See Handout 8.1 for an example of a table shell created for the field investigation of oropharyngeal tularemia ( 1 ).

The first two tables usually generated as part of the analysis of data from a field investigation are those that describe clinical features of the case-patients and present the descriptive epidemiology. Because descriptive epidemiology is addressed in Chapter 6 , the remainder of this chapter addresses the analytic epidemiology tools used most commonly in field investigations.

Handout 8.2 depicts output from the Classic Analysis module of Epi Info 7 (Centers for Disease Control and Prevention, Atlanta, GA) ( 2 ). It demonstrates the output from the TABLES command for data from a typical field investigation. Note the key elements of the output: (1) a cross-tabulated table summarizing the results, (2) point estimates of measures of association, (3) 95% CIs for each point estimate, and (4) statistical test results. Each of these elements is discussed in the following sections.

Partial data dictionary from investigation of an outbreak of oropharyngeal tularemia (Sancaktepe Village, Bayburt Province, Turkey, July–August 2013)
ID Participant identification number Numeric Assigned
HH_size Number of persons living in the household Numeric
DOB Date of birth Date dd/mm/yyyy
Lab_tularemia Microagglutination test result Numeric 1 = positive 2 = negative
Age Age (yrs) Numeric
Sex Sex Text M = male F = female
Fever Fever Numeric 1 = yes 2 = no
Chills Chills Numeric 1 = yes 2 = no
Sore throat Sore throat Numeric 1 = yes 2 = no
Node_swollen Swollen lymph node Numeric 1 = yes 2 = no
Node_where Site of swollen lymph node Text
Case_susp Meets definition of suspected case Numeric 1 = yes 2 = no Created variable: Swollen lymph node around neck or ears, sore throat, conjunctivitis, or ≥2 of fever, chills, myalgia, headache
Case_prob Meets definition of probable case Numeric 1 = yes 2 = no Created variable: Swollen lymph node and (sore throat or fever)
Case_confirm Meets definition of confirmed case Numeric 1 = yes 2 = no Created variable: Laboratory test-positive
Case_probconf Meets definition of probable or confirmed case Numeric 1 = yes 2 = no Created variable: Case_ prob = 1 or Case_ confirm = 1
R_Tap_H2O Drank tap water during Ramadan Numeric 1 = yes 2 = no

Source: Adapted from Reference 1 .

Handout 8.2 : Time, by date of illness onset (could be included in Table 1, but for outbreaks, better to display as an epidemic curve).

Table 1 . Clinical features (e.g., signs and symptoms, percentage of laboratory-confirmed cases, percentage of hospitalized patients, and percentage of patients who died).

Table 2 . Demographic (e.g., age and sex) and other key characteristics of study participants by case–control status if case–control study.

Place (geographic area of residence or occurrence in Table 2 or in a spot or shaded map).

Table 3 . Primary tables of exposure-outcome association.

Table 4 . Stratification (Table 3 with separate effects and assessment of confounding and effect modification).

Table 5 . Refinements (Table 3 with, for example, dose-response, latency, and use of more sensitive or more specific case definition).

Table 6 . Specific group analyses.

Two-by-Two Tables

A two-by-two table is so named because it is a cross-tabulation of two variables—exposure and health outcome—that each have two categories, usually “yes” and “no” ( Handout 8.3 ). The two-by-two table is the best way to summarize data that reflect the association between a particular exposure (e.g., consumption of a specific food) and the health outcome of interest (e.g., gastroenteritis). The association is usually quantified by calculating a measure of association (e.g., a risk ratio [RR] or OR) from the data in the two-by-two table (see the following section).

  • In a typical two-by-two table used in field epidemiology, disease status (e.g., ill or well, case or control) is represented along the top of the table, and exposure status (e.g., exposed or unexposed) along the side.
  • Depending on the exposure being studied, the rows can be labeled as shown in Table 8.3 , or for example, as exposed and unexposed or ever and never . By convention, the exposed group is placed on the top row.
  • Depending on the disease or health outcome being studied, the columns can be labeled as shown in Handout 8.3, or for example, as ill and well, case and control , or dead and alive . By convention, the ill or case group is placed in the left column.
  • The intersection of a row and a column in which a count is recorded is known as a cell . The letters a, b, c , and d within the four cells refer to the number of persons with the disease status indicated in the column heading at the top and the exposure status indicated in the row label to the left. For example, cell c contains the number of ill but unexposed persons. The row totals are labeled H 1 and H 0 (or H 2 [H for horizontal ]) and the columns are labeled V 1 and V 0 (or V 2 [V for vertical ]). The total number of persons included in the two-by-two table is written in the lower right corner and is represented by the letter T or N .
  • If the data are from a cohort study, attack rates (i.e., the proportion of persons who become ill during the time period of interest) are sometimes provided to the right of the row totals. RRs or ORs, CIs, or p values are often provided to the right of or beneath the table.

The illustrative cross-tabulation of tap water consumption (exposure) and illness status (outcome) from the investigation of oropharyngeal tularemia is displayed in Table 8.2 ( 1 ).

Table Shell: Association Between Drinking Water From Different Sources And Oropharyngeal Tularemia (Sancaktepe Village, Bayburt Province, Turkey, July– August 2013)

No. exposed persons
Exposure III Well Total Attack rate (%)
Tap _______ _______ _______ _______
Well _______ _______ _______ _______
Spring _______ _______ _______ _______
Bottle _______ _______ _______ _______
Other _______ _______ _______ _______
No. unexposed persons
III Well Total Attack rate % Risk ratio (95% CI)
Tap _______ _______ _______  (    –   )
Well _______ _______ _______ (    –   )
Spring _______ _______ _______ (    –   )
Bottle _______ _______ _______ (    –   )
Other _______ _______ _______ (    –   )

Abbreviation: CI, confidence interval. Adapted from Reference 1 .

Typical Output From Classic Analysis Module, Epi Info Version 7, Using The Tables Command

Tables Vanilla Ill
43 11 54
Row% 79.63% 20.37% 100.00%
Col% 93.48% 37.93% 72.00%
3 18 21
Row% 14.29% 85.71% 100.00%
Col% 6.52% 62.07% 28.00%
46 29 75
Row% 61.33% 38.67% 100.00%
Col% 100.00% 100.00% 100.00%
Single Table Analysis
 
PARAMETERS: Odds-based
Odds Ratio (cross product) 23.4545 5.8410 94.1811 (T)
Odds Ratio (MLE) 22.1490 5.9280 109.1473 (M)
5.2153 138.3935 (F)
PARAMETERS: Risk-based
Risk Ratio (RR) 5.5741 1.9383 16.0296 (T)
Risk Differences (RD%) 65.3439 46.9212 83.7666 (T)
(T=Taylor series; MLE= Maximum Likelihood Estimate; M=Mid– P; F=Fisher Exact)
Chi-square – uncorrected 27.2225 0.0000013505
Chi-square – Mantel-Haenszel 26.8596 0.0000013880
Chi-square – corrected (Yates) 24.5370 0.0000018982
Mid-p exact 0.0000001349
Fisher exact 0.0000002597 0.0000002597

Source: Reference 2 .

Table Shell: Association Between Drinking Water From Different Sources and Oropharyngeal Tularemia (Sancaktepe Village, Bayburt Province, Turkey, July– August 2013)

Abbreviation: CI, confidence interval.

Consumption of tap water and risk for acquiring oropharyngeal tularemia (Sancaktepe Village, Turkey, July–August 2013)
Drank tap water
Yes 46 127 173 26.6
No 9 76 85 10.6
Total 55 203 258 21.3

Risk ratio = 26.59 / 10.59 = 2.5; 95% confidence interval = (1.3–4.9); chi-square (uncorrected) = 8.7 (p = 0.003). Source: Adapted from Reference 1.

Measures of Association

A measure of association quantifies the strength or magnitude of the statistical association between an exposure and outcome. Measures of association are sometimes called measures of effect because if the exposure is causally related to the health outcome, the measure quantifies the effect of exposure on the probability that the health outcome will occur.

The measures of association most commonly used in field epidemiology are all ratios—RRs, ORs, prevalence ratios (PRs), and prevalence ORs (PORs). These ratios can be thought of as comparing the observed with the expected—that is, the observed amount of disease among persons exposed versus the expected (or baseline) amount of disease among persons unexposed. The measures clearly demonstrate whether the amount of disease among the exposed group is similar to, higher than, or lower than (and by how much) the amount of disease in the baseline group.

  • The value of each measure of association equals 1.0 when the amount of disease is the same among the exposed and unexposed groups.
  • The measure has a value greater than 1.0 when the amount of disease is greater among the exposed group than among the unexposed group, consistent with a harmful effect.
  • The measure has a value less than 1.0 when the amount of disease among the exposed group is less than it is among the unexposed group, as when the exposure protects against occurrence of disease (e.g., vaccination).

Different measures of association are used with different types of studies. The most commonly used measure in a typical outbreak investigation retrospective cohort study is the RR , which is simply the ratio of attack rates. For most case–control studies, because attack rates cannot be calculated, the measure of choice is the OR .

Cross-sectional studies or surveys typically measure prevalence (existing cases) rather than incidence (new cases) of a health condition. Prevalence measures of association analogous to the RR and OR—the PR and POR , respectively—are commonly used.

Risk Ratio (Relative Risk)

The RR, the preferred measure for cohort studies, is calculated as the attack rate (risk) among the exposed group divided by the attack rate (risk) among the unexposed group. Using the notations in Handout 8.3,

RR=risk exposed /risk unexposed = (a/H 1 ) / (c/H 0 )

From Table 8.2 , the attack rate (i.e., risk) for acquiring oropharyngeal tularemia among persons who had drunk tap water at the banquet was 26.6%. The attack rate (i.e., risk) for those who had not drunk tap water was 10.6%. Thus, the RR is calculated as 0.266/ 0.106 = 2.5. That is, persons who had drunk tap water were 2.5 times as likely to become ill as those who had not drunk tap water ( 1 ).

The OR is the preferred measure of association for case–control data. Conceptually, it is calculated as the odds of exposure among case-patients divided by the odds of exposure among controls. However, in practice, it is calculated as the cross-product ratio. Using the notations in Handout 8.3,

The illustrative data in Handout 8.4 are from a case–control study of acute renal failure in Panama in 2006 (3). Because the data are from a case–control study, neither attack rates (risks) nor an RR can be calculated. The OR—calculated as 37 × 110/ (29 × 4) = 35.1—is exceptionally high, indicating a strong association between ingesting liquid cough syrup and acute renal failure.

Confounding is the distortion of an exposure–outcome association by the effect of a third factor (a confounder ). A third factor might be a confounder if it is

  • Associated with the outcome independent of the exposure—that is, it must be an independent risk factor; and,
  • Associated with the exposure but is not a consequence of it.

Consider a hypothetical retrospective cohort study of mortality among manufacturing employees that determined that workers involved with the manufacturing process were substantially more likely to die during the follow-up period than office workers and salespersons in the same industry.

  • The increase in mortality reflexively might be attributed to one or more exposures during the manufacturing process.
  • If, however, the manufacturing workers’ average age was 15 years older than the other workers, mortality reasonably could be expected to be higher among the older workers.
  • In that situation, age likely is a confounder that could account for at least some of the increased mortality. (Note that age satisfies the two criteria described previously: increasing age is associated with increased mortality, regardless of occupation; and, in that industry, age was associated with job—specifically, manufacturing employees were older than the office workers).

Unfortunately, confounding is common. The first step in dealing with confounding is to look for it. If confounding is identified, the second step is to control for or adjust for its distorting effect by using available statistical methods.

Looking for Confounding

The most common method for looking for confounding is to stratify the exposure–outcome association of interest by the third variable suspected to be a confounder.

  • Because one of the two criteria for a confounding variable is that it should be associated with the outcome, the list of potential confounders should include the known risk factors for the disease. The list also should include matching variables. Because age frequently is a confounder, it should be considered a potential confounder in any data set.
  • For each stratum, compute a stratum-specific measure of association. If the stratification variable is sex, only women will be in one stratum and only men in the other. The exposure–outcome association is calculated separately for women and for men. Sex can no longer be a confounder in these strata because women are compared with women and men are compared with men.

The OR is a useful measure of association because it provides an estimate of the association between exposure and disease from case–control data when an RR cannot be calculated. Additionally, when the outcome is relatively uncommon among the population (e.g., <5%), the OR from a case–control study approximates the RR that would have been derived from a cohort study, had one been performed. However, when the outcome is more common, the OR overestimates the RR.

Prevalence Ratio and Prevalence Odds Ratio

Cross-sectional studies or surveys usually measure the prevalence rather than incidence of a health status (e.g., vaccination status) or condition (e.g., hypertension) among a population. The prevalence measures of association analogous to the RR and OR are, respectively, the PR and POR .

The PR is calculated as the prevalence among the index group divided by the prevalence among the comparison group. Using the notations in Handout 8.3 ,

PR = prevalence index / prevalence comparison = (a/H 1 ) / (c/H 0 )

The POR is calculated like an OR.

POR = ad/bc

In a study of HIV seroprevalence among current users of crack cocaine versus never users, 165 of 780 current users were HIV-positive (prevalence = 21.2%), compared with 40 of 464 never users (prevalence = 8.6%) (4). The PR and POR were close (2.5 and 2.8, respectively), but the PR is easier to explain.

Ingestion Of Prescription Liquid Cough Syrup In Response To Direct Questioning: Acute Renal Failure Case–Control Study (Panama, 2006)
Used liquid cough syrup? Cases Controls Total
Yes 37 29 81
No 4 110 35
Total 41 139 116

Odds ratio = 35.1; 95% confidence interval = (11.6–106.4); chi-square (uncorrected) = 65.6 (p<0.001). Source: Adapted from Reference 3 .

Measures of Public Health Impact

A measure of public health impact places the exposure–disease association in a public health perspective. The impact measure reflects the apparent contribution of the exposure to the health outcome among a population. For example, for an exposure associated with an increased risk for disease (e.g., smoking and lung cancer), the attributable risk percent represents the amount of lung cancer among smokers ascribed to smoking, which also can be regarded as the expected reduction in disease load if the exposure could be removed or had never existed.

For an exposure associated with a decreased risk for disease (e.g., vaccination), the prevented fraction represents the observed reduction in disease load attributable to the current level of exposure among the population. Note that the terms attributable and prevented convey more than mere statistical association. They imply a direct cause-and-effect relationship between exposure and disease. Therefore, these measures should be presented only after thoughtful inference of causality.

Attributable Risk Percent

The attributable risk percent (attributable fraction or proportion among the exposed, etiologic fraction) is the proportion of cases among the exposed group presumably attributable to the exposure. This measure assumes that the level of risk among the unexposed group (who are considered to have the baseline or background risk for disease) also applies to the exposed group, so that only the excess risk should be attributed to the exposure. The attributable risk percent can be calculated with either of the following algebraically equivalent formulas:

Attributable risk percent = (risk exposed / risk unexposed ) / risk exposed = (RR–1) / RR

In a case– control study, if the OR is a reasonable approximation of the RR, an attributable risk percent can be calculated from the OR.

Attributable risk percent = (OR–1) / OR

In the outbreak setting, attributable risk percent can be used to quantify how much of the disease burden can be ascribed to particular exposure.

Prevented Fraction Among the Exposed Group (Vaccine Efficacy)

The prevented fraction among the exposed group can be calculated when the RR or OR is less than 1.0. This measure is the proportion of potential cases prevented by a beneficial exposure (e.g., bed nets that prevent nighttime mosquito bites and, consequently, malaria). It can also be regarded as the proportion of new cases that would have occurred in the absence of the beneficial exposure. Algebraically, the prevented fraction among the exposed population is identical to vaccine efficacy.

Prevented fraction among the exposed group = vaccine efficacy = (risk exposed / risk unexposed ) /= risk unexposed = 1 RR

Handout 8.5 displays data from a varicella (chickenpox) outbreak at an elementary school in Nebraska in 2004 ( 5 ). The risk for varicella was 13.6% among vaccinated children and 66.7% among unvaccinated children. The vaccine efficacy based on these data was calculated as (0.667 – 0.130)/ 0.667 = 0.805, or 80.5%. This vaccine efficacy of 80.5% indicates that vaccination prevented approximately 80% of the cases that would have otherwise occurred among vaccinated children had they not been vaccinated.

Vaccination Status and Occurrence of Varicella: Elementary School Outbreak (Nebraska, 2004)
Ill Well Total Risk for varicella
Vaccinated 15 100 115 13.0%
Unvaccinated 18 9 27 66.7%
Total 33 109 142 23.2%

Risk ratio = 13.0/ 66.7 = 0.195; vaccine efficacy = (66.7 − 13.0)/ 66.7 = 80.5%. Source: Adapted from Reference 5 .

Tests of Statistical Significance

Tests of statistical significance are used to determine how likely the observed results would have occurred by chance alone if exposure was unrelated to the health outcome. This section describes the key factors to consider when applying statistical tests to data from two-by-two tables.

  • Statistical testing begins with the assumption that, among the source population, exposure is unrelated to disease. This assumption is known as the null hypothesis . The alternative hypothesis , which will be adopted if the null hypothesis proves to be implausible, is that exposure is associated with disease.
  • Next, compute a measure of association (e.g., an RR or OR).
  • A small p value means that you would be unlikely to observe such an association if the null hypothesis were true. In other words, a small p value indicates that the null hypothesis is implausible, given available data.
  • If this p value is smaller than a predetermined cutoff, called alpha (usually 0.05 or 5%), you discard (reject) the null hypothesis in favor of the alternative hypothesis. The association is then said to be statistically significant .
  • If the p value is larger than the cutoff (e.g., p value >0.06), do not reject the null hypothesis; the apparent association could be a chance finding.
  • In a type I error (also called alpha error ), the null hypothesis is rejected when in fact it is true.
  • In a type II error (also called beta error ), the null hypothesis is not rejected when in fact it is false.

Testing and Interpreting Data in a Two-by-Two Table

For data in a two-by-two table Epi Info reports the results from two different tests—chi-square test and Fisher exact test—each with variations ( Handout 8.2 ). These tests are not specific to any particular measure of association. The same test can be used regardless of whether you are interested in RR, OR, or attributable risk percent.

  • If the expected value in any cell is less than 5. Fisher exact test is the commonly accepted standard when the expected value in any cell is less than 5. (Remember: The expected value for any cell can be determined by multiplying the row total by the column total and dividing by the table total.)
  • If all expected values in the two-by-two table are 5 or greater. Choose one of the chi-square tests. Fortunately, for most analyses, the three chi-square formulas provide p values sufficiently similar to make the same decision regarding the null hypothesis based on all three. However, when the different formulas point to different decisions (usually when all three p values are approximately 0.05), epidemiologic judgment is required. Some field epidemiologists prefer the Yates-corrected formula because they are least likely to make a type I error (but most likely to make a type II error). Others acknowledge that the Yates correction often overcompensates; therefore, they prefer the uncorrected formula. Epidemiologists who frequently perform stratified analyses are accustomed to using the Mantel-Haenszel formula; therefore, they tend to use this formula even for simple two-by-two tables.
  • Measure of association. The measures of association (e.g., RRs and ORs) reflect the strength of the association between an exposure and a disease. These measures are usually independent of the size of the study and can be regarded as the best guess of the true degree of association among the source population. However, the measure gives no indication of its reliability (i.e., how much faith to put in it).
  • Test of significance. In contrast, a test of significance provides an indication of how likely it is that the observed association is the result of chance. Although the chi-square test statistic is influenced both by the magnitude of the association and the study size, it does not distinguish the contribution of each one. Thus, the measure of association and the test of significance (or a CI; see Confidence Intervals for Measures of Association) provide complementary information.
  • Role of statistical significance. Statistical significance does not by itself indicate a cause-and-effect association. An observed association might indeed represent a causal connection, but it might also result from chance, selection bias, information bias, confounding, or other sources of error in the study’s design, execution, or analysis. Statistical testing relates only to the role of chance in explaining an observed association, and statistical significance indicates only that chance is an unlikely, although not impossible, explanation of the association. Epidemiologic judgment is required when considering these and other criteria for inferring causation (e.g., consistency of the findings with those from other studies, the temporal association between exposure and disease, or biologic plausibility).
  • Public health implications of statistical significance. Finally, statistical significance does not necessarily mean public health significance. With a large study, a weak association with little public health or clinical relevance might nonetheless be statistically significant. More commonly, if a study is small, an association of public health or clinical importance might fail to reach statistically significance.

Confidence Intervals for Measures of Association

Many medical and public health journals now require that associations be described by measures of association and CIs rather than p values or other statistical tests. A measure of association such as an RR or OR provides a single value (point estimate) that best quantifies the association between an exposure and health outcome. A CI provides an interval estimate or range of values that acknowledge the uncertainty of the single number point estimate, particularly one that is based on a sample of the population.

The 95% Confidence Interval

Statisticians define a 95% CI as the interval that, given repeated sampling of the source population, will include, or cover, the true association value 95% of the time. The epidemiologic concept of a 95% CI is that it includes range of values consistent with the data in the study ( 6 ).

Relation Between Chi-Square Test and Confidence Interval

The chi-square test and the CI are closely related. The chi-square test uses the observed data to determine the probability ( p value) under the null hypothesis, and one rejects the null hypothesis if the probability is less than alpha (e.g., 0.05). The CI uses a preselected probability value, alpha (e.g., 0.05), to determine the limits of the interval (1 − alpha = 0.95), and one rejects the null hypothesis if the interval does not include the null association value. Both indicate the precision of the observed association; both are influenced by the magnitude of the association and the size of the study group. Although both measure precision, neither addresses validity (lack of bias).

Interpreting the Confidence Interval

  • Meaning of a confidence interval . A CI can be regarded as the range of values consistent with the data in a study. Suppose a study conducted locally yields an RR of 4.0 for the association between intravenous drug use and disease X; the 95% CI ranges from 3.0 to 5.3. From that study, the best estimate of the association between intravenous drug use and disease X among the general population is 4.0, but the data are consistent with values anywhere from 3.0 to 5.3. A study of the same association conducted elsewhere that yielded an RR of 3.2 or 5.2 would be considered compatible, but a study that yielded an RR of 1.2 or 6.2 would not be considered compatible. Now consider a different study that yields an RR of 1.0, a CI from 0.9 to 1.1, and a p value = 0.9. Rather than interpreting these results as nonsignificant and uninformative, you can conclude that the exposure neither increases nor decreases the risk for disease. That message can be reassuring if the exposure had been of concern to a worried public. Thus, the values that are included in the CI and values that are excluded by the CI both provide important information.
  • Width of the confidence interval. The width of a CI (i.e., the included values) reflects the precision with which a study can pinpoint an association. A wide CI reflects a large amount of variability or imprecision. A narrow CI reflects less variability and higher precision. Usually, the larger the number of subjects or observations in a study, the greater the precision and the narrower the CI.
  • Relation of the confidence interval to the null hypothesis. Because a CI reflects the range of values consistent with the data in a study, the CI can be used as a substitute for statistical testing (i.e., to determine whether the data are consistent with the null hypothesis). Remember: the null hypothesis specifies that the RR or OR equals 1.0; therefore, a CI that includes 1.0 is compatible with the null hypothesis. This is equivalent to concluding that the null hypothesis cannot be rejected. In contrast, a CI that does not include 1.0 indicates that the null hypothesis should be rejected because it is inconsistent with the study results. Thus, the CI can be used as a surrogate test of statistical significance.

Confidence Intervals in the Foodborne Outbreak Setting

In the setting of a foodborne outbreak, the goal is to identify the food or other vehicle that caused illness. In this setting, a measure of the association (e.g., an RR or OR) is calculated to identify the food(s) or other consumable(s) with high values that might have caused the outbreak. The investigator does not usually care if the RR for a specific food item is 5.7 or 9.3, just that the RR is high and unlikely to be caused by chance and, therefore, that the item should be further evaluated. For that purpose, the point estimate (RR or OR) plus a p value is adequate and a CI is unnecessary.

For field investigations intended to identify one or more vehicles or risk factors for disease, consider constructing a single table that can summarize the associations for multiple exposures of interest. For foodborne outbreak investigations, the table typically includes one row for each food item and columns for the name of the food; numbers of ill and well persons, by food consumption history; food-specific attack rates (if a cohort study was conducted); RR or OR; chi-square or p value; and, sometimes, a 95% CI. The food most likely to have caused illness will usually have both of the following characteristics:

  • An elevated RR, OR, or chi-square (small p value), reflecting a substantial difference in attack rates among those who consumed that food and those who did not.
  • The majority of the ill persons had consumed that food; therefore, the exposure can explain or account for most if not all of the cases.

In illustrative summary Table 8.3 , tap water had the highest RR (and the only p value <0.05, based on the 95% CI excluding 1.0) and might account for 46 of 55 cases.

Oropharyngeal tularemia attack rates and risk ratios by water source (Sancaktepe Village, Turkey, July–August 2013)
Tap 46 127 173 27 9 76 85 11 2.5 (1.3–4.9)
Well 2 6 8 25 53 198 250 21 1.2 (0.4–4.0)
Spring 25 111 136 18 30 92 122 25 0.7 (0.5–1.2)
Bottle 5 26 31 16 50 177 227 22 0.7 (0.3–1.7)
Other 2 6 8 25 53 198 250 21 1.2 (0.4–4.0)

Abbreviation: CI, confidence interval. Source: Adapted from Reference 1 .

Stratification is the examination of an exposure–disease association in two or more categories (strata) of a third variable (e.g., age). It is a useful tool for assessing whether confounding is present and, if it is, controlling for it. Stratification is also the best method for identifying effect modification . Both confounding and effect modification are addressed in following sections.

Stratification is also an effective method for examining the effects of two different exposures on a disease. For example, in a foodborne outbreak, two foods might seem to be associated with illness on the basis of elevated RRs or ORs. Possibly both foods were contaminated or included the same contaminated ingredient. Alternatively, the two foods might have been eaten together (e.g., peanut butter and jelly or doughnuts and milk), with only one being contaminated and the other guilty by association. Stratification is one way to tease apart the effects of the two foods.

Creating Strata of Two-by-Two Tables

  • To stratify by sex, create a two-by-two table for males and another table for females.
  • To stratify by age, decide on age groupings, making certain not to have overlapping ages; then create a separate two-by-two table for each age group.
  • For example, the data in Table 8.2 are stratified by sex in Handouts 8.6 and 8.7 . The RR for drinking tap water and experiencing oropharyngeal tularemia is 2.3 among females and 3.6 among males, but stratification also allows you to see that women have a higher risk than men, regardless of tap water consumption.

The Two-by-Four Table

Stratified tables (e.g., Handouts 8.6 and 8.7 ) are useful when the stratification variable is not of primary interest (i.e., is not being examined as a cause of the outbreak). However, when each of the two exposures might be the cause, a two-by-four table is better for disentangling the effects of the two variables. Consider a case–control study of a hypothetical hepatitis A outbreak that yielded elevated ORs both for doughnuts (OR = 6.0) and milk (OR = 3.9). The data organized in a two-by-four table ( Handout 8.8 ) disentangle the effects of the two foods—exposure to doughnuts alone is strongly associated with illness (OR = 6.0), but exposure to milk alone is not (OR = 1.0).

When two foods cause illness—for example when they are both contaminated or have a common ingredient—the two-by-four table is the best way to see their individual and joint effects.

Consumption of Tap Water and Risk for Acquiring Oropharyngeal Tularemia Among Women (Sancaktepe Village, Turkey, July–August 2013)
Drank tap water? Ill Well Total Attack rate (%) Risk ratio
Yes 30 60 90 33.3 2.3
No 7 41 48 14.6
Total 37 101 138 37.9
Consumption Of Tap Water And Risk For Acquiring Oropharyngeal Tularemia Among Men (Sancaktepe Village, Turkey, July–August 2013)
Drank tap water? Ill Well Total Attack rate (%) Risk ratio
Yes 16 67 83 19.3 3.6
No 2 35 37 5.4
Total 18 102 120 15.0

Source: Adapted from Reference 1.

Two-By-Four Table Display of the Association Between Hepatitis A and Consumption of Doughnuts and Milk: Case–Control Study From Hypothetical Outbreak
Doughnuts Milk Cases Controls Odds ratio
Yes Yes 36 18 6.0
No Yes 1 3 1.0
Yes No 4 2 6.0
No No 9 27 1.0 (Ref.)
Total 50 50

Crude odds ratio for doughnuts = 6.0; crude odds ratio for milk = 3.9.

  • To look for confounding, first examine the smallest and largest values of the stratum-specific measures of association and compare them with the value of the combined table (called the crude value ). Confounding is present if the crude value is outside the range between the smallest and largest stratum-specific values.
  • If the crude risk ratio or odds ratio is outside the range of the stratum-specific ones.
  • If the crude risk ratio or odds ratio differs from the Mantel-Haenszel adjusted one by >10% or >20%.

Controlling for Confounding

  • One method of controlling for confounding is by calculating a summary RR or OR based on a weighted average of the stratum-specific data. The Mantel-Haenszel technique ( 6 ) is a popular method for performing this task.
  • A second method is by using a logistic regression model that includes the exposure of interest and one or more confounding variables. The model produces an estimate of the OR that controls for the effect of the confounding variable(s).

Effect modification or effect measure modification means that the degree of association between an exposure and an outcome differs among different population groups. For example, measles vaccine is usually highly effective in preventing disease if administered to children aged 12 months or older but is less effective if administered before age 12 months. Similarly, tetracycline can cause tooth mottling among children, but not adults. In both examples, the association (or effect) of the exposure (measles vaccine or tetracycline) is a function of, or is modified by, a third variable (age in both examples).

Because effect modification means different effects among different groups, the first step in looking for effect modification is to stratify the exposure–outcome association of interest by the third variable suspected to be the effect modifier. Next, calculate the measure of association (e.g., RR or OR) for each stratum. Finally, assess whether the stratum-specific measures of association are substantially different by using one of two methods.

  • Examine the stratum-specific measures of association. Are they different enough to be of public health or scientific importance?
  • Determine whether the variation in magnitude of the association is statistically significant by using the Breslow-Day Test for homogeneity of odds ratios or by testing the interaction term in logistic regression.

If effect modification is present, present each stratum-specific result separately.

In epidemiology, dose-response means increased risk for the health outcome with increasing (or, for a protective exposure, decreasing) amount of exposure. Amount of exposure reflects quantity of exposure (e.g., milligrams of folic acid or number of scoops of ice cream consumed), or duration of exposure (e.g., number of months or years of exposure), or both.

The presence of a dose-response effect is one of the well-recognized criteria for inferring causation. Therefore, when an association between an exposure and a health outcome has been identified based on an elevated RR or OR, consider assessing for a dose-response effect.

As always, the first step is to organize the data. One convenient format is a 2-by-H table, where H represents the categories or doses of exposure. An RR for a cohort study or an OR for a case–control study can be calculated for each dose relative to the lowest dose or the unexposed group ( Handout 8.9 ). CIs can be calculated for each dose. Reviewing the data and the measures of association in this format and displaying the measures graphically can provide a sense of whether a dose-response association is present. Additionally, statistical techniques can be used to assess such associations, even when confounders must be considered.

The basic data layout for a matched-pair analysis is a two-by-two table that seems to resemble the simple unmatched two-by-two tables presented earlier in this chapter, but it is different ( Handout 8.10 ). In the matched-pair two-by-two table, each cell represents the number of matched pairs that meet the row and column criteria. In the unmatched two-by-two table, each cell represents the number of persons who meet the criteria.

Data Layout and Notation for Dose-Response Table
Dose Ill or case Well or control Total Risk Risk ratio Odds ratio
Dose 3 a b H a / H Risk / Risk a d/ b c
Dose 2 a b H a / H Risk / Risk a d/ b c
Dose 1 a b H a / H Risk / Risk a d/ b c
Dose 0 c d H c/ H 1.0 (Ref.) 1.0 (Ref.)
Total V V

In Handout 8.10 , cell e contains the number of pairs in which the case-patient is exposed and the control is exposed; cell f contains the number of pairs with an exposed case-patient and an unexposed control, cell g contains the number of pairs with an unexposed case-patient and an exposed control, and cell h contains the number of pairs in which neither the case-patient nor the matched control is exposed. Cells e and h are called concordant pairs because the case-patient and control are in the same exposure category. Cells f and g are called discordant pairs .

Data Layout and Notation for Matched-Pair Two-by-Two Table
 Cases Controls Exposed Controls Unexposed Total
Exposed e f e + f
Unexposed g h g + h
Total e + g f + h e + f + g + h pairs

Odds ratio = f/  g.

In a matched-pair analysis, only the discordant pairs are used to calculate the OR. The OR is computed as the ratio of the discordant pairs.

The test of significance for a matched-pair analysis is the McNemar chi-square test.

Handout 8.11 displays data from the classic pair-matched case–control study conducted in 1980 to assess the association between tampon use and toxic shock syndrome ( 7 ).

Continual Tampon Use During Index Menstrual Period: Centers For Disease Control Toxic Shock Syndrome (Matched-Pair) Case–Control Study, 1980
 Cases Controls Exposed Controls Unexposed Total
Exposed 33 9 42
Unexposed 1 1 2
Total 34 10 44 pairs

Odds ratio = 9/ 1 = 9.0; uncorrected McNemar chi-square test = 6.40 (p = 0.01). Source: Adapted from Reference 7 .

  • Larger matched sets and variable matching. In certain studies, two, three, four, or a variable number of controls are matched with case-patients. The best way to analyze these larger or variable matched sets is to consider each set (e.g., triplet or quadruplet) as a unique stratum and then analyze the data by using the Mantel-Haenszel methods or logistic regression to summarize the strata (see Controlling for Confounding).
  • Does a matched design require a matched analysis? Usually, yes. In a pair-matched study, if the pairs are unique (e.g., siblings or friends), pair-matched analysis is needed. If the pairs are based on a nonunique characteristic (e.g., sex or grade in school), all of the case-patients and all of the controls from the same stratum (sex or grade) can be grouped together, and a stratified analysis can be performed.

In practice, some epidemiologists perform the matched analysis but then perform an unmatched analysis on the same data. If the results are similar, they might opt to present the data in unmatched fashion. In most instances, the unmatched OR will be closer to 1.0 than the matched OR (bias toward the null). This bias, which is related to confounding, might be either trivial or substantial. The chi-square test result from unmatched data can be particularly misleading because it is usually larger than the McNemar test result from the matched data. The decision to use a matched analysis or unmatched analysis is analogous to the decision to present crude or adjusted results; epidemiologic judgment must be used to avoid presenting unmatched results that are misleading.

Logistic Regression

In recent years, logistic regression has become a standard tool in the field epidemiologist’s toolkit because user-friendly software has become widely available and its ability to assess effects of multiple variables has become appreciated. Logistic regression is a statistical modeling method analogous to linear regression but for a binary outcome (e.g., ill/well or case/control). As with other types of regression, the outcome (the dependent variable) is modeled as a function of one or more independent variables. The independent variables include the exposure(s) of interest and, often, confounders and interaction terms.

  • The exponentiation of a given beta coefficient (e β ) equals the OR for that variable while controlling for the effects of all of the other variables in the model.
  • If the model includes only the outcome variable and the primary exposure variable coded as (0,1), e β should equal the OR you can calculate from the two-by-two table. For example, a logistic regression model of the oropharyngeal tularemia data with tap water as the only independent variable yields an OR of 3.06, exactly the same value to the second decimal as the crude OR. Similarly, a model that includes both tap water and sex as independent variables yields an OR for tap water of 3.24, almost identical to the Mantel-Haenszel OR for tap water controlling for sex of 3.26. (Note that logistic regression provides ORs rather than RRs, which is not ideal for field epidemiology cohort studies.)
  • Logistic regression also can be used to assess dose-response associations, effect modification, and more complex associations. A variant of logistic regression called conditional logistic regression is particularly appropriate for pair-matched data.

Sophisticated analytic techniques cannot atone for sloppy data ! Analytic techniques such as those described in this chapter are only as good as the data to which they are applied. Analytic techniques—whether simple, stratified, or modeling—use the information at hand. They do not know or assess whether the correct comparison group was selected, the response rate was adequate, exposure and outcome were accurately defined, or the data coding and entry were free of errors. Analytic techniques are merely tools; the analyst is responsible for knowing the quality of the data and interpreting the results appropriately.

A computer can crunch numbers more quickly and accurately than the investigator can by hand, but the computer cannot interpret the results. For a two-by-two table, Epi Info provides both an RR and an OR, but the investigator must choose which is best based on the type of study performed. For that table, the RR and the OR might be elevated; the p value might be less than 0.05; and the 95% CI might not include 1.0. However, do those statistical results guarantee that the exposure is a true cause of disease? Not necessarily. Although the association might be causal, flaws in study design, execution, and analysis can result in apparent associations that are actually artifacts. Chance, selection bias, information bias, confounding, and investigator error should all be evaluated as possible explanations for an observed association. The first step in evaluating whether an apparent association is real and causal is to review the list of factors that can cause a spurious association, as listed in Epidemiologic Interpretation Checklist 1 ( Box 8.4 ).

  • Selection bias
  • Information bias
  • Investigator error
  • True association

Epidemiologic Interpretation Checklist 1

Chance is one possible explanation for an observed association between exposure and outcome. Under the null hypothesis, you assume that your study population is a sample from a source population in which that exposure is not associated with disease; that is, the RR and OR equal 1. Could an elevated (or lowered) OR be attributable simply to variation caused by chance? The role of chance is assessed by using tests of significance (or, as noted earlier, by interpreting CIs). Chance is an unlikely explanation if

  • The p value is less than alpha (usually set at 0.05), or
  • The CI for the RR or OR excludes 1.0.

However, chance can never be ruled out entirely. Even if the p value is as small as 0.01, that study might be the one study in 100 in which the null hypothesis is true and chance is the explanation. Note that tests of significance evaluate only the role of chance—they do not address the presence of selection bias, information bias, confounding, or investigator error.

Selection bias is a systematic error in the designation of the study groups or in the enrollment of study participants that results in a mistaken estimate of an exposure’s effect on the risk for disease. Selection bias can be thought of as a problem resulting from who gets into the study or how. Selection bias can arise from the faulty design of a case– control study through, for example, use of an overly broad case definition (so that some persons in the case group do not actually have the disease being studied) or inappropriate control group, or when asymptomatic cases are undetected among the controls. In the execution phase, selection bias can result if eligible persons with certain exposure and disease characteristics choose not to participate or cannot be located. For example, if ill persons with the exposure of interest know the hypothesis of the study and are more willing to participate than other ill persons, cell a in the two-by-two table will be artificially inflated compared with cell c , and the OR also will be inflated. Evaluating the possible role of selection bias requires examining how case-patients and controls were specified and were enrolled.

Information bias is a systematic error in the data collection from or about the study participants that results in a mistaken estimate of an exposure’s effect on the risk for disease. Information bias might arise by including poor wording or understanding of a question on a questionnaire; poor recall; inconsistent interviewing technique; or if a person knowingly provides false information, either to hide the truth or, as is common among certain cultures, in an attempt to please the interviewer.

Confounding is the distortion of an exposure–disease association by the effect of a third factor, as discussed earlier in this chapter. To evaluate the role of confounding, ensure that potential confounders have been identified, evaluated, and controlled for as necessary.

Investigator error can occur at any step of a field investigation, including design, conduct, analysis, and interpretation. In the analysis, a misplaced semicolon in a computer program, an erroneous transcription of a value, use of the wrong formula, or misreading of results can all yield artifactual associations. Preventing this type of error requires rigorous checking of work and asking colleagues to carefully review the work and conclusions.

To reemphasize, before considering whether an association is causal, consider whether the association can be explained by chance, selection bias, information bias, confounding, or investigator error . Now suppose that an elevated RR or OR has a small p value and narrow CI that does not include 1.0; therefore, chance is an unlikely explanation. Specification of case-patients and controls was reasonable and participation was good; therefore, selection bias is an unlikely explanation. Information was collected by using a standard questionnaire by an experienced and well-trained interviewer. Confounding by other risk factors was assessed and determined not to be present or to have been controlled for. Data entry and calculations were verified. However, before concluding that the association is causal, the strength of the association, its biologic plausibility, consistency with results from other studies, temporal sequence, and dose-response association, if any, need to be considered ( Box 8.5 ).

  • Strength of the association
  • Biologic plausibility
  • Consistency with other studies
  • Exposure precedes disease
  • Dose-response effect

Epidemiologic Interpretation Checklist 2

Strength of the association means that a stronger association has more causal credibility than a weak one. If the true RR is 1.0, subtle selection bias, information bias, or confounding can result in an RR of 1.5, but the bias would have to be dramatic and hopefully obvious to the investigator to account for an RR of 9.0.

Biological plausibility means an association has causal credibility if is consistent with the known pathophysiology, known vehicles, natural history of the health outcome, animal models, and other relevant biological factors. For an implicated food vehicle in an infectious disease outbreak, has the food been implicated in previous outbreaks, or—even better—has the agent been identified in the food? Although some outbreaks are caused by new or previously unrecognized pathogens, vehicles, or risk factors, most are caused by those that have been recognized previously.

Consider c onsistency with other studies . Are the results consistent with those from previous studies? A finding is more plausible if it has been replicated by different investigators using different methods for different populations.

Exposure precedes disease seems obvious, but in a retrospective cohort study, documenting that exposure precedes disease can be difficult. Suppose, for example, that persons with a particular type of leukemia are more likely than controls to have antibodies to a particular virus. It might be tempting to conclude that the virus caused the leukemia, but caution is required because viral infection might have occurred after the onset of leukemic changes.

Evidence of a dose-response effect adds weight to the evidence for causation. A dose-response effect is not a necessary feature for an association to be causal; some causal association might exhibit a threshold effect, for example. Nevertheless, it is usually thought to add credibility to the association.

In many field investigations, a likely culprit might not meet all the criteria discussed in this chapter. Perhaps the response rate was less than ideal, the etiologic agent could not be isolated from the implicated food, or no dose-response was identified. Nevertheless, if the public’s health is at risk, failure to meet every criterion should not be used as an excuse for inaction. As George Comstock stated, “The art of epidemiologic reasoning is to draw sensible conclusions from imperfect data” ( 8 ). After all, field epidemiology is a tool for public health action to promote and protect the public’s health on the basis of science (sound epidemiologic methods), causal reasoning, and a healthy dose of practical common sense.

All scientific work is incomplete—whether it be observational or experimental. All scientific work is liable to be upset or modified by advancing knowledge. That does not confer upon us a freedom to ignore the knowledge we already have, or to postpone the action it seems to demand at a given time ( 9 ).

— Sir Austin Bradford Hill (1897–1991), English Epidemiologist and Statistician

  • Aktas D, Celebi B, Isik ME, et al. Oropharyngeal tularemia outbreak associated with drinking contaminated tap water, Turkey, July–September 2013. Emerg Infect Dis. 2015;21:2194–6.
  • Centers for Disease Control and Prevention. Epi Info. https://www.cdc.gov/epiinfo/index.html
  • Rentz ED, Lewis L, Mujica OJ, et al. Outbreak of acute renal failure in Panama in 2006: a case-–control study. Bull World Health Organ. 2008;86:749–56.
  • Edlin BR, Irwin KL, Faruque S, et al. Intersecting epidemics—crack cocaine use and HIV infection among inner-city young adults. N Eng J Med. 1994;331:1422–7.
  • Centers for Disease Control and Prevention. Varicella outbreak among vaccinated children—Nebraska, 2004. MMWR. 2006;55;749–52.
  • Rothman KJ. Epidemiology: an introduction . New York: Oxford University Press; 2002: p . 113–29.
  • Shands KN, Schmid GP, Dan BB, et al. Toxic-shock syndrome in menstruating women: association with tampon use and Staphylococcus aureus and clinical features in 52 women. N Engl J Med . 1980;303:1436–42.
  • Comstock GW. Vaccine evaluation by case–control or prospective studies. Am J Epidemiol. 1990;131:205–7.
  • Hill AB. The environment and disease: association or causation? Proc R Soc Med. 1965;58:295–300.

< Previous Chapter 7: Designing and Conducting Analytic Studies in the Field

Next Chapter 9: Optimizing Epidemiology– Laboratory Collaborations >

The fellowship application period and host site application period are closed.

For questions about the EIS program, please contact us directly at [email protected] .

  • Laboratory Leadership Service (LLS)
  • Fellowships and Training Opportunities
  • Division of Workforce Development
  • Data Science
  • Data Analysis
  • Data Visualization
  • Machine Learning
  • Deep Learning
  • Computer Vision
  • Artificial Intelligence
  • AI ML DS Interview Series
  • AI ML DS Projects series
  • Data Engineering
  • Web Scrapping

Difference Between Data Analysis and Data Interpretation

Data analysis and Data Interpretation come pretty close; the only difference is in their roles in the data-driven process. In the process, it is all about the systematic inspection, cleaning, transformation, and modelling of the data to discover useful information, patterns, or trends—it mainly dissects raw data into smaller parts to make sense of it. This can involve various statistical, mathematical, or computational techniques to derive meaning from the data. Interpretation, on the other hand, consists of making sense of results generated through data analysis. It is the process of concluding; interpretation means understanding the implications of the data findings and applying them to real-life situations. While this answers existential questions of “what” and “how,” interpretation majorly answers “ why” and “what next” —that is, resulting analytical consequences translated to meaningful, actionable insights.

In this article, we will about the Difference Between Data Analysis and Data Interpretation.

Table of Content

What is Data Analysis?

Key features of data analysis :, what is data interpretation.

  • Key Features of Data Interpretation:

Key Differences Between Analysis and Interpretation

Data analysis is the systematic approach to applying statistical and logical techniques to describe, illustrate, condense, recap, and evaluate data. It involves collecting and organizing data to discover useful information for decision-making. The process can be descriptive, exploratory, inferential, predictive, or causal. Common tools include statistical software like R and Python, and data visualization platforms such as Tableau and Power BI .

  • Techniques Employed : Uses various statistical, mathematical, or computational techniques to quantify, process, and manage data.
  • Scope : Involves collecting, cleaning, transforming, and modeling data to discover useful information for business decision-making.
  • Tools : Often utilizes software and tools like Python , R, SQL , and Excel for analyzing large datasets.
  • Objective : Aims to identify patterns, trends, or relationships within the data that are not immediately obvious.
  • Output : Results in actionable insights that can influence decision-making and strategy, often presented in the form of visual data representations like graphs, charts, and dashboards.

Data Interpretation is a process where analyzed data is used to make conclusions on the meaning and implications of some particular study and decide on how insights will be applied in a practical environment. It is simply translating numerical , graphical , or even text results from data analysis into meaningful stories that can drive decision-making . Interpretation is necessary to bridge raw data and actionable knowledge because it simply focuses on the meaning of the findings in relation to the problem at hand and what they suggest for future action or strategy.

Key Features of Data Interpretation :

  • Contextual Understanding : Requires understanding the context in which data exists; interprets results in terms of what they mean for a specific question or decision.
  • Decision-Making : Focuses on translating analyzed data into information that can be used to make decisions.
  • Subjectivity : Involves a certain level of subjectivity as different interpreters might conclude differently based on the same data set, depending on their perspective or background.
  • Critical Thinking : Requires critical thinking skills to question and consider the limitations of the data, including biases and anomalies.
  • Narrative Formulation : Often results in the formulation of a narrative or story that explains what the data shows and why it matters in a given context.

Aspect

Data Analysis

Data Interpretation

Objective

Process and organize raw data to uncover patterns or trends.

Make sense of analyzed data, draw conclusions, and provide context.

Process

Involves data collection, cleaning, transformation, and application of analytical techniques.

Involves evaluating and synthesizing results to explain findings and suggest actions.

Focus

Answers “what” and “how” questions about the data.

Answers “why” and “what next” based on the analysis results.

Nature

More technical and quantitative.

More qualitative and subjective.

Outcome

Produces structured data, statistical outputs, and models.

Produces insights, conclusions, and actionable recommendations.

Role in Decision-Making

Provides data and evidence to support decisions.

Directly informs and influences decision-making.

Dependency

Can be performed independently but is limited without interpretation.

Relies on the results of data analysis and cannot occur without it.

In the process of data-driven decision-making , data analysis and interpretation are two large parts playing a complementary role toward each other. Data analysis is the process of processing and organizing raw data to glean valuable insights from them. Data interpretation gives meaning to the findings derived from data analysis and brings these findings into practical application within the real world. Data interpretation helps to translate data analytical results into meaningful conclusions and actionable strategies so that organizations are better placed to respond to challenges and opportunities effectively. Analysis and interpretation both find successful application across varied domains that stretch from business to health, to education and environmental science, and through the making of information available for educated decisions , actuate progress in a data-centric world.

Difference Between Data Analysis and Data Interpretation – FAQ’s

What is the key difference between data analysis and data interpretation.

Data analysis involves systematically applying statistical and logical techniques to describe, summarize, and compare data, identifying patterns and relationships. On the other hand, data interpretation is the process of making sense of the analyzed data, providing context, insights, and conclusions that can inform decisions or actions. Essentially, data analysis is the process, while data interpretation is the understanding of the results.

Can data analysis and data interpretation be performed by the same person?

Yes, data analysis and data interpretation can often be performed by the same person, especially in smaller projects or roles where a single individual is responsible for the entire data lifecycle. However, in larger organizations, these tasks may be divided between data analysts, who focus on crunching numbers, and subject matter experts or business analysts, who interpret the results in the context of the business or research question.

How do tools for data analysis differ from those used for data interpretation?

Tools for data analysis, such as Python, R, and Excel, are typically used for statistical computations, data cleaning, and visualization. These tools help in processing and organizing raw data into a more understandable format. Data interpretation, however, might involve the use of presentation tools like PowerPoint or business intelligence platforms like Tableau, which help in presenting the analyzed data in a way that is accessible and meaningful to stakeholders, emphasizing insights and conclusions rather than the underlying data processing.

Please Login to comment...

Similar reads.

  • AI-ML-DS Blogs
  • Data Analytics Blogs

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

bioRxiv

EXPLANA: A user-friendly workflow for EXPLoratory ANAlysis and feature selection in cross-sectional and longitudinal microbiome studies

  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jennifer Fouquier
  • For correspondence: [email protected]
  • ORCID record for Maggie Stanislawski
  • ORCID record for John O'Connor
  • ORCID record for Ashley Scadden
  • ORCID record for Catherine Lozupone
  • Info/History
  • Supplementary material
  • Preview PDF

Motivation: Longitudinal microbiome studies (LMS) are increasingly common but have analytic challenges including non-independent data requiring mixed-effects models and large amounts of data that motivate exploratory analysis to identify factors related to outcome variables. Although change analysis (i.e. calculating deltas between values at different timepoints) can be powerful, how to best conduct these analyses is not always clear. For example, observational LMS measurements show natural fluctuations, so baseline might not be a reference of primary interest; whereas, for interventional LMS, baseline is a key reference point, often indicating the start of treatment. Results: To address these challenges, we developed a feature selection workflow for cross-sectional and LMS that supports numerical and categorical data called EXPLANA (EXPLoratory ANAlysis). Machine-learning methods were combined with different types of change calculations and downstream interpretation methods to identify statistically meaningful variables and explain their relationship to outcomes. EXPLANA generates an interactive report that textually and graphically summarizes methods and results. EXPLANA had good performance on simulated data, with an average area under the curve (AUC) of 0.91 (range: 0.79-1.0, SD = 0.05), outperformed an existing tool (AUC: 0.95 vs. 0.56), and identified novel order-dependent categorical feature changes. EXPLANA is broadly applicable and simplifies analytics for identifying features related to outcomes of interest.

Competing Interest Statement

The authors have declared no competing interest.

Updated Figure 5 and Supplemental Figure 2 for clarity (improved color scheme). Performed a smaller analysis of the ECAM data for easier interpretation and excluded stratification by delivery type. Stratifying the data by delivery type created groups with too few samples. Shortened manuscript and abstract. Added Orchid ID for one author.

https://github.com/JTFouquier/explana

View the discussion thread.

Supplementary Material

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Twitter logo

Citation Manager Formats

  • EndNote (tagged)
  • EndNote 8 (xml)
  • RefWorks Tagged
  • Ref Manager
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioinformatics
  • Animal Behavior and Cognition (5524)
  • Biochemistry (12565)
  • Bioengineering (9426)
  • Bioinformatics (30804)
  • Biophysics (15840)
  • Cancer Biology (12913)
  • Cell Biology (18520)
  • Clinical Trials (138)
  • Developmental Biology (9996)
  • Ecology (14966)
  • Epidemiology (2067)
  • Evolutionary Biology (19148)
  • Genetics (12729)
  • Genomics (17527)
  • Immunology (12674)
  • Microbiology (29711)
  • Molecular Biology (12365)
  • Neuroscience (64694)
  • Paleontology (479)
  • Pathology (2000)
  • Pharmacology and Toxicology (3451)
  • Physiology (5324)
  • Plant Biology (11088)
  • Scientific Communication and Education (1728)
  • Synthetic Biology (3063)
  • Systems Biology (7682)
  • Zoology (1728)

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Where Data-Driven Decision-Making Can Go Wrong

  • Michael Luca
  • Amy C. Edmondson

analysis and interpretation of data in research example

When considering internal data or the results of a study, often business leaders either take the evidence presented as gospel or dismiss it altogether. Both approaches are misguided. What leaders need to do instead is conduct rigorous discussions that assess any findings and whether they apply to the situation in question.

Such conversations should explore the internal validity of any analysis (whether it accurately answers the question) as well as its external validity (the extent to which results can be generalized from one context to another). To avoid missteps, you need to separate causation from correlation and control for confounding factors. You should examine the sample size and setting of the research and the period over which it was conducted. You must ensure that you’re measuring an outcome that really matters instead of one that is simply easy to measure. And you need to look for—or undertake—other research that might confirm or contradict the evidence.

By employing a systematic approach to the collection and interpretation of information, you can more effectively reap the benefits of the ever-increasing mountain of external and internal data and make better decisions.

Five pitfalls to avoid

Idea in Brief

The problem.

When managers are presented with internal data or an external study, all too often they either automatically accept its accuracy and relevance to their business or dismiss it out of hand.

Why It Happens

Leaders mistakenly conflate causation with correlation, underestimate the importance of sample size, focus on the wrong outcomes, misjudge generalizability, or overweight a specific result.

The Right Approach

Leaders should ask probing questions about the evidence in a rigorous discussion about its usefulness. They should create a psychologically safe environment so that participants will feel comfortable offering diverse points of view.

Let’s say you’re leading a meeting about the hourly pay of your company’s warehouse employees. For several years it has automatically been increased by small amounts to keep up with inflation. Citing a study of a large company that found that higher pay improved productivity so much that it boosted profits, someone on your team advocates for a different approach: a substantial raise of $2 an hour for all workers in the warehouse. What would you do?

  • Michael Luca is a professor of business administration and the director of the Technology and Society Initiative at Johns Hopkins University, Carey Business School.
  • Amy C. Edmondson is the Novartis Professor of Leadership and Management at Harvard Business School. Her latest book is Right Kind of Wrong: The Science of Failing Well (Atria Books, 2023).

analysis and interpretation of data in research example

Partner Center

Featured Article

The biggest data breaches in 2024: 1 billion stolen records and rising

Thanks to unitedhealth, snowflake and at&t (twice).

render of a data breach

We’re over halfway through 2024, and already this year we have seen some of the biggest, most damaging data breaches in recent history. And just when you think that some of these hacks can’t get any worse, they do.

From huge stores of customers’ personal information getting scraped, stolen and posted online, to reams of medical data covering most people in the United States getting stolen, the worst data breaches of 2024 to date have already surpassed at least 1 billion stolen records and rising. These breaches not only affect the individuals whose data was irretrievably exposed, but also embolden the criminals who profit from their malicious cyberattacks.

Travel with us to the not-so-distant past to look at how some of the biggest security incidents of 2024 went down, their impact and. in some cases, how they could have been stopped. 

AT&T’s data breaches affect “nearly all” of its customers, and many more non-customers

For AT&T, 2024 has been a very bad year for data security. The telecoms giant confirmed not one, but two separate data breaches just months apart.

In July, AT&T said cybercriminals had stolen a cache of data that contained phone numbers and call records of “nearly all” of its customers, or around 110 million people , over a six-month period in 2022 and in some cases longer. The data wasn’t stolen directly from AT&T’s systems, but from an account it had with data giant Snowflake (more on that later).

Although the stolen AT&T data isn’t public (and one report suggests AT&T paid a ransom for the hackers to delete the stolen data ) and the data itself does not contain the contents of calls or text messages, the “metadata” still reveals who called who and when, and in some cases the data can be used to infer approximate locations. Worse, the data includes phone numbers of non-customers who were called by AT&T customers during that time. That data becoming public could be dangerous for higher-risk individuals , such as domestic abuse survivors.

That was AT&T’s second data breach this year. Earlier in March, a data breach broker dumped online a full cache of 73 million customer records to a known cybercrime forum for anyone to see, some three years after a much smaller sample was teased online.

The published data included customers’ personal information, including names, phone numbers and postal addresses, with some customers confirming their data was accurate . 

But it wasn’t until a security researcher discovered that the exposed data contained encrypted passcodes used for accessing a customer’s AT&T account that the telecoms giant took action. The security researcher told TechCrunch at the time that the encrypted passcodes could be easily unscrambled, putting some 7.6 million existing AT&T customer accounts at risk of hijacks. AT&T force-reset its customers’ account passcodes after TechCrunch alerted the company to the researcher’s findings. 

One big mystery remains: AT&T still doesn’t know how the data leaked or where it came from . 

Change Healthcare hackers stole medical data on “substantial proportion” of people in America

In 2022, the U.S. Justice Department sued health insurance giant UnitedHealth Group to block its attempted acquisition of health tech giant Change Healthcare, fearing that the deal would give the healthcare conglomerate broad access to about “half of all Americans’ health insurance claims” each year. The bid to block the deal ultimately failed. Then, two years later, something far worse happened: Change Healthcare was hacked by a prolific ransomware gang; its almighty banks of sensitive health data were stolen because one of the company’s critical systems was not protected with multi-factor authentication .

The lengthy downtime caused by the cyberattack dragged on for weeks, causing widespread outages at hospitals, pharmacies and healthcare practices across the United States. But the aftermath of the data breach has yet to be fully realized, though the consequences for those affected are likely to be irreversible. UnitedHealth says the stolen data — which it paid the hackers to obtain a copy — includes the personal, medical and billing information on a “substantial proportion” of people in the United States. 

UnitedHealth has yet to attach a number to how many individuals were affected by the breach. The health giant’s chief executive, Andrew Witty, told lawmakers that the breach may affect around one-third of Americans , and potentially more. For now, it’s a question of just how many hundreds of millions of people in the U.S. are affected. 

Synnovis ransomware attack sparked widespread outages at hospitals across London 

A June cyberattack on U.K. pathology lab Synnovis — a blood and tissue testing lab for hospitals and health services across the U.K. capital — caused ongoing widespread disruption to patient services for weeks. The local National Health Service trusts that rely on the lab postponed thousands of operations and procedures following the hack, prompting the declaration of a critical incident across the U.K. health sector.

A Russia-based ransomware gang was blamed for the cyberattack, which saw the theft of data related to some 300 million patient interactions dating back a “significant number” of years. Much like the data breach at Change Healthcare, the ramifications for those affected are likely to be significant and life-lasting. 

Some of the data was already published online in an effort to extort the lab into paying a ransom. Synnovis reportedly refused to pay the hackers’ $50 million ransom , preventing the gang from profiting from the hack but leaving the U.K. government scrambling for a plan in case the hackers posted millions of health records online. 

One of the NHS trusts that runs five hospitals across London affected by the outages reportedly failed to meet the data security standards as required by the U.K. health service in the years that ran up to the June cyberattack on Synnovis.

Ticketmaster had an alleged 560 million records stolen in the Snowflake hack

A series of data thefts from cloud data giant Snowflake quickly snowballed into one of the biggest breaches of the year, thanks to the vast amounts of data stolen from its corporate customers. 

Cybercriminals swiped hundreds of millions of customer data from some of the world’s biggest companies — including an alleged 560 million records from Ticketmaster , 79 million records from Advance Auto Parts and some 30 million records from TEG — by using stolen credentials of data engineers with access to their employer’s Snowflake environments. For its part, Snowflake does not require (or enforce) its customers to use the security feature, which protects against intrusions that rely on stolen or reused passwords. 

Incident response firm Mandiant said around 165 Snowflake customers had data stolen from their accounts, in some cases a “significant volume of customer data.” Only a handful of the 165 companies have so far confirmed their environments were compromised, which also includes tens of thousands of employee records from Neiman Marcus and Santander Bank , and millions of records of students at Los Angeles Unified School District . Expect many Snowflake customers to come forward. 

(Dis)honorable mentions

Cencora notifies over a million and counting that it lost their data:

U.S. pharma giant Cencora disclosed a February data breach involving the compromise of patients’ health data, information that Cencora obtained through its partnerships with drug makers. Cencora has steadfastly refused to say how many people are affected, but a count by TechCrunch shows well over a million people have been notified so far. Cencora says it’s served more than 18 million patients to date. 

MediSecure data breach affects half of Australia:

Close to 13 million people in Australia — roughly half of the country’s population — had personal and health data stolen in a ransomware attack on prescriptions provider MediSecure in April. MediSecure, which distributed prescriptions for most Australians until late 2023, declared insolvency soon after the mass theft of customer data.

Kaiser shared health data on millions of patients with advertisers:

U.S. health insurance giant Kaiser disclosed a data breach in April after inadvertently sharing the private health information of 13.4 million patients, specifically website search terms about diagnoses and medications, with tech companies and advertisers. Kaiser said it used their tracking code for website analytics. The health insurance provider disclosed the incident in the wake of several  other telehealth startups, like Cerebral , Monument and Tempest , admitting they too shared data with advertisers.

USPS shared postal address with tech giants, too:

And then it was the turn of the U.S. Postal Service caught sharing postal addresses of logged-in users with advertisers like Meta, LinkedIn and Snap, using a similar tracking code provided by the companies. USPS removed the tracking code from its website after TechCrunch notified the postal service in July of the improper data sharing, but the agency wouldn’t say how many individuals had data collected. USPS has over 62 million Informed Delivery users as of March 2024.

Evolve Bank data breach affected fintech and startup customers:

A ransomware attack targeting Evolve Bank saw the personal information of more than 7.6 million people stolen by cybercriminals in July. Evolve is a banking-as-a-service giant serving mostly fintech companies and startups , like Affirm and Mercury. As a result, many of the individuals notified of the data breach had never heard of Evolve Bank, let alone have a relationship with the firm, prior to its cyberattack.

More TechCrunch

Get the industry’s biggest tech news, techcrunch daily news.

Every weekday and Sunday, you can get the best of TechCrunch’s coverage.

Startups Weekly

Startups are the core of TechCrunch, so get our best coverage delivered weekly.

TechCrunch Fintech

The latest Fintech news and analysis, delivered every Tuesday.

TechCrunch Mobility

TechCrunch Mobility is your destination for transportation news and insight.

Meta draws fresh questions from EU over its CrowdTangle shut-down

The Commission is seeking more information from Meta following its decision to deprecate its CrowdTangle transparency tool. The latest EU request for information (RFI) on Meta has been made under…

Meta draws fresh questions from EU over its CrowdTangle shut-down

What is Instagram’s Threads app? All your questions answered

In the last few months, Twitter alternatives — new and old — have found an audience willing to try out a new text-based social network. Mastodon, Bluesky, Spill and T2…

What is Instagram’s Threads app? All your questions answered

UK neobank Revolut valued at $45B after secondary market sale

Revolut has confirmed a new valuation of $45 billion via a secondary market share sale, shortly after the U.K.-based neobank secured its own banking license in the U.K. and in…

UK neobank Revolut valued at $45B after secondary market sale

Ben Horowitz Declares War on Michael Moritz

A social media spat between billionaire tech investors is raising questions about the journalistic independence of three-year-old news outfit SF Standard, after a reporter representing the outlet reached out to…

Ben Horowitz Declares War on Michael Moritz

California AI bill SB 1047 aims to prevent AI disasters, but Silicon Valley warns it will cause one

SB 1047 has drawn the ire of Silicon Valley players large and small, including venture capitalists, big tech trade groups, researchers and startup founders.

California AI bill SB 1047 aims to prevent AI disasters, but Silicon Valley warns it will cause one

California weakens bill to prevent AI disasters before final vote, taking advice from Anthropic

California’s bill to prevent AI disasters, SB 1047, has faced significant opposition from many parties in Silicon Valley. Today, California lawmakers bent slightly to that pressure, adding in several amendments…

California weakens bill to prevent AI disasters before final vote, taking advice from Anthropic

Meta axed CrowdTangle, a tool for tracking disinformation. Critics claim its replacement has just ‘1% of the features’

Journalists, researchers and politicians are mourning Meta’s shutdown of CrowdTangle, which they used to track the spread of disinformation on Facebook and Instagram. In CrowdTangle’s place, Meta is offering its…

Meta axed CrowdTangle, a tool for tracking disinformation. Critics claim its replacement has just ‘1% of the features’

Rivian launches smaller $1,400 camp kitchen, 5 years after initial demo

The Rivian camp kitchen attracted buzz from almost the moment it appeared as a prototype in 2019 at Overland Expo West. Despite interest in the accessory, Rivian never actually sold…

Rivian launches smaller $1,400 camp kitchen, 5 years after initial demo

A comprehensive list of 2024 tech layoffs

The tech layoff wave is still going strong in 2024. Following significant workforce reductions in 2022 and 2023, this year has already seen 60,000 job cuts across 254 companies, according to independent layoffs tracker Layoffs.fyi. Companies like Tesla, Amazon, Google, TikTok, Snap and Microsoft have conducted sizable layoffs in the…

A comprehensive list of 2024 tech layoffs

3D printing stalwart Formlabs confirms ‘small number’ of layoffs

The layoffs occurred in waves over the past two years, and as recently as the last few weeks.

3D printing stalwart Formlabs confirms ‘small number’ of layoffs

NASA and Rocket Lab aim to prove we can go to Mars for 1/10 the price

A pair of Rocket Lab-made spacecraft are about to embark on a two-step journey. The first step is the 55-hour, 2,500-mile stretch from California to the launch site at Cape…

NASA and Rocket Lab aim to prove we can go to Mars for 1/10 the price

CannonKeys launches a modern take on a classic mechanical keyboard with the Sat75 X

At a price of $111 for the Sat75 X board, this is a fun and easy way to get into building a custom mechanical keyboard without breaking the bank.

CannonKeys launches a modern take on a classic mechanical keyboard with the Sat75 X

Jeff Bezos’ brother’s firm has launched a debut $100M VC fund called HIPstr

HighPost Capital, a private equity firm run by Mark Bezos, Jeff Bezos’ younger brother, and PE veteran David Moross, has launched a new venture capital arm.

Jeff Bezos’ brother’s firm has launched a debut $100M VC fund called HIPstr

Apple, Google wallets will soon support California driver’s licenses

California residents will soon be able to store their driver’s license or state ID in their Apple Wallet or Google Wallet apps, as the state’s government announced Thursday that support…

Apple, Google wallets will soon support California driver’s licenses

Bluesky’s UK surge has had little impact on X

Despite the influx of U.K. users to Bluesky, other new data indicates that it’s still Meta’s Threads, not Bluesky, that’s better poised to challenge X.

Bluesky’s UK surge has had little impact on X

WeRide preps for an IPO, meet the man who built a startup pipeline at CNH and Waymo’s nightly honk-a-thon

Welcome back to TechCrunch Mobility — your central hub for news and insights on the future of transportation. Sign up here for free — just click TechCrunch Mobility! We brought…

WeRide preps for an IPO, meet the man who built a startup pipeline at CNH and Waymo’s nightly honk-a-thon

Geekbench releases AI benchmarking app

It’s a successor to Geekbench ML.

Geekbench releases AI benchmarking app

Meta’s X rival Threads gains multiple drafts, audience insights and more

Meta’s X rival Threads announced a number of new features today, including the ability to store multiple drafts, a way to rearrange columns on the desktop and insights into the…

Meta’s X rival Threads gains multiple drafts, audience insights and more

Franki’s app rewards you for posting video reviews of local restaurants

Franki is a social discovery and video-based review app where users can interact with a community of foodies, discover local dining spots and create their own videos showing off their…

Franki’s app rewards you for posting video reviews of local restaurants

Announcing judges for the Startup Battlefield at TechCrunch Disrupt 2024

The Startup Battlefield is one of the highlights of Disrupt, and we can’t wait to see which of the thousands of applicants will be selected to pitch to panels of top-tier…

Announcing judges for the Startup Battlefield at TechCrunch Disrupt 2024

From Lauri Moore to Vic Singh, venture capitalists continue to play musical chairs

When Keith Rabois announced he was leaving Founders Fund to return to Khosla Ventures in January, it came as a shock to many in the venture capital ecosystem — and…

From Lauri Moore to Vic Singh, venture capitalists continue to play musical chairs

Linktree acquires social media scheduler tool Plann

Link-in-bio platform Linktree announced Thursday that it has acquired social media scheduling tool Plann for an undisclosed amount. While Sydney, Australia-headquartered Plann will continue to operate as usual for now,…

Linktree acquires social media scheduler tool Plann

Bridgit Mendler will talk about building the data highway between Earth and space at TechCrunch Disrupt 2024

Earlier this year, Bridgit Mendler surprised her fans when she announced that she was heading a new space data startup called Northwood Space. With Northwood, the former Disney star and…

Bridgit Mendler will talk about building the data highway between Earth and space at TechCrunch Disrupt 2024

Epic Games’ ‘MegaGrant’ makes EU alternative app store, AltStore PAL, available for free

AltStore PAL, an app that takes advantage of the EU’s Digital Markets Act (DMA) to bring a third-party app store to EU users, is now available for free, thanks to Epic…

Epic Games’ ‘MegaGrant’ makes EU alternative app store, AltStore PAL, available for free

CodeRabbit raises $16M to bring AI to code reviews

Code reviews — peer reviews of code that help devs improve code quality — are time-consuming. According to one source, 50% of companies spend two to five hours a week…

CodeRabbit raises $16M to bring AI to code reviews

X begins rolling out support for passkeys on Android

X, formerly known as Twitter, has announced that it’s rolling out support for passkeys on Android. The launch comes as the social network rolled out support for passkeys to all…

X begins rolling out support for passkeys on Android

Lockheed Martin to buy satellite maker Terran Orbital in $450M deal

Lockheed, which holds a 28.3% stake in Terran Orbital, will take the satellite maker private in a deal that’s expected to close before the end of 2024.

Lockheed Martin to buy satellite maker Terran Orbital in $450M deal

Waymo to double down on winter testing its robotaxis

Waymo regularly takes its autonomous vehicles on winter road trips to test the cars in snowy environments. In 2017, it was Michigan. Last year, it was Buffalo.  This year, Waymo…

Waymo to double down on winter testing its robotaxis

AI social media vetting startup Ferretly secures $2.5M, launches election personnel screening tool

Ferretly leverages AI to scan social media and publicly available online data to uncover potential risks and behaviors that traditional background checks may overlook.

AI social media vetting startup Ferretly secures $2.5M, launches election personnel screening tool

TipRanks, an AI-based stock tip evaluator created after its founder got burned by bad advice, sells for $200M to Prytek

Prytek had already been a big investor in TipRanks since 2017, most recently leading a $77 million round in the company in 2021.

TipRanks, an AI-based stock tip evaluator created after its founder got burned by bad advice, sells for $200M to Prytek

IMAGES

  1. SOLUTION: Thesis chapter 4 analysis and interpretation of data sample

    analysis and interpretation of data in research example

  2. Chapter 4

    analysis and interpretation of data in research example

  3. (DOC) PRESENTATION, ANALYSIS AND INTERPRETATION OF DATA

    analysis and interpretation of data in research example

  4. SOLUTION: Thesis chapter 4 analysis and interpretation of data sample

    analysis and interpretation of data in research example

  5. Data Interpretation

    analysis and interpretation of data in research example

  6. What is Data Analysis in Research

    analysis and interpretation of data in research example

COMMENTS

  1. PDF Chapter 4: Analysis and Interpretation of Results

    The analysis and interpretation of data is carried out in two phases. The. first part, which is based on the results of the questionnaire, deals with a quantitative. analysis of data. The second, which is based on the results of the interview and focus group. discussions, is a qualitative interpretation.

  2. Data Interpretation

    The purpose of data interpretation is to make sense of complex data by analyzing and drawing insights from it. The process of data interpretation involves identifying patterns and trends, making comparisons, and drawing conclusions based on the data. The ultimate goal of data interpretation is to use the insights gained from the analysis to ...

  3. (PDF) Qualitative Data Analysis and Interpretation: Systematic Search

    Qualitative data analysis is. concerned with transforming raw data by searching, evaluating, recogni sing, cod ing, mapping, exploring and describing patterns, trends, themes an d categories in ...

  4. Data Interpretation: Definition and Steps with Examples

    Data interpretation is the process of reviewing data and arriving at relevant conclusions using various analytical research methods. Data analysis assists researchers in categorizing, manipulating data, and summarizing data to answer critical questions. LEARN ABOUT: Level of Analysis.

  5. Chapter Four Data Presentation, Analysis and Interpretation 4.0

    DATA PRESENTATION, ANALYSIS AND INTERPRETATION. 4.0 Introduction. This chapter is concerned with data pres entation, of the findings obtained through the study. The. findings are presented in ...

  6. The Beginner's Guide to Statistical Analysis

    Table of contents. Step 1: Write your hypotheses and plan your research design. Step 2: Collect data from a sample. Step 3: Summarize your data with descriptive statistics. Step 4: Test hypotheses or make estimates with inferential statistics.

  7. What is Data Interpretation? Tools, Techniques, Examples

    Tools, Techniques, Examples - 10XSheets. July 14, 2023. In today's data-driven world, the ability to interpret and extract valuable insights from data is crucial for making informed decisions. Data interpretation involves analyzing and making sense of data to uncover patterns, relationships, and trends that can guide strategic actions.

  8. Data Interpretation: Definition, Method, Benefits & Examples

    In other words, normalizing data, aka giving meaning to the collected 'cleaned' raw data. Data Interpretation Examples. Data interpretation is the final step of data analysis. This is where you turn results into actionable items. To better understand it, here are 2 instances of interpreting data: Let's say you've got four age groups of the user ...

  9. What is Data Interpretation? + [Types, Method & Tools]

    Data interpretation and analysis is an important aspect of working with data sets in any field or research and statistics. They both go hand in hand, as the process of data interpretation involves the analysis of data. The process of data interpretation is usually cumbersome, and should naturally become more difficult with the best amount of ...

  10. How to Write a Results Section

    The most logical way to structure quantitative results is to frame them around your research questions or hypotheses. For each question or hypothesis, share: A reminder of the type of analysis you used (e.g., a two-sample t test or simple linear regression). A more detailed description of your analysis should go in your methodology section.

  11. What is Data Interpretation? Methods, Examples & Tools

    Data interpretation is a crucial aspect of data analysis and enables organizations to turn large amounts of data into actionable insights. The guide covered the definition, importance, types, methods, benefits, process, analysis, tools, use cases, and best practices of data interpretation. As technology continues to advance, the methods and ...

  12. Analysing and Interpreting Data in Your Dissertation: Making Sense of

    Data analysis and interpretation are critical stages in your dissertation that transform raw data into meaningful insights, directly impacting the quality and credibility of your research. This guide has provided a comprehensive overview of the steps and techniques necessary for effectively analysing and interpreting your data.

  13. Data Analysis in Research: Types & Methods

    Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. Three essential things occur during the data ...

  14. LibGuides: Research Methods: Data Analysis & Interpretation

    Qualitative Data. Data analysis for a qualitative study can be complex because of the variety of types of data that can be collected. Qualitative researchers aren't attempting to measure observable characteristics, they are often attempting to capture an individual's interpretation of a phenomena or situation in a particular context or setting.

  15. What Is Data Analysis? (With Examples)

    What Is Data Analysis? (With Examples) Data analysis is the practice of working with data to glean useful information, which can then be used to make informed decisions. "It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts," Sherlock Holme's proclaims ...

  16. From Analysis to Interpretation in Qualitative Studies

    From Analysis to Interpretation in Qualitative Studies. Data Analysis. Sep 1, 2023. by Janet Salmons, PhD Research Community Manager for Sage Methodspace. Data analysis can only get you so far - then you need to make sense of what you have found. This stage of interpretation can be challenging for qualitative researchers.

  17. Data Analysis and Interpretation

    Key concepts. Data collection is the systematic recording of information; data analysis involves working to uncover patterns and trends in datasets; data interpretation involves explaining those patterns and trends. Scientists interpret data based on their background knowledge and experience; thus, different scientists can interpret the same ...

  18. Understanding statistical analysis: A beginner's guide to data

    Data interpretation is a crucial part of statistical analysis, as it is used to draw conclusions and make recommendations based on the data. When interpreting data, it is important to consider the context in which the data was collected. This includes factors such as the sample size, the sampling method, and the population being studied.

  19. PDF Chapter 6: Data Analysis and Interpretation 6.1. Introduction

    recommendations (cf. Chap. 8). The focus now turns to the analysis and interpretation of the data for this study. 6.2 ANALYSIS AND INTERPRETATION OF DATA Marshall and Rossman(1999:150) describe data analysis as the process of bringing order, structure and meaning to the mass of collected data. It is described as messy, ambiguous and

  20. An Overview of Data Analysis and Interpretations in Research

    Research is a scientific field which helps to generate new knowledge and solve the existing problem. So, data analysis is the crucial part of research which makes the result of the study more ...

  21. Qualitative data analysis: a practical example

    The aim of this paper is to equip readers with an understanding of the principles of qualitative data analysis and offer a practical example of how analysis might be undertaken in an interview-based study. Qualitative research is a generic term that refers to a group of methods, and ways of collecting and analysing data that are interpretative or explanatory in nature and focus on meaning ...

  22. Research Guide: Data analysis and reporting findings

    Data analysis is the most crucial part of any research. Data analysis summarizes collected data. It involves the interpretation of data gathered through the use of analytical and logical reasoning to determine patterns, relationships or trends. ... offers workable examples in each chapter with concepts, applications and proofs to help produce a ...

  23. Analyzing and Interpreting Data

    For example, data from a simple retrospective cohort study should be analyzed by calculating and comparing attack rates among exposure groups. Data from a case-control study must be analyzed by comparing exposures among case-patients and controls, and the data must account for matching in the analysis if matching was used in the design.

  24. Sample tables

    Sample analysis of variance (ANOVA) table. Table 1. Means, Standard Deviations, and One-Way Analyses of Variance in Psychological and Social Resources and Cognitive Appraisals. ... We integrated quantitative data (whether students selected a card about nuclear power or about climate change) and qualitative data (interviews with students) to ...

  25. Difference Between Data Analysis and Data Interpretation

    Conclusion. In the process of data-driven decision-making, data analysis and interpretation are two large parts playing a complementary role toward each other. Data analysis is the process of processing and organizing raw data to glean valuable insights from them. Data interpretation gives meaning to the findings derived from data analysis and brings these findings into practical application ...

  26. EXPLANA: A user-friendly workflow for EXPLoratory ANAlysis ...

    Motivation: Longitudinal microbiome studies (LMS) are increasingly common but have analytic challenges including non-independent data requiring mixed-effects models and large amounts of data that motivate exploratory analysis to identify factors related to outcome variables. Although change analysis (i.e. calculating deltas between values at different timepoints) can be powerful, how to best ...

  27. Where Data-Driven Decision-Making Can Go Wrong

    By employing a systematic approach to the collection and interpretation of information, you can more effectively reap the benefits of the ever-increasing mountain of external and internal data and ...

  28. PDF 7th edition Common Reference Examples Guide

    to find the examples in the Publication Manual of the American Psychological Association (7th ed.). More information on references and reference examples are in Chapters 9 and 10 of the Publication Manual as well as the Concise Guide to APA Style (7th ed.). Also see the Reference Examples pages on the APA Style website.

  29. The biggest data breaches in 2024: 1 billion stolen ...

    Earlier in March, a data breach broker dumped online a full cache of 73 million customer records to a known cybercrime forum for anyone to see, some three years after a much smaller sample was ...