Logo

Journal for Research in Mathematics Education

An official journal of the National Council of Teachers of Mathematics (NCTM), JRME is the premier research journal in mathematics education and is devoted to the interests of teachers and researchers at all levels--preschool through college.

  • eTOC Alerts
  • Latest Issue TOC RSS

Reflecting From the Border Between Mathematics Education Research and Cognitive Psychology

Unitizing predicates and reasoning about the logic of proofs.

This article offers the construct unitizing predicates to name mental actions important for students’ reasoning about logic. To unitize a predicate is to conceptualize (possibly complex or multipart) conditions as a single property that every example has or does not have, thereby partitioning a universal set into examples and nonexamples. This explains the cognitive work that supports students to unify various statements with the same logical form, which is conventionally represented by replacing parts of statements with logical variables p or P ( x ). Using data from a constructivist teaching experiment with two undergraduate students, we document barriers to unitizing predicates and demonstrate how this activity influences students’ ability to render mathematical statements and proofs as having the same logical structure.

How Students Understand Graphical Patterns: Fine-Grained, Intuitive Knowledge Used in Graphical Thinking

Engaging in the construction and interpretation of graphs is a complex process involving concerted activation of context-specific cognitive resources. As students engage in this process, they apply fine-grained, intuitive ideas to graphical patterns: graphical forms. Using data involving pairs of students constructing and interpreting graphs, we expand on the current knowledge base on graphical forms to contribute an empirically based catalog. We also situate our cognitively oriented work in relation to research that has emphasized (a) misconceptions and (b) social practices. In addition, we draw connections to the research on covariational reasoning. We end with implications regarding how graphical forms contribute to our understanding of students’ graphical reasoning and how instructors can support students.

The Journal for Research in Mathematics Education is published online five times a year—January, March, May, July, and November—at 1906 Association Dr., Reston, VA 20191-1502. Each volume’s index is in the November issue. JRME is indexed in Contents Pages in Education, Current Index to Journals in Education, Education Index, Psychological Abstracts, Social Sciences Citation Index, and MathEduc.

An official journal of the National Council of Teachers of Mathematics (NCTM), JRME is the premier research journal in mathematics education and is devoted to the interests of teachers and researchers at all levels--preschool through college. JRME presents a variety of viewpoints. The views expressed or implied in JRME are not the official position of the Council unless otherwise noted.

JRME is a forum for disciplined inquiry into the teaching and learning of mathematics. The editors encourage submissions including:

  • Research reports, addressing important research questions and issues in mathematics education,
  • Brief reports of research,
  • Research commentaries on issues pertaining to mathematics education research.

More information about each type of submission is available here . If you have questions about the types of manuscripts JRME publishes, please contact [email protected].

Editorial Board

The  JRME  Editorial Board consists of the Editorial Team and Editorial Panel.  The Editorial team, led by JRME Editor Patricio Herbst, leads the review, decision and editorial/publication process for manuscripts.  The Editorial Panel reviews manuscripts, sets policy for the journal, and continually seeks feedback from readers. The following are members of the current JRME Editorial Board.

Editorial Staff   

Editorial Panel  

International Advisory Board   

Headquarters Journal Staff  

The editors of the  Journal for Research in Mathematics Education (JRME)  encourage the submission of a variety of manuscripts.

Manuscripts must be submitted through the JRME Online Submission and Review System . 

Research Reports

JRME publishes a wide variety of research reports that move the field of mathematics education forward. These include, but are not limited to, various genres and designs of empirical research; philosophical, methodological, and historical studies in mathematics education; and literature reviews, syntheses, and theoretical analyses of research in mathematics education. Papers that review well for JRME generally include these Characteristics of a High-Quality Manuscript . The editors strongly encourage all authors to consider these characteristics when preparing a submission to JRME. 

The maximum length for Research Reports is 13,000 words including abstract, references, tables, and figures.

Brief Reports

Brief reports of research are appropriate when a fuller report is available elsewhere or when a more comprehensive follow-up study is planned.

  • A brief report of a first study on some topic might stress the rationale, hypotheses, and plans for further work.
  • A brief report of a replication or extension of a previously reported study might contrast the results of the two studies, referring to the earlier study for methodological details.
  • A brief report of a monograph or other lengthy nonjournal publication might summarize the key findings and implications or might highlight an unusual observation or methodological approach.
  • A brief report might provide an executive summary of a large study.

The maximum length for Brief Reports is 5,000 words including abstract, references, tables, and figures. If source materials are needed to evaluate a brief report manuscript, a copy should be included.

Other correspondence regarding manuscripts for Research Reports or Brief Reports should be sent to

Patricio Herbst, JRME Editor, [email protected] .

Research Commentaries

The journal publishes brief (5,000 word), peer-reviewed commentaries on issues that reflect on mathematics education research as a field and steward its development. Research Commentaries differ from Research Reports in that their focus is not to present new findings or empirical results, but rather to comment on issues of interest to the broader research community. 

Research Commentaries are intended to engage the community and increase the breadth of topics addressed in  JRME . Typically, Research Commentaries —

  • address mathematics education research as a field and endeavor to move the field forward;
  • speak to the readers of the journal as an audience of researchers; and
  • speak in ways that have relevance to all mathematics education researchers, even when addressing a particular point or a particular subgroup.

Authors of Research Commentaries should share their perspectives while seeking to invite conversation and dialogue, rather than close off opportunities to learn from others, especially those whose work they might be critiquing. 

Foci of Research Commentaries vary widely. They may include, but are not restricted to the following:

  • Discussion of connections between research and NCTM-produced documents
  • Advances in research methods
  • Discussions of connections among research, policy, and practice
  • Analyses of trends in policies for funding research
  • Examinations of evaluation studies
  • Critical essays on research publications that have implications for the mathematics education research community
  • Interpretations of previously published research in JRME that bring insights from an equity lens
  • Exchanges among scholars holding contrasting views about research-related issues

Read more about Research Commentaries in our May 2023 editorial . 

The maximum length for Research Commentaries is 5,000 words, including abstract, references, tables, and figures.

Other correspondence regarding Research Commentary manuscripts should be sent to: 

Daniel Chazan, JRME Research Commentary Editor, [email protected] .

Tools for Authors

The forms below provide information to authors and help ensure that NCTM complies with all copyright laws: 

Student Work Release

Photographer Copyright Release

Video Permission

Want to Review?

Find more information in this flyer  about how to become a reviewer for JRME . 

The  Journal for Research in Mathematics Education  is available to individuals as part of an  NCTM membership  or may be accessible through an  institutional subscription .

The  Journal for Research in Mathematics Education  ( JRME ), an official journal of the National Council of Teachers of Mathematics (NCTM), is the premier research journal in math education and devoted to the interests of teachers and researchers at all levels--preschool through college.

JRME is published five times a year—January, March, May, July, and November—and presents a variety of viewpoints.  Learn more about   JRME .

NCTM

© 2024 National Council of Teachers of Mathematics (NCTM)

Powered by: PubFactory

  • [66.249.64.20|193.7.198.129]
  • 193.7.198.129

Character limit 500 /500

Mathematics Teaching-Research Journal (MTRJ)

  • The Editors Team
  • Volume 1 N 1
  • Volume 1 N 2
  • Volume 2 N 1
  • Volume 2 N 2
  • Volume 2 N 3
  • Volume 3 N 1
  • Volume 3 N 2
  • Volume 3 N 3
  • Volume 3 N 4
  • Volume 4 N 1
  • Volume 4 N 2
  • Volume 4 N 3
  • Volume 5 N 1
  • Volume 5 N 2
  • Volume 5 N 3
  • Volume 5 N 4
  • Volume 6 N 4
  • Volume 6 N 1 & 2
  • Volume 6 N 3
  • Volume 7 N 1
  • Volume 7 N 2
  • Volume 7 N 3
  • Volume 7 N 4
  • Volume 8 N 1 & 2
  • Volume 8 N 3 & 4
  • Volume 9 N 1 & 2
  • Volume 9 N 3 & 4
  • Volume 10 N 1
  • Volume 10 N 2
  • Volume 10 N 3 & 4
  • Volume 11 N 3 & 4
  • Volume 11 N 1 & 2
  • Volume 12 N 1
  • Volume 12 N 2
  • Volume 12 N 3
  • Volume 12 N 4
  • Volume 13 N 1
  • Volume 13 N 2
  • Volume 13 N 3
  • Volume 13 N 4
  • Volume 14 N 1
  • Volume 14 N 2
  • Volume 14 N 3
  • Volume 14 N 4
  • Volume 14 N 5
  • Volume 15 N 1
  • Volume 15 N 2
  • Volume 15 N 3
  • Volume 15 N 4
  • Volume 15 N 5
  • Volume 15 N 6
  • Ethics Statement
  • For Authors
  • Aha! Moment Research Library
  • Hostos Teaching-Research Team

TR51 vol 16 no 1 of the Mathematics Teaching-Research Journal

Editorial from Malgorzata Marciniak, Managing Editor of MTRJ

Picture of the Editor

The Impact of Project-Based Learning on the Development of Statistical and Scientific Skills: A Study with Chilean University Students from the Faculty of Health Sciences

Chuan Chih, Hsu, Chia Shih, Su, Kua I, Su, Chia Li, Su

The first paper, by Chuan Chih et al was written collaboratively by authors from Chile and Argentina, who discuss Project-Based Learning. Students of kinesiology in their statements praise PBL for the improvement in academic performance. The development of statistical and scientific skills among participants is confirmed in quantitative data analysis.

On a typology of errors in integral calculus in secondary school related to algebraic and graphical frames

Anass El Guenyari, Mohamed Chergui, Bouazza El Wahbi

Repetitive errors in integration performed by Moroccan students are analyzed by El Guyenari et al. The authors create multiple subcategories for the three known categories of errors: conceptual, procedural, and technical. It seems that technical subcategories represent a major source of the erroneous productions of the students.

Investigation of Students’ Mathematical Thinking Processes in Solving Non-routine Number Pattern Problems: A Hermeneutics Phenomenological Study

Aiyub Aiyub, Didi Suryadi, Siti Fatimah, Kusnandi Kusnandi, Zainal Abidin

A hermeneutics phenomenological study is performed by Aiyub et al from Indonesia. The authors observe patterns in students’ performance classifying and analyzing each category of performance. In addition, suggestions for supporting students’ learning in each category are provided.

Socio-mathematical Norms Related to Problem Solving in a Gifted and Talented Mathematics Classroom

Aslı Çakır, Hatice Akkoç

Aslı Çakır, Hatice Akkoç from Turkey discuss how gifted students create social norms for discussing different solutions. The authors give practical guidelines for developing classroom culture related to such discussions. Their work is motivated by the benefits of such discussions for both mathematical and human reasons.

The Thinking Process of Children in Algebra Problems: A Case Study in Junior High School Students

Wa Ode Dahiana, Tatang Herman, Elah Nurlaelah

Dahiana Wa Ode, et al from Indonesia use the Harel’s model to analyze thinking characteristics of students while solving algebra problems After analyzing the data the authors conclude that only a few students display algebraic invariance thinking or proportional and deductive thinking while majority use non-referential symbolic thinking.

Overview of Student’s Mathematics Reasoning Ability Based on Social Cognitive Learning and Mathematical Self-efficacy

Habibi Ratu Perwira Negara, Farah Heniati Santosa, Muhammad Daut Siagian

Mathematical self-efficacy is discussed in the context of problem-based learning and social cognitive learning by Muhammad Daut Siagian, et al from Indonesia. According to the authors’ work, in certain circumstances, one of those two kinds of learning is more impactful on students’ mathematical reasoning abilities.

Designing Model of Mathematics Instruction Based on Computational Thinking and Mathematical Thinking for Elementary School Student

Rina Dyah Rahmawati, Sugiman, Muhammad Nur Wangid, Yoppy Wahyu Purnomo

Rina Dyah Rahmawati, et al from Indonesia perform experiments to use integrated computational thinking and mathematical practical design thinking to enhance students’ computational thinking skills. The authors analyze the validation process, practicality, and effectiveness of such an approach.

Schema development in solving systems of linear equations using the triad framework

Benjamin Tatira

The Triad Framework was used by Benjamin Tatira from South Africa for studying his students progress in learning linear equations. The author points out that identifying the challenges encountered by the students provides sufficient insight to the instructors for overcoming them.

Assessing the understanding of the slope concept in high school students

José David Morante-Rodríguez, Martha Patricia Velasco-Romero, Geovani Daniel Nolasco-Negrete, María Eugenia Martínez-Merino, José Antonio Juárez-López

The concept of slope is the topic of research for José David Morante-Rodríguez, et al from Mexico. They analyze it within four dimensions: Skills, Properties, Uses and Representations using the SPUR model. And based on three conceptualizations: constant ratio, behavior indicator and trigonometric conception. According to the authors, most students master the procedural tasks of the slope: the constant ratio and trigonometric conception but miss the conceptual aspects.

Effects of Differentiated Instruction in Flipped Classrooms on Students’ Mastery Level and Performance in Quadratic Equations

Gilbert G. Baybayon, Minie Rose C. Lapinid

Gilbert G. Baybayon and Minie Rose C. Lapinid from the Philippines discuss methods of addressing students’ non-compliance with assignments in a flipped classroom. They administer tiered worksheets based on students ‘ readiness as reflected in pre-assessment results.

Case Studies: Pre-Service Mathematics Teachers’ Integration of Technology into Instructional Activities Using a Cognitive Demand Perspective

Ahmet Oğuz Akçay

Ahmet Oğuz Akçay from Turkey test pre-service teachers on classroom technology. In addition, the authors study cognitive demands of mathematical tasks when technology is used.

Examining Pre-service Mathematics Teachers’ Pedagogical Content Knowledge (PCK) during a Professional Development Course: A Case Study

Sunzuma Gladys, Zezekwa Nicholas, Chagwiza Conillius, Mutambara Tendai, L.

In another paper about pre-service teachers, Sunzuma Gladys et al, from Zimbabwe assess pre-service teacher’s pedagogical content knowledge as observed in their teaching. Lesson plans and class videos from four subjects are analyzed from the perspective of the knowledge about the subject content matter, knowledge of learners, understanding of instructional strategies and familiarity of context.

The Problem Corner

Ivan Retamoso, BMCC, USA

The Problem Corner edited by Ivan Retamoso from BMCC, USA contains math problems and their solutions. This time solutions were submitted by Abdullah Kurudirek from Iraq and by Hosseinali Gholami from Malaysia who previously authored papers in MTRJ.

Download Full Version

SUBMISSIONS:

Submit your articles to: [email protected], mathematics teaching-research journal online – issn # 2573-4377., peer-reviewed., indexed in:, -scopus, elsevier -cnki, china -eric education resources -information center, us doe -cabell journalytics.

Creative Enterprise of Mathematics Teaching Research

©2007-2024 Mathematics Teaching-Research Journal (MTRJ). All rights reserved.

Log in with your credentials

Forgot your details.

  • Search Menu
  • Advance articles
  • Editor's Choice
  • Author Guidelines
  • Submission Site
  • Open Access
  • About Teaching Mathematics and its Applications
  • About the Institute of Mathematics and its Applications
  • Editorial Board
  • Advertising and Corporate Services
  • Journals Career Network
  • Self-Archiving Policy
  • Dispatch Dates
  • Journals on Oxford Academic
  • Books on Oxford Academic

Issue Cover

Prof. C. Sangwin

Prof. D. Lawson

Dr. C. Smith

About the journal

The journal provides a forum for the exchange of ideas and experiences which contribute to the improvement of mathematics teaching and learning for students from upper secondary/high school level through to university…

Latest articles

TEAMAT cover image.

Special Issues

In addition to its regular issues, Teaching Mathematics and its Applications occasionally publishes special issues comprised of articles on a particular topic or from relevant conferences across the discipline.

Latest Special Issue: Contributions from the SEFI Mathematics Special Interest Group Conference 2021

Browse all special issues

Restarting the New Normal.jpg

Forthcoming Special Issue: Mathematics for Economics

Teaching Mathematics and Its Applications is pleased to announce that it intends to publish a special issue focused on Mathematics for Economics.  At this stage, expressions of interest are sought from authors who may wish to contribute to this special issue.  This will be a broad special issue and papers covering any aspects related to teaching and learning of mathematics for economics in higher and upper secondary education are welcome.

Further information and call for expressions of interest

TEAMAT High Impact 480x270.png

High-Impact Research Collection

Explore a collection of freely available high-impact research published in Teaching Mathematics and its Applications  within the past two years.

Browse the collection here

Unlocked silver padlock

Read and Publish deals

Authors interested in publishing in  Teaching Mathematics and its Applications  may be able to publish their paper Open Access using funds available through their institution’s agreement with OUP.

Find out if your institution is participating

Read our step-by-step guide for accessing R&P funds

Alerts in the Inbox

Email alerts

Register to receive table of contents email alerts as soon as new issues of Teaching Mathematics and its Applications are published online.

Recommend to your library

Recommend to your library

Fill out our simple online form to recommend Teaching Mathematics and its Applications to your library.

Recommend now

COPE logo

Committee on Publication Ethics (COPE)

This journal is a member of and subscribes to the principles of the Committee on Publication Ethics (COPE)

publicationethics.org

IMA Logo

Published on behalf of the IMA

This journal is published on behalf of the Institute of Mathematics and its Applications. All IMA journals encourage diversity.

Related Titles

Cover image of current issue from IMA Journal of Applied Mathematics

  • Recommend to your Library

Affiliations

  • Online ISSN 1471-6976
  • Copyright © 2024 Institute of Mathematics and its Applications
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

  • Open access
  • Published: 19 December 2019

Problematizing teaching and learning mathematics as “given” in STEM education

  • Yeping Li 1 &
  • Alan H. Schoenfeld 2  

International Journal of STEM Education volume  6 , Article number:  44 ( 2019 ) Cite this article

108k Accesses

83 Citations

25 Altmetric

Metrics details

Mathematics is fundamental for many professions, especially science, technology, and engineering. Yet, mathematics is often perceived as difficult and many students leave disciplines in science, technology, engineering, and mathematics (STEM) as a result, closing doors to scientific, engineering, and technological careers. In this editorial, we argue that how mathematics is traditionally viewed as “given” or “fixed” for students’ expected acquisition alienates many students and needs to be problematized. We propose an alternative approach to changes in mathematics education and show how the alternative also applies to STEM education.

Introduction

Mathematics is commonly perceived to be difficult (e.g., Fritz et al. 2019 ). Moreover, many believe “it is ok—not everyone can be good at math” (Rattan et al. 2012 ). With such perceptions, many students stop studying mathematics soon after it is no longer required of them. Giving up learning mathematics may seem acceptable to those who see mathematics as “optional,” but it is deeply problematic for society as a whole. Mathematics is a gateway to many scientific and technological fields. Leaving it limits students’ opportunities to learn a range of important subjects, thus limiting their future job opportunities and depriving society of a potential pool of quantitatively literate citizens. This situation needs to be changed, especially as we prepare students for the continuously increasing demand for quantitative and computational literacy over the twenty-first century (e.g., Committee on STEM Education 2018 ).

The goal of this editorial is to re-frame issues of change in mathematics education, with connections to science, technology, engineering, and mathematics (STEM) education. We are hardly the first to call for such changes; the history of mathematics and philosophy has seen ongoing changes in conceptualization of the discipline, and there have been numerous changes in the past century alone (Schoenfeld 2001 ). Yet changes in practice of how mathematics is viewed, taught, and learned have fallen far short of espoused aspirations. While there has been an increased focus on the processes and practices of mathematics (e.g., problem solving) over the past half century, the vast majority of the emphasis is still on what content should be presented to students. It is thus not surprising that significant progress has not been made.

We propose a two-fold reframing. The first shift is to re-emphasize the nature of mathematics—indeed, all of STEM—as a sense-making activity. Mathematics is typically conceptualized and presented as a body of content to be learned and processes to be engaged in, which can be seen in both the NCTM Standards volumes and the Common Core Standards. Alternatively, we believe that all of the mathematics studied in K-12 can be viewed as the codification of experiences of both making sense and sense making through various practices including problem solving, reasoning, communicating, and mathematical modeling, and that students can and should experience it that way. Indeed, much of the inductive part of mathematics has been lost, and the deductive part is often presented as rote procedures rather than a form of sense making. If we arrange for students to have the right experiences, the formal mathematics can serve to organize and systematize those experiences.

The second shift is suggested by the first, with specific attention to classroom instruction. Whether mathematics or STEM, the main focus of most instruction has been on the content and practices of the discipline, and what the teacher should do in order to make it accessible to students. Instead, we urge that the main focus should be on the student’s experience of the discipline – on the affordances the environment provides the student for disciplinary sense making. We will introduce the Teaching for Robust Understanding (TRU) Framework, which can be used to problematize instruction and guide needed reframing. The first dimension of TRU (The Discipline) focuses on the re-framing discussed above: is the content conceptualized as something rich and connected that can be experienced and codified in meaningful ways? The second dimension (Cognitive Demand) examines opportunities students have to do that kind of sense-making and codification. The third (Equitable Access to Content) examines who has such opportunities: is there equitable access to the core ideas? Dimension 4 (Agency, Ownership, and Identity) asks, do students encounter the discipline in ways that enable them to see themselves as sense makers, building both agency and positive disciplinary identities? Finally, dimension 5 (Formative Assessment) asks, does instruction routinely use formative assessment, allowing student thinking to become public so that instruction can be adjusted accordingly?

We begin with a historical background, briefly discussing different views regarding the nature of mathematics. We then problematize traditional approaches to mathematics teaching and learning. Finally, we discuss possible changes in the context of STEM education.

Knowing the background: the development of conceptions about the nature of mathematics

The scholarly understanding of the nature of mathematics has evolved over its long history (e.g., Devlin 2012 ; Dossey 1992 ). Explicit discussions regarding the nature of mathematics took place among Greek mathematicians from 500 BC to 300 AD (see, https://en.wikipedia.org/wiki/Greek_mathematics ). In contrast to the primarily utilitarian approaches that preceded them, the Greeks pioneered the study of mathematics for its own sake and pursued the development and use of generalized mathematical theories and proofs, especially in geometry and measurement (Boyer 1991 ). Different perspectives about the nature of mathematics were gradually developed during that time. Plato perceived the study of mathematics as pursuing the truth that exists in external world beyond people’s mind. Mathematics was treated as a body of knowledge, in the ideal forms, that exists on its own, which human’s mind may or may not sense. Aristotle, Plato’s student, believed that mathematicians constructed mathematical ideas as a result of the idealization of their experience with objects (Dossey 1992 ). In this perspective, Aristotle emphasized logical reasoning and empirical realization of mathematical objects that are accessible to the human senses. The two schools of thought that evolved from Plato’s and Aristotle’s contrasting conceptions of the nature of mathematics have had important implications for the ensuing development of mathematics as a discipline, and for mathematics education.

Several more schools of thought were developed as mathematicians tackled new problems in mathematics (Dossey 1992 ). Davis and Hersh ( 1980 ) provides an entertaining and informative account of these developments. Three major schools of thought in the early 1900s dealt with paradoxes in the real number system and the theory of sets: (1) logicism, as an outgrowth of the Platonic school, accepts the external existence of mathematics and emphasizes the form rather than the interpretation in a specific setting; (2) intuitionism, as influenced by Aristotle’s ideas, only accepts the mathematics to be developed from the natural numbers forward via “valid” patterns of mental reasoning (not empirical realization in Aristotle’s thought); and (3) formalism, also aligned with Aristotle’s ideas, builds mathematics upon the formal axiomatic structures to free mathematics from contradictions. These three schools of thought are similar in that they view the contents of mathematics as products , but they differ in whether products are viewed as pre-existing or created through experience. The development of these three schools of thought illustrates that the view of mathematics as products has its long history in mathematics.

With the gradual development of school mathematics since 1900s (Stanic and Kilpatrick 1992 ), the conception of the nature of mathematics has increasingly received attention from mathematics educators. Which notion of mathematics mathematics education adopts and uses has a direct and strong impact on the way of school mathematics being presented and approached in education. Although the history of school mathematics is relatively short in comparison with mathematics itself, we can find ample examples about the influence of different views of mathematics on curriculum and classroom instruction in the USA and other education systems (e.g., Dossey et al. 2016 ; Li and Lappan 2014 ; Li, Silver, and Li 2014 ; Stanic and Kilpatrick 1992 ). For instance, the “New Math” movement of 1950s and 1960s used the formalism school of thought as the core of reform efforts. The content was presented in a structural format, using the set theoretic language and conceptions. But the result was not a successful progression toward a school mathematics that is best for students and teachers (e.g., Kline 1973 ). Alternatively, Dossey ( 1992 ), in his review of the nature of mathematics, identified and selected scholars’ works and ideas applicable to both professional mathematicians and mathematics educators (e.g., Davis and Hersh 1980 ; Hersh 1986 ; Tymoczko 1986 ). Those scholars' ideas rested on what professional mathematicians do, not what mathematicians think about what mathematics is. Dossey ( 1992 ) specifically cited Hersh ( 1986 ) to emphasize mathematics is about ideas and should be accepted as a human activity, not strictly governed by any one school of thought.

Devlin ( 2000 ) argued that mathematics is not a single entity but has four different faces: (1) computation, formal reasoning, and problem solving; (2) a way of knowing; (3) a creative medium; and (4) applications. Further, he contended school mathematics typically focuses on the first face, makes some reference to the fourth face, but pays almost no attention to the other two faces. His conception of mathematics assembles ideas from the history of mathematics and observes mathematical activities occurring across different settings.

Our brief review shows that the nature of mathematics can be understood as having different faces, rather than being governed by any single school of thought. At the same time, the ideas of Plato and Aristotle continue to influence the ways that mathematicians, mathematics educators, and the general public perceive mathematics. Despite nearly a half century of process-oriented research (see below), let alone Pólya’s work on problem solving, mathematics is still perceived of largely as products —a body of knowledge as highlighted in the three schools (logicist, intuitionist, formalist) of thought, rather than ideas that call for active thinking and creation. The evolving conceptions about the nature of mathematics in history suggests there is room for us to decide how mathematics can be perceived, rather than being bounded by a pre-occupied notion of mathematics as “given” or “fixed.” Each and every learner can experience mathematics through different practices and “own” mathematics as a human activity.

Problematizing what is important for students to learn in and through mathematics

The evolving conceptions about the nature of mathematics suggest that choices exist when deciding what and how to teach and learn mathematics but they do not specify what and how to make the choice. Decisions require articulating options for conceptions of what is important for students to learn in and through mathematics and evaluating the advantages and drawbacks for the students for each option.

According to Stanic and Kilpatrick ( 1992 ), the history of school mathematics curricula presents two important and real changes over the years: one is at the turn of the twentieth century when school mathematics was reformed as a unified and applied curriculum to accommodate dramatically increased student populations from diverse backgrounds, and the other is the “New Math” movement of the 1950s and 1960s, intended to integrate modern mathematics into school curriculum. The perceived failure of the “New Math” movement led to the “Back to Basics” movement in the 1970s, followed by “Problem Solving” in the 1980s, and then the Curriculum Standards movement in the 1990s and after. The history shows school mathematics curricula have emphasized teaching and learning mathematical knowledge and skills, together with problem solving and some applications of mathematics, a picture that is consistent with what Devlin ( 2000 ) refers to as the 1st face and some reference to the 4th face of mathematics.

Therefore, although there have been reforms in mathematics curriculum and instruction, there are hardly real changes in how mathematics is conceptualized and presented in school education in the USA (Stanic and Kilpatrick 1992 ) and other education systems (e.g., Leung and Li 2010 ; Li and Lappan 2014 ). The dominant conception remains mathematics as products , frequently referring to a body of static knowledge and skills that need to be learned and acquired (Fisher 1990 ). This continues to be largely the case in practice, despite advances in conceptualization (see below).

It should be noted that conceptualizing mathematics as “a body of knowledge and skills” is not wrong, especially with such a long history of knowledge creation and accumulation in mathematics, but it is not adequate for school mathematics nowadays. The set of concepts and procedures, after years of development, exceeds what could be covered in any school curricula. Moreover, this body of knowledge and skills keeps growing, as the product of human intelligence and scholarship in mathematics. Devlin ( 2012 ) pointed out that school mathematics mainly covers what was developed in the Greek mathematics, plus just two further advances from the seventh century: calculus and probability theory. It is no wonder if someone questions the value of learning such a small set of knowledge and skills developed more than a thousand years ago. Meanwhile, this body of knowledge and skills are often abstract, static, and “foreign” to many students and teachers who learned to perceive mathematics as an external entity in existence (Plato’s notion) rather than Aristotelian emphasis on experimentation (Cooney 1987 ). It is thus not surprising for so many students and teachers to claim that mathematics is difficult (e.g., Fritz et al. 2019 ) and “it is ok—not everyone can be good at math” (Rattan et al. 2012 ).

What can be made meaningful should be critically important to those who want to (or need to) learn and teach mathematics. In fact, there is significant evidence that students often try to make sense of mathematics that is “presented” or “given” to them, although they made numerous errors that can be decoded to study their thinking (e.g., Ashlock 2010 ). Indeed, misconceptions are best thought of not as errors that need to be “fixed,” but as plausible abstractions on the basis of what students have learned—i.e., attempts at sense-making (Smith et al. 1993 ). Conceiving mathematics as about “ideas,” we can help students to play, own, experience, and think about some key ideas just like what they do in many other activities, such as game play (Gee 2005 ). Definitions of concepts and formal languages and procedures can be postponed until students are ready to consider why and how they are needed. Mathematics should be taken and accepted as a human activity (Dossey 1992 ), and developing students’ mathematical thinking (about ideas) should be emphasized in learning mathematics itself (Devlin 2012 ) and in STEM (Li et al. 2019a ).

Along with the shift from products to ideas in mathematics, scholars have already focused on how people work with ideas in mathematics. Elaborated in detail by Schoenfeld ( in press ), the revolution began with George Pólya (1887–1985) who had a fundamental interest in having students learn and understand content via problem solving. For Pólya, mathematics was about inquiry, sense making, and understanding how and why mathematical ideas (instead of content as products) fit together the way they do. The call for problem solving in the 1980s in the USA was (at least partially) inspired by Pólya’s ideas after a decade of “back to basics” in the 1970s. It has been recognized since that the practices of mathematics (including problem solving) are every bit as important as the content itself, and the two shouldn’t be separated. In the follow-up standards movement, the content and practices have been the “warp and weave” of the fabric doing mathematics, as articulated in Principles and Standards for School Standards (NCTM 2000 ). There were five content standards and five process standards (i.e., problem solving, reasoning, connecting, communicating, representing). It is widely acknowledged, also in the Common Core State Standards in the USA (CCSSI 2010 ), that both content and processes/practices are essential and they form the base for next steps.

Problematizing how mathematics is taught and learned, with connections to STEM education

How the ways that mathematics is often taught cause concerns.

Conceiving mathematics as a body of facts and procedures to be “mastered” has been long-standing in mathematics education practice, and it often results in students’ learning by rote memorization. For example, Schoenfeld ( 1988 ) provided a detailed account of the disasters of a “well-taught” mathematics course, documenting a 10th-grade geometry class taught by a confident and experienced teacher. The teacher taught and managed his class well, and his students also did well on standardized examinations, which focused on content and procedures. At the same time, however, Schoenfeld pointed out that the students developed counterproductive views of mathematics. Although the students developed some level of proficiency in content and procedures, they gained (or were reinforced in) the kinds of beliefs about mathematics as being fragmented and disconnected. Schoenfeld argued that the course led students to develop a robust and counterproductive set of beliefs about the nature of geometry.

Seeking possible origins about students’ counterproductive beliefs about mathematics from mathematics instruction motivated Schoenfeld’s study (Schoenfeld 1988 ). Such an intuitive motivation is also evident in other studies. Keitel ( 2006 ) compared the lessons of two teachers (T1 and T2) in Germany who taught their classes very differently. T1 regularly taught the class emphasizing routine individual practice and memorization of specific algebraic rules. T1 emphasized the importance of such practices for test taking, and the students followed his instruction. Even when T1 one day introduced a non-routine problem that connects algebra and geometry, the overwhelming emphasis on mastering routines and algorithms seemed to overshadow in dealing such a non-routine problem. In contrast, T2’s teaching emphasized students’ initiatives and collaboration, although T2 also used formal routine tasks. At the end, students in T2’s class reported positively about their experience, enjoyed working together, and appreciated the opportunities of thinking mathematically. Studies by Schoenfeld ( 1988 ) and Keitel ( 2006 ) indicate how students’ experience in mathematics classes influences their perceptions of mathematics and also imply the importance of learning about teachers’ perceptions of mathematics that likely guide their instructional practice (Cooney 1987 ).

Rattan et al. ( 2012 ) found that teachers with different perceptions of mathematics teach differently. Specifically, Rattan et al. looked at these teachers holding an entity (fixed) theory of mathematics intelligence (G1) versus incremental theory (G2). Through their studies, Rattan and colleagues found that G1 teachers more readily judged students to have low ability, comforted students for low mathematical ability, and used “kind” strategies (e.g., assigning less homework) unlikely to promote their engagement with the field than G2 teachers. Students who received comfort-oriented feedback perceived their teachers’ entity theory and low expectations and reported lowered motivation and expectations for their own performance. The results suggest how teachers’ inadequate perceptions of mathematics and beliefs about the nature of students’ mathematical intelligence contributed to low achievement, diminished self-esteem and viewed mathematics is only a set of static facts and procedures. Further, the results suggest that how mathematics is taught influences more than students’ proficiency with mathematics content in a class. Sun ( 2018 ) made a similar argument after synthesizing existing literature and analyzing classroom observation data.

Based on the 2012 US national survey of science and mathematics education conducted by Horizon Research, Banilower et al. ( 2013 ) reported that a vast majority of mathematics teachers, from 81% at the high school level to 90% at the elementary level, believe that students should be given definitions of new vocabulary at the beginning of instruction on a mathematical idea. Also, many teachers believe that they should explain an idea to students before having them consider evidence for it and that hands-on activities should be used primarily to reinforce ideas students have already learned. The report suggests many teachers emphasized pedagogical practices of “give” and “present,” perhaps influenced by conceptions of mathematics that are more Platonic than Aristotelian, similar to what was reported about teachers’ practices more than two decades ago (Cooney 1987 ).

How to change?

Given that the evidence demonstrates a compelling case for changing how mathematics is taught, we turn our attention to suggesting how to realize this transformation. Changing how mathematics is taught and learned is not a new endeavor for both mathematics educators and mathematicians (e.g., Li, Silver, and Li 2014 ; Schoenfeld in press ). For example, the “Moore Method,” developed and used by Robert Lee Moore (a famous topologist) in the early twentieth century, shifted instruction from teacher-centered lecturing to student-centered mathematical development (Coppin et al. 2009 ). In its purest form, students were presented with mathematical definitions and asked to develop and/or prove theorems from them after class, without reading mathematics books or using other resources. When students returned to the class, they were asked to prove a theorem. As a result, students developed the mathematics themselves, instead of the instructor presenting the proofs and doing the mathematics for students. The method has had its own success in producing many great mathematicians; however, the high-pressure environment also drowned many students who might have been successful otherwise (Schoenfeld in press ).

Although the “Moore Method” was used primarily in advanced mathematics courses at the post-secondary level, it illustrates how a different conception of mathematics led to a different instructional approach in which students developed mathematics. However, it might be the opposite end of a spectrum, in comparison to approaches that present mathematics to students in accommodating and easy-to-digest ways that can be as much easy as possible. Neither extreme is a good option for K-12 students. Again, it becomes important for us to consider options that can support the value of learning mathematics.

Our discussion in the previous section highlights the importance of taking mathematics as a human activity, ensuring it is meaningful to students, and developing students’ mathematical thinking about ideas, rather than simply absorbing a set of static and disconnected knowledge and skills. We call for a shift in teaching mathematics based on Platonic conceptions to approaches based on more of Aristotelian conceptions. In essence, Plato emphasized ideal forms of mathematical objects, perhaps inaccessible through people’s sense making efforts. As a result, learners lack ownership of the ideal forms of mathematical objects, because mathematical objects cannot and should not be created by human reasoning. In contrast, Aristotle emphasized that mathematical objects are developed through logic reasoning and empirical realization. In other words, mathematical objects exist only when they can be sensed and verified by people's efforts. This differs from Plato’s passive perspective, highlights human ownership of mathematical ideas and encourages people to make mathematics make sense, termed as making sense by McCallum ( 2018 ). Aristotelian conceptions view mathematics as objects that learners can actively develop and structure as mathematically meaningful, which is more in line with what research mathematicians do. McCallum ( 2018 ) argued that both sense-making and making-sense stances are needed for a complete view of mathematics and learning, recognizing that not attending to both stances carries risks. “Just as it is a risk of the sense-making stance that the mathematics gets ignored, it is a risk of the making-sense stance that the sense-maker gets ignored.” (McCallum 2018 ).

In addition, there is the issue of personal identity: if students come to avoid mathematics because they are uncomfortable with it (in fact, mathematics anxiety has become a widespread problem for all ages across the globe, see Luttenberger et al. 2018 ) then mathematics instruction has failed them, regardless of test scores.

In the following, we discuss sense-making and making-sense stances first with specific examples from mathematics. Then, we discuss connections to STEM education.

Sense making is much more than the acquisition of knowledge and skills

Sense making has long been emphasized in mathematics education community. William A. Brownell is a well-known, early 20 th century scholar who advocated the value of sense making in the learning of mathematics. For example, Brownell ( 1945 ) discussed how arithmetic can and should be taught and learned not only as procedures, but also as a meaningful system of thinking. He shared many examples like the following division,

Brownell suggested to ask questions: what does the 5 of 576 mean? Why must 57 be the first partial dividend? Do you actually divide 8 into 57, or into 57…’s? etc., instead of simply letting students memorize how to carry out the procedure. What Brownell advocated has been commonly accepted and emphasized in mathematics education nowadays as sense making (e.g., Schoenfeld 1992 ).

There can be different ways of sense making of the same computation. As an example, the sense making process for the above long division can come out with mental math as: I am looking to see how close I can get to 570 with multiples of 80; 7 multiples of 80 gives me 560, which is close. Of course, given base 10 notation, that’s the same as 8 multiples of 70, which is why the 7 goes over the 57. And when I subtract 560, there are 16 left over, so that’s another 2 8 s. Such a sense-making process also works, as finding the answer (quotient, k ) of 576 ÷ 8 is the same operation as to find k that satisfies 576 = k × 8. In mathematics, division and multiplication are alternate but equivalent ways of doing the same operation.

To help students build numerical reasoning and make sense of computations, many teachers use number talks in their classrooms for students to practice and share these mental math and computation strategies (e.g., Parrish 2011 ). In fact, new terms are being created and used in mathematics education about sense making, such as number sense (e.g., Sowder 1992 ) and symbol sense (Arcavi, 1994 ). Some instructional programs, such as Cognitively Guided Instruction (see, e.g., Carpenter et al., 1997 , 1998 ), make sense making the core of instructional activities. We argue that such activities should be more widely adopted.

Making sense makes the other side of mathematical practice visible, and values idea development and ownership

The making-sense stance, as termed by McCallum ( 2018 ), is not commonly practiced as it is pertinent to expert mathematician’s practices. Where sense making (as discussed previously) emphasizes the process of making sense of what is being learned, making sense emphasizes the process of making mathematics make sense. Making sense highlights the importance for students to experience mathematics through creating, designing, developing, and connecting mathematical ideas. As an example, for the above division computation, 8 \( \overline{\Big)576\ } \) , students may wonder why the division procedure is performed from left to right, which is different from the other operations (addition, subtraction, and multiplication) that are all performed from right to left. In fact, students can be encouraged to explore if the division can also be performed from right to left (i.e., starting from the one’s place). They may discover, with possible support from the teacher, that the division can be done in this way. However, once the division is moved to the high-value places, it will require the process to go back down to the low-value places for completion. In other words, the division process starting from the low-value place would require repeated processes of returning to the low-value places; as a result, it is inefficient. As mathematical procedure is designed to improve efficiency, the division procedure is thus set to be carried out from the high-value place to low-value place (i.e., from left to right). Students who work this out experience mathematics more deeply than the sense-making described by Brownell ( 1945 ).

There are plenty of making-sense opportunities in classroom instruction. For example, kindergarten children are often given opportunities to play with manipulatives like cube trains and snub cubes, to explore and learn about patterns, numbers, and measurement through various connections. The recording of such activities typically results in numerical expressions or operations of these connections. In addition, such activities can also serve as a context to encourage students to design and create a way of “recording” these connections directly with a drawing line next to the connected train cubes. Such a design activity will help students to develop the concept of a number line that includes the original/starting point, unit, and direction (i.e., making mathematics make sense), instead of introducing the number line to students as a mathematical concept being “given” years later.

Learning how to provide students with opportunities to develop mathematics may occur with experience. Huang et al. ( 2010 ) found that expert and novice teachers in China both valued students’ mastering of mathematical knowledge and skills and their development in mathematical thinking methods and abilities. However, novice teachers were particularly concerned about the effectiveness of their guidance, in contrast to expert teachers who emphasized the development of students’ mathematical thinking and higher-order thinking abilities and properly dealing with important and difficult content points. The results suggest that teachers’ perceptions and pedagogical practices can change and improve over time. However, it may be worth asking if support for teacher development would accelerate the process.

Connecting changes in mathematics and STEM education

Although it is commonly acknowledged that mathematics is foundational to STEM, mathematics is being related to STEM education at a distance in practice and also in scholarship development (English 2016 , see additional notes at the end of this editorial). Holding the conception of mathematics as products does not support integrating mathematics with other STEM disciplines, as mathematics can be perceived simply as a set of tools for these disciplines. At the same time, mathematics and science have often proceeded along parallel tracks, with mathematics focused on “problem solving” while science has focused on “inquiry.” To better connect mathematics and other disciplines in STEM, we should focus on ideas and thinking development in mathematics (Li et al. 2019a ), unifying instruction from the student perspective (the Teaching for Robust Understanding framework, discussed below).

Emphasizing both sense making and making sense in mathematics education opens opportunities for connections with similar practices in other STEM disciplines. For example, sense making is very much emphasized in science education (Hogan 2019 ; Kapon 2017 ; Odden and Russ 2019 ), often combined with reflections in engineering (Kilgore et al. 2013 ; Turns et al. 2014 ), and also in the context of using technology (e.g., Antonietti and Cantoia 2000 ; Dick and Hollebrands 2011 ). Science is fundamentally about discovery and understanding of the natural world. This notion provides a natural link to mathematical modeling (e.g., Burkhardt 1981 ). Beyond that, in science education, sense making places a heavy focus on the construction and evaluation of explanation (Kapon 2017 ), and can even be defined as a process of constructing an explanation to resolve a perceived gap or conflict in knowledge (Odden and Russ 2019 ). Design and making play vital roles in engineering and technology education (Dym et al., 2005 ), as is student reflection on these experiences (e.g., Turns et al. 2014 ). Indeed, STEM disciplines share the same conceptual process of sense making as learners, individually or in a group, actively engage with the natural or man-made world, explore it, and then develop, test, refine, and use ideas together with specific explanation. If mathematics was conceived as an “empirical” discipline, connections with other STEM disciplines would be strengthened. In philosophical terms, Lakatos ( 1976 ) made similar claims Footnote 1 .

Similar to the emphasis on sense making placed in the Mathematics Curriculum Standards (e.g., NCTM, 1989 , 2000 ), Next Generation Science Standards (NGSS Lead States 2013 ) prompted a shift in science education away from simply knowing science content and procedures to practicing and using science, together with engineering, to make sense of the world and create the future. In a review, Fitzgerald and Palincsar ( 2019 ) concluded sense making is a productive lens for investigating and characterizing great teaching across multiple disciplines.

Mathematics has stronger linkages to creation and design than traditionally imagined. Therefore, its connections to engineering and technology could be much stronger. However, the deep-rooted conception of mathematics as products has traditionally discouraged students and teachers from considering and valuing design and design thinking (Li et al. 2019b ). Conceiving mathematics as making sense should help promote conceptual changes in mathematical practice to value idea generation and design activity. Connections generated from such a shift will support teaching and learning not only in individual STEM disciplines, but also in integrated STEM education.

At the same time, although STEM education as a commonly recognized field does not have a long history (Li 2014 , 2018a ), its rapid development can help introduce ideas for exploring how mathematics can be taught and learned. For example, the concept of projects is common in engineering professional practice, and the project-based learning (PjBL) as an instructional approach is a key component in some engineering programs (e.g., Berger 2016 ; de los Ríos et al. 2010 ; Mills and Treagust 2003 ). de los Ríos et al. ( 2010 ) highlighted three main advantages of PjBL: (1) development in technical, personal, and contextual competences; (2) students’ engagement with real problems from professional contexts; and (3) collaborative learning facilitated through the integration of teaching and research. Such advantages are important for students’ learning of mathematics and are aligned well with efforts to develop 21 st century skills, including problem solving, communication, collaboration, and critical thinking.

Design-based learning (DBL) is another instructional approach commonly used in engineering and technology fields. Gómez Puente et al. ( 2013 ) conducted a sampled review and concluded that DBL projects consist of open-ended, hands-on, authentic, and multidisciplinary design tasks. Teachers using DBL facilitate both the process for students to gain domain-specific knowledge and thinking activities to generate innovative solutions. Such features could be adapted for mathematics education, especially integrated STEM education, in concert with design and design thinking. In addition to a few examples discussed above about making sense in mathematics, there is a growing body of publications developed by and for mathematics teachers with specific examples of investigations, design projects, and instructional activities associated with STEM (Li et al. 2019b ).

A framework for helping students to gain important experiences in and through mathematics, as connected to other disciplines in STEM

For observing and evaluating classroom instruction in general and mathematics classroom instruction in specific, there are several widely used frameworks and rubrics available. However, a trial use of selected frameworks with sampled mathematics classroom instruction episodes suggested their disagreements on what counts as high-quality instruction, especially with aspects on disciplinary thinking being valued and relevant classroom practices (Schoenfeld et al. 2018 ). The results suggest the importance of choice making, when we consider a framework in discussing and evaluating teaching practices.

Our discussion above highlights the importance of shifting away from viewing mathematics simply as a set of static knowledge and skills, to focusing on ideas and thinking development in teaching and learning mathematics. Further discussion of several aspects of changes specifies the needs of developing and using practices associated with sense making, making sense, and connecting mathematics and STEM education for changes.

To support effective mathematics instruction, we propose the use of the Teaching for Robust Understanding (TRU) framework to help characterize powerful learning environments. With the conception of mathematics as “empirical” and a focus on students’ experience, then the focus of instruction should also be changed. We argue that shift is from instruction conceived as “what should the teacher do” to instruction conceived as “what mathematical experiences should students have in order for them to develop into powerful thinkers?” It is the shift in the frame of TRU that makes it so powerful and pertinent for all these proposed changes. Moreover, TRU only uses a small number of actionable dimensions after distilling the literature on teaching for robust or powerful understanding. That makes TRU a practical mechanism for problematizing instruction.

Figure 1 presents the TRU Math framework that identifies five key dimensions along which powerful classroom environments can be characterized: the mathematics; cognitive demand; equitable access; agency, ownership, and identity; and formative assessment. These five dimensions were distilled from an extensive literature review, thus capturing what the literature considers to be essential. They were tested against classroom videotapes and data on student performance, and the results indicated that classrooms that did well on the TRU dimensions produced students who did correspondingly well on tests of mathematical knowledge, thinking, and problem solving (e.g., Schoenfeld 2014 , 2019 ). In brief, the argument regarding the importance of the five dimensions of TRU Math is as follows. First, the quality of the mathematics discussed (dimension 1) is critical. What individual students learn is unlikely to be richer than what they experience in the classroom. Whether individual students’ understanding rises to the level of what is discussed/presented in the classroom depends on other factors, which are captured in the remaining four dimensions. For example, you surely have had the experience, at a lecture, of hearing beautiful content presented, and then not being able to do any of the assigned problems! The remaining four dimensions capture aspects needed to support the development of all students with respect to sense making, making sense, ownership, and feedback loop. Dimension 2: Cognitive Demand. Are students engaged in sense making and making sense? Are they engaged in “productive struggle”? Dimension 3: Equitable Access. Are all students fully engaged with the central content and practices of the domain so that every student can profit from it? Dimension 4: Agency, Ownership, and Identity. Do all students have opportunities to develop idea ownership and mathematical agency? Dimension 5: Formative Assessment. Are students encouraged and supported to share their thinking with a meaningful feedback loop for instructional adjustment and improvement?

figure 1

The TRU Mathematics Framework: The five dimensions of powerful mathematics classrooms

The first key point about TRU is that students learn more in classrooms that are powerful along the five TRU dimensions. Second, the shift of attention from the teacher to the environment is fundamentally important. The key question is not “Is the teacher doing particular things to support learning?”; instead, it is, “Are students experiencing instruction so that it is conducive to their growth as mathematical thinkers and learners?” Third, the framework is not prescriptive; it respects teacher autonomy. There are many ways to be an excellent teacher. The question is, Does the learning environment created by the teacher provide each student rich opportunities along the five dimensions of the framework? Specifically, in describing the dimensions of powerful instruction, the framework serves to problematize instruction. Asking “how am I doing along each dimension; how can I improve?” can lead to richer instruction without prescribing or imposing a particular style or particular norms on teachers.

Extending to STEM education

Now, we suggest the following. If you teach biology, chemistry, physics, engineering, or any other STEM field, replace “mathematics” in Fig. 1 with your discipline. The first dimension is about rich content and practices in your field. And the remaining four dimensions are about necessary aspects of your students’ classroom engagement with the discipline. Practices associated with sense making, making sense, and STEM education are all be reflected in these five dimensions, with central attention on students’ experience in such classroom environments. Although the TRU framework was originally developed for characterizing effective mathematics classroom environments, it has been carefully framed in a way that is applicable to many different disciplines (Schoenfeld 2014 ). Our discussion above already specified why sense making, making sense, and specific instructional approaches like PjBL and DBL are shared across disciplines in STEM education. Thus, the TRU framework is applicable to other STEM disciplines. The natural analogue of the TRU framework for any field is given in Fig. 2 .

figure 2

The domain-general version of the TRU framework

Both the San Francisco Unified School District and the Chicago Public Schools adopted the TRU Math framework and found results within mathematics sufficiently promising that they expanded their efforts to all subject areas for professional development and instruction, using the domain-general TRU framework. Work is still in its early stages. Current efforts might be best conceptualized as a laboratory for exploration rather than a promissory note for improvement across all different disciplines. It will take time to accumulate data to show effectiveness. For further information about the domain-general TRU framework and tools for professional development are available at the TRU framework website, https://truframework.org/

Finally, as a framework, TRU is not a set of specific tools or guidelines, although it can be used to guide their development. To help lead our discussion to something more practical, we can use the framework to check and identify aspects that are typically under-emphasized and move them to center stage in order to improve classroom instruction. Specifically, the following is a list of sample under-emphasized norms and practices that can be identified (Schoenfeld in press ).

Establishing a climate of inquiry, in which mathematics is experienced as a discipline of exploration and sense making.

Developing students’ ownership of ideas through the process of developing, sharing, refining, and using ideas; concepts and language can come later.

Focusing on big ideas, and not losing the forest for the trees.

Making student thinking central to classroom discourse.

Ensuring that classroom discourse is respectful and inviting.

Where to start? Begin by problematizing teaching and the nature of learning environments

Here we start by stipulating that STEM disciplines as practiced, are living, breathing fields of inquiry. Knowledge is important; ideas are important; practices are important. The list given above applied to all STEM disciplines, not just mathematics.

The issue, then, is developing teacher capacity to craft environments that have the properties described immediately above. Here we share some thoughts, and the topic itself can well be discussed extensively in another paper. To make changes in teaching, it should start with assessing and changing teaching practice itself (Hiebert and Morris 2012 ). Opening up teachers’ perceptions of teaching practices should not be done by telling teachers what to do!—the same rules of learning apply to teachers as they apply to students. Learning environments for teachers should offer teachers the same opportunities for rich engagement, challenge, equitable access, and ownership as we hope students will experience (Schoenfeld 2015 ). Working together with teachers to study and reflect on their teaching practices in light of the TRU framework, we can help teachers to find out what their students are experiencing and why changes are needed. The framework can also help guide teachers to learn what changes would be needed, and to try out changes to learn how their students’ learning may differ. It is this iterative and concrete process that can hopefully help shift participating teachers’ perceptions of mathematics. Many tools for problematizing teaching are available at the TRU web site (see https://truframework.org/ ). If teachers can work together with a focus on selected lessons like what teachers often do in China, the process would help form a school-based learning community that can contribute to not only participating teachers’ practice change but also their expertise improvement (Huang et al. 2011 ; Li and Huang 2013 ).

As reported before (Li 2018b ), publications in the International Journal of STEM Education show a mix of individual-disciplinary and multidisciplinary education in STEM over the past several years. Although one journal’s publications are limited in its scope of providing a picture about the scholarship development related to mathematics and STEM education, it can allow us to get a sense of related development.

If taking a closer look at the journal’s publications over the past three years from 2016 to 2018, we found that the number of articles published with a clear focus on mathematics is relatively small: three (out of 21) in 2016, six (out of 34) in 2017, and five (out of 56) in 2018. At the same time, we should point out that these publications from 2016 to 2018 seem to reflect a trend, over these three years, of moving toward issues that can go beyond mathematics itself, as what was noted before (Li 2018b ). Specifically, for these three articles published in 2016, they are all about mathematics education at either elementary school (Ding 2016 ; Zhao et al. 2016 ) or university levels (Schoenfeld et al. 2016 ). Out of the six published in 2017, three are on mathematics education (Hagman et al. 2017 ; Keller et al. 2017 ; Ulrich and Wilkins 2017 ) and the other three on either teacher professional development (Borko et al. 2017 ; Jacobs et al. 2017 ) or connection with engineering (Jehopio and Wesonga 2017 ). For the five published in 2018, two are on mathematics education (Beumann and Wegner 2018 ; Wilkins and Norton 2018 ) and the other three have close association with other disciplines in STEM (Blotnicky et al. 2018 ; Hayward and Laursen 2018 ; Nye et al. 2018 ). This trend likely reflects a growing interest, with close connection to mathematics, in both mathematics education community and a broader STEM education community of developing and sharing multidisciplinary and interdisciplinary scholarship.

Availability of data and materials

Not applicable

Interestingly, Lakatos was advised by both Popper and Pólya—his ideas being in some ways a unification of Pólya’s emphasis on mathematics as an empirical discipline and Popper’s reflections on the nature of the scientific endeavor.

Antonietti, A., & Cantoia, M. (2000). To see a painting versus to walk in a painting: An experiment on sense-making through virtual reality. Computers & Education, 34 , 213–223.

Article   Google Scholar  

Arcavi, A. (1994). Symbol sense: Informal sense-making in formal mathematics. For the Learning of Mathematics, 14 (3), 24–35.

Google Scholar  

Ashlock, R. B. (2010). Error patterns in computation (Tenth Edition) . Boston, MA: Allyn & Bacon.

Banilower, E. R., Smith, P. S., Weiss, I. R., Malzahn, K. A., Campbell, K. M., et al. (2013). Report of the 2012 national survey of science and mathematics education. Horizon Research, Chapel Hill, NC. Retrieved from http://www.nnstoy.org/download/stem/2012%20NSSME%20Full%20Report.pdf

Berger, C. (2016). Engineering is perfect for K-5 project-based learning. Engineering is Elementary (EiE) Blog, https://blog.eie.org/engineering-is-perfect-for-k-5-project-based-learning

Beumann, S. & Wegner, S.-A. (2018). An outlook on self-assessment of homework assignments in higher mathematics education. International Journal of STEM Education, 5 :55. https://doi.org/10.1186/s40594-018-0146-z

Blotnicky, K. A., Franz-Odendaal, T., French, F., & Joy, P. (2018). A study of the correlation between STEM career knowledge, mathematics self-efficacy, career interests, and career activities on the likelihood of pursuing a STEM career among middle school students. International Journal of STEM Education, 5 :22. https://doi.org/10.1186/s40594-018-0118-3

Borko, H., Carlson, J., Mangram, C., Anderson, R., Fong, A., Million, S., Mozenter, S., & Villa, A. M. (2017). The role of video-based discussion in model for preparing professional development leaders. International Journal of STEM Education, 4 :29. https://doi.org/10.1186/s40594-017-0090-3

Boyer, C. B. (1991). A history of mathematics (2nd ed.) . New York: Wiley.

Brownell, W. A. (1945). When is arithmetic meaningful? The Journal of Educational Research, 38 (7), 481–498.

Burkhardt, H. (1981). The real world and mathematics . Glasgow: Blackie, reissued Nottingham: Shell Centre Publications.

Carpenter, T., Fennema, E., & Franke, M. (1997). Cognitively guided instruction: A knowledge base for reform in primary mathematics instruction. Elementary School Journal, 97 , 3–20.

Carpenter, T., Franke, M., Jacobs, V. R., & Fennema, E. (1998). A longitudinal study of invention and understanding in children’s multidigit addition and subtraction. Journal for Research in Mathematics Education, 29 (1), 3–20.

Committee on STEM Education, National Science & Technology Council, the White House (2018). Charting a course for success: America’s strategy for STEM education . Washington, DC. https://www.whitehouse.gov/wp-content/uploads/2018/12/STEM-Education-Strategic-Plan-2018.pdf Retrieved on 18 January, 2019.

Common Core State Standards Initiative (CCSSI). (2010). Common core state standards for mathematics . Retrieved from http://www.corestandards.org/Math/Practice

Cooney, T (1987). The issue of reform: What have we learned from yesteryear? In Mathematical Sciences Education Board, The teacher of mathematics: Issues for today and tomorrow (pp. 17-35). Washington, DC: National Academy Press.

Coppin, C. A., Mahavier, W. T., May, E. L., & Parker, E. (2009). The Moore Method . Washington, DC: Mathematical Association of America.

Davis, P., & Hersh, R. (1980). The mathematical experience . Boston: Birkhauser.

de los Ríos, I., Cazorla, A., Díaz-Puente, J. M., & Yagüe, J. L. (2010). Project–based learning in engineering higher education: Two decades of teaching competences in real environments. Procedia Social and Behavioral Sciences, 2 , 1368–1378.

Devlin, K. (2000). The four faces of mathematics. In M. J. Burke & F. R. Curcio (Eds.), Learning Mathematics for a New Century: 2000 Yearbook of the National Council of Teachers of Mathematics (pp. 16–27). Reston, VA: NCTM.

Devlin, K. (2012). Introduction to mathematical thinking. Stanford, CA: The author.

Dick, T. P., & Hollebrands, K. F. (2011). Focus on high school mathematics: Technology to support reasoning and sense making . Reston, VA: NCTM.

Ding, M. (2016). Developing preservice elementary teachers’ specialized content knowledge: The case of associative property. International Journal of STEM Education, 3 , 9 https://doi.org/10.1186/s40594-016-0041-4 .

Dossey, J. A. (1992). The nature of mathematics: Its role and its influence. In D. Grouws (Ed.), Handbook for Research on Mathematics Teaching and Learning (pp. 39–48). New York: MacMillan.

Dossey, J. A., McCrone, S. S., & Halvorsen, K. T. (2016). Mathematics education in the United States 2016: A capsule summary fact book . Reston, VA: The National Council of Teachers of Mathematics.

Dym, C. L., Agogino, A. M., Eris, O., Frey, D. D., & Leifer, L. J. (2005). Engineering design thinking, teaching, and learning. Journal of Engineering Education, 94 (1), 103–120.

English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3:3, https://doi.org/10.1186/s40594-016-0036-1

Fisher, C. (1990). The research agenda project as prologue. Journal for Research in Mathematics Education, 21 , 81–89.

Fitzgerald, M. S., & Palincsar, A. S. (2019). Teaching practices that support student sensemaking across grades and disciplines: A conceptual review. Review of Research in Education, 43 , 227–248.

Fritz, A., Haase, V. G., & Rasanen, P. (Eds.). (2019). International handbook of mathematical learning difficulties . Cham, Switzerland: Springer.

Gee, J. P. (2005). What would a state of the art instructional video game look like? Innovate: Journal of Online Education, 1 (6) Retrieved from https://nsuworks.nova.edu/innovate/vol1/iss6/1 .

Gómez Puente, S. M., van Eijck, M., & Jochems, W. (2013). A sampled literature review of design-based learning approaches: A search for key characteristics. International Journal of Technology and Design Education . https://doi.org/10.1007/s10798-012-9212-x .

Hagman, J. E., Johnson, E., & Fosdick, B. K. (2017). Factors contributing to students and instructors experiencing a lack of time in college calculus. International Journal of STEM Education, 4 , 12 https://doi.org/10.1186/s40594-017-0070-7 .

Hayward, C. N. & Laursen, S. L. (2018). Supporting instructional change in mathematics: Using social network analysis to understand online support processes following professional development workshops. International Journal of STEM Education, 5 :28. https://doi.org/10.1186/s40594-018-0120-9

Hersh, R. (1986). Some proposals for reviving the philosophy of mathematics . In T. Tymoczko (Ed.), New directions in the philosophy of mathematics (pp. 9–28). Boston: Birkhauser.

Hiebert, J., & Morris, A. K. (2012). Teaching, rather than teachers, as a path toward improving classroom instruction. Journal of Teacher Education, 63 (2), 92–102.

Hogan, M. (2019). Sense-making is the core of NGSS. In Illuminate education blog, https://www.illuminateed.com/blog/2019/03/sense-making-is-the-core-of-ngss/ Accessed 15 Oct 2019.

Huang, R., Li, Y., & He, X. (2010). What constitutes effective mathematics instruction: A comparison of Chinese expert and novice teachers’ views. Canadian Journal of Science, Mathematics and Technology Education, 10 (4), 293-306. https://doi.org/10.1080/14926156.2010.524965

Huang, R., Li, Y., Zhang, J., & Li, X. (2011). Improving teachers’ expertise in mathematics instruction through exemplary lesson development. ZDM – The International Journal on Mathematics Education, 43 (6-7), 805–817.

Jacobs, J., Seago, N., & Koellner, K. (2017). Preparing facilitators to use and adapt mathematics professional development materials productively. International Journal of STEM Education, 4 , 30 https://doi.org/10.1186/s40594-017-0089-9 .

Jehopio, P. J., & Wesonga, R. (2017). Polytechnic engineering mathematics: assessing its relevance to the productivity of industries in Uganda. International Journal of STEM Education, 4 , 16 https://doi.org/10.1186/s40594-017-0078-z .

Kapon, S. (2017). Unpacking sensemaking. Science Education, 101 (1), 165–198.

Keitel, C. (2006). ‘Setting a task’ in German schools: Different frames for different ambitions. In D. Clarke, C. Keitel, & Y. Shimizu (Eds.), Mathematics classrooms in 12 countries: The insiders’ perspective (pp. 37–58). Rotterdam Netherlands: Sense Publishers.

Keller, R. E., Johnson, E., & DeShong, S. (2017). A structural equation model looking at student’s participatory behavior and their success in Calculus I. International Journal of STEM Education, 4 , 24 https://doi.org/10.1186/s40594-017-0093-0 .

Kilgore, D., Sattler, B., & Turns, J. (2013). From fragmentation to continuity: Engineering students making sense of experience through the development of a professional portfolio. Studies in Higher Education, 38 (6), 807–826.

Kline, M. (1973). Why Johnny can’t add: The failure of new math . New York: St. Martin’s.

Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery . Cambridge, England: Cambridge University Press.

Book   Google Scholar  

Leung, F. K. S., & Li, Y. (Eds.). (2010). Reforms and issues in school mathematics in East Asia – Sharing and understanding mathematics education policies and practices . Rotterdam, Netherlands: Sense Publishers.

Li, Y. (2014). International Journal of STEM Education – A platform to promote STEM education and research worldwide. International Journal of STEM Education, 1 , 1 https://doi.org/10.1186/2196-7822-1-1 .

Li, Y. (2018a). Journal for STEM Education Research – Promoting the development of interdisciplinary research in STEM education. Journal for STEM Education Research, 1 (1-2), 1–6 https://doi.org/10.1007/s41979-018-0009-z .

Li, Y. (2018b). Four years of development as a gathering place for international researcher and readers in STEM education. International Journal of STEM Education, 5 , 54 https://doi.org/10.1186/s40594-018-0153-0 .

Li, Y., & Huang, R. (Eds.). (2013). How Chinese teach mathematics and improve teaching . New York: Routledge.

Li, Y., & Lappan, G. (Eds.). (2014). Mathematics curriculum in school education . Dordrecht: Springer.

Li, Y., Schoenfeld, A. H., diSessa, A. A., Grasser, A. C., Benson, L. C., English, L. D., & Duschl, R. A. (2019a). On thinking and STEM education. Journal for STEM Education Research, 2 (1), 1–13. https://doi.org/10.1007/s41979-019-00014-x .

Li, Y., Schoenfeld, A. H., diSessa, A. A., Grasser, A. C., Benson, L. C., English, L. D., & Duschl, R. A. (2019b). Design and design thinking in STEM education. Journal for STEM Education Research, 2 (2), 93-104. https://doi.org/10.1007/s41979-019-00020-z .

Li, Y., Silver, E. A., & Li, S. (Eds.). (2014). Transforming mathematics instruction: Multiple approaches and practices . Cham, Switzerland: Springer.

Luttenberger, S., Wimmer, S., & Paechter, M. (2018). Spotlight on math anxiety. Psychology Research and Behavior Management, 11 , 311–322.

McCallum, W. (2018). Sense-making and making sense. https://blogs.ams.org/matheducation/2018/12/05/sense-making-and-making-sense/ Retrieved on October 1, 2019.

Mills, J. E. & Treagust, D. F. (2003). Engineering education – Is problem-based or project-based learning the answer? Australasian Journal of Engineering Education , https://www.researchgate.net/profile/Nathan_Scott2/publication/238670687_AUSTRALASIAN_JOURNAL_OF_ENGINEERING_EDUCATION_Co-Editors/links/0deec53a08c7553c37000000.pdf Retrieved on October 15, 2019.

National Council of Teachers of Mathematics (NCTM). (1989). Curriculum and evaluation standards for school mathematics . Reston, VA: NCTM.

National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics . Reston, VA: NCTM.

NGSS Lead States. (2013). Next generation science standards: For states, by states . Washington, DC: National Academies Press.

Nye, B., Pavlik Jr., P. I., Windsor, A., Olney, A. M., Hajeer, M., & Hu, X. (2018). SKOPE-IT (Shareable Knowledge Objects as Portable Intelligent Tutors): Overlaying natural language tutoring on an adaptive learning system for mathematics. International Journal of STEM Education, 5 , 12 https://doi.org/10.1186/s40594-018-0109-4 .

Odden, T. O. B., & Russ, R. S. (2019). Defining sensemaking: Bringing clarity to a fragmented theoretical construct. Science Education, 103 , 187–205.

Parrish, S. D. (2011). Number talks build numberical reasoning. Teaching Children Mathematics, 18 (3), 198–206.

Rattan, A., Good, C., & Dweck, C. S. (2012). “It’s ok – Not everyone can be good at math”: Instructors with an entity theory comfort (and demotivate) students. Journal of Experimental Social Psychology . https://doi.org/10.1016/j.jesp.2011.12.012 .

Schoenfeld, A. H. (1988). When good teaching leads to bad results: The disasters of “well-taught” mathematics courses. Educational Psychologist, 23 (2), 145–166.

Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense-making in mathematics. In D. Grouws (Ed.), Handbook for Research on Mathematics Teaching and Learning (pp. 334–370). New York: MacMillan.

Schoenfeld, A. H. (2001). Mathematics education in the 20th century. In L. Corno (Ed.), Education across a century: The centennial volume (100th Yearbook of the National Society for the Study of Education) (pp. 239–278). Chicago, IL: National Society for the Study of Education.

Schoenfeld, A. H. (2014). What makes for powerful classrooms, and how can we support teachers in creating them? A story of research and practice, productively interwined. Educational Researcher, 43 (8), 404–412. https://doi.org/10.3102/0013189X1455 .

Schoenfeld, A. H. (2015). Thoughts on scale. ZDM, the International Journal of Mathematics Education, 47 , 161–169. https://doi.org/10.1007/s11858-014-0662-3 .

Schoenfeld, A. H. (2019). Reframing teacher knowledge: A research and development agenda. ZDM – The International Journal on Mathematics Education . https://doi.org/10.1007/s11858-019-01057-5

Schoenfeld, A. H. (in press). Mathematical practices, in theory and practice. ZDM – The International Journal on Mathematics Education .

Schoenfeld, A. H., Floden, R., El Chidiac, F., Gillingham, D., Fink, H., Hu, S., Sayavedra, A., Weltman, A., & Zarkh, A. (2018). On classroom observations. Journal for STEM Educ Res, 1 (1-2), 34–59 https://doi.org/10.1007/s41979-018-0001-7 .

Schoenfeld, A. H., Thomas, M., & Barton, B. (2016). On understanding and improving the teaching of university mathematics. International Journal of STEM Education, 3 , 4 https://doi.org/10.1186/s40594-016-0038-z .

Smith, J., diSessa, A., & Roschelle, J. (1993). Misconceptions reconceived: A constructivist analysis of knowledge in transition. Journal of the Learning Sciences, 3 (2), 115–163.

Sowder, J. (1992). Estimation and number sense. In D. Grouws (Ed.), Handbook for research on mathematics teaching and learning (pp. 371–389). New York: MacMillan.

Stanic, G. M. A., & Kilpatrick, J. (1992). Mathematics curriculum reform in the United States: A historical perspective. International Journal of Educational Research, 17 (5), 407–417.

Sun, K. L. (2018). The role of mathematics teaching in fostering student growth mindset. Journal for Research in Mathematics Education, 49 (3), 330–355.

Turns, J. A., Sattler, B., Yasuhara, K., Borgford-Parnell, J. L., & Atman, C. J. (2014). Integrating reflection into engineering education. Proceedings of 2014 American Society of Engineering Education Annual Conference , Paper ID #9230.

Tymoczko, T. (1986). New directions in the philosophy of mathematics . Boston: Birkhauser.

Ulrich, C., & Wilkins, J. L. M. (2017). Using written work to investigate stages in sixth-grade students’ construction and coordination of units. International Journal of STEM Education, 4 , 23 https://doi.org/10.1186/s40594-017-0085-0 .

Wilkins, J. L. M., & Norton, A. (2018). Learning progression toward a measurement concept of fractions. International Journal of STEM Education, 5 , 27 https://doi.org/10.1186/s40594-018-0119-2 .

Zhao, X., Van den Heuvel-Panhuizen, M., & Veldhuis, M. (2016). Teachers’ use of classroom assessment techniques in primary mathematics education – An explorative study with six Chinese teachers. International Journal of STEM Education, 3 , 19 https://doi.org/10.1186/s40594-016-0051-2 .

Download references

Acknowledgments

Many thanks to Jeffrey E. Froyd for his careful review and detailed comments on an earlier version of this editorial that help improve its readability and clarity. Thanks also go to Marius Jung for his valuable feedback.

Author information

Authors and affiliations.

Texas A&M University, College Station, TX, 77843-4232, USA

University of California at Berkeley, Berkeley, CA, USA

Alan H. Schoenfeld

You can also search for this author in PubMed   Google Scholar

Contributions

Both authors contributed ideas to conceptualize this article. YL took the lead in developing and drafting the article, and AHS reviewed drafts and contributed to revisions. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Yeping Li .

Ethics declarations

Competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Cite this article.

Li, Y., Schoenfeld, A.H. Problematizing teaching and learning mathematics as “given” in STEM education. IJ STEM Ed 6 , 44 (2019). https://doi.org/10.1186/s40594-019-0197-9

Download citation

Received : 15 November 2019

Accepted : 19 November 2019

Published : 19 December 2019

DOI : https://doi.org/10.1186/s40594-019-0197-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Design-based learning
  • Making sense
  • Mathematics
  • Project-based learning
  • Sense making
  • STEM education

teaching mathematics research papers

  • Open access
  • Published: 11 March 2019

Enhancing achievement and interest in mathematics learning through Math-Island

  • Charles Y. C. Yeh   ORCID: orcid.org/0000-0003-4581-6575 1 ,
  • Hercy N. H. Cheng 2 ,
  • Zhi-Hong Chen 3 ,
  • Calvin C. Y. Liao 4 &
  • Tak-Wai Chan 5  

Research and Practice in Technology Enhanced Learning volume  14 , Article number:  5 ( 2019 ) Cite this article

182k Accesses

43 Citations

3 Altmetric

Metrics details

Conventional teacher-led instruction remains dominant in most elementary mathematics classrooms in Taiwan. Under such instruction, the teacher can rarely take care of all students. Many students may then continue to fall behind the standard of mathematics achievement and lose their interest in mathematics; they eventually give up on learning mathematics. In fact, students in Taiwan generally have lower interest in learning mathematics compared to many other regions/countries. Thus, how to enhance students’ mathematics achievement and interest are two major problems, especially for those low-achieving students. This paper describes how we designed a game-based learning environment, called Math-Island , by incorporating the mechanisms of a construction management game into the knowledge map of the elementary mathematics curriculum. We also report an experiment conducted with 215 elementary students for 2 years, from grade 2 to grade 3. In this experiment, in addition to teacher-led instruction in the classroom, students were directed to learn with Math-Island by using their own tablets at school and at home. As a result of this experiment, we found that there is an increase in students’ mathematics achievement, especially in the calculation and word problems. Moreover, the achievements of low-achieving students in the experimental school outperformed the low-achieving students in the control school (a control group in another school) in word problems. Moreover, both the low-achieving students and the high-achieving students in the experimental school maintained a rather high level of interest in mathematics and in the system.

Introduction

Mathematics has been regarded as a fundamental subject because arithmetic and logical reasoning are the basis of science and technology. For this reason, educational authorities emphasize students’ proficiency in computational skills and problem-solving. Recently, the results of the Program for International Student Assessment (PISA) and the Trends in Mathematics and Science Study (TIMSS) in 2015 (OECD 2016 ; Mullis et al. 2016 ) revealed a challenge for Taiwan. Although Taiwanese students had higher average performance in mathematics literacy compared to students in other countries, there was still a significant percentage of low-achieving students in Taiwan. Additionally, most Taiwanese students show low levels of interest and confidence in learning mathematics (Lee 2012 ).

The existence of a significant percentage of low-achieving students is probably due to teacher-led instruction, which still dominates mathematics classrooms in most Asian countries. It should be noted that students in every classroom possess different abilities and hence demonstrate different achievements. Unfortunately, in teacher-led instruction, all the students are required to learn from the teacher in the same way at the same pace (Hwang et al. 2012 ). Low-achieving students, without sufficient time, are forced to receive knowledge passively. Barr and Tagg ( 1995 ) pointed out that it is urgent for low-achieving students to have more opportunities to learn mathematics at their own pace. Researchers suggested one-to-one technology (Chan et al. 2006 ) through which every student is equipped with a device to learn in school or at home seamlessly. Furthermore, they can receive immediate feedback from Math-Island, which supports their individualized learning actively and productively. Thus, this may provide more opportunities for helping low-achieving students improve their achievement.

The low-interest problem for almost all students in Taiwan is usually accompanied by low motivation (Krapp 1999 ). Furthermore, students with continuously low performance in mathematics may eventually lose their interest and refuse to learn further (Schraw et al. 2001 ). This is a severe problem. To motivate students to learn, researchers design educational games to provide enjoyable and engaging learning experiences (Kiili and Ketamo 2007 ). Some of these researchers found that game-based learning may facilitate students’ learning in terms of motivation and learning effects (Liu and Chu 2010 ), spatial abilities and attention (Barlett et al. 2009 ), situated learning, and problem-solving (Li and Tsai 2013 ). Given these positive results, we hope that our educational game can enhance and sustain the student’s interest in learning mathematics.

In fact, many researchers who endeavored to develop educational games for learning mathematics have shown that their games could facilitate mathematics performance, enjoyment, and self-efficacy (Ku et al. 2014 ; McLaren et al. 2017 ). Although some of the studies were conducted for as many as 4 months (e.g., Hanus and Fox 2015 ), one may still criticize them for the possibility that the students’ interest could be a novelty effect—meaning their interest will decrease as the feeling of novelty diminishes over time (Koivisto and Hamari 2014 ). Due to the limitations of either experimental time or sample sizes, most studies could not effectively exclude the novelty effect of games, unless they were conducted in a natural setting for a long time.

In this study, we collaborated with an experimental elementary school for more than 2 years. The mathematics teachers in the school adopted our online educational game, Math-Island . The students used their own tablet PCs to learn mathematics from the game in class or at home at their own pace. In particular, low-achieving students might have a chance to catch up with the other students and start to feel interested in learning mathematics. Most importantly, because the online educational game was a part of the mathematics curriculum, the students could treat the game as their ordinary learning materials like textbooks. In this paper, we reported a 2-year study, in which 215 second graders in the school adopted the Math-Island game in their daily routine. More specifically, the purpose of this paper was to investigate the effect of the game on students’ mathematics achievement. Additionally, we were also concerned about how well the low-achieving students learned, whether they were interested in mathematics and the game, and how their interest in mathematics compared with that of high-achieving students. In such a long-term study with a large sample size, it was expected that the novelty effect would be considerably reduced, allowing us to evaluate the effect of the educational game on students’ achievement and interest.

The paper is organized as follows. In the “ Related works ” section, we review related studies on computer-supported mathematics learning and educational games. In the “ Design ” section, the game mechanism and the system design are presented. In the “ Method ” section, we describe the research method and the procedures of this study. In the “ Results ” section, the research results about students’ achievement and interest are presented. In the “ Discussion on some features of this study ” section, we discuss the long-term study, knowledge map design, and the two game mechanisms. Finally, the summary of the current situation and potential future work is described in the “ Conclusion and future work ” section.

Related works

Computer-supported mathematics learning.

The mathematics curriculum in elementary schools basically includes conceptual understanding, procedural fluency, and strategic competence in terms of mathematical proficiency (see Kilpatrick et al. 2001 ). First, conceptual understanding refers to students’ comprehension of mathematical concepts and the relationships between concepts. Researchers have designed various computer-based scaffolds and feedback to build students’ concepts and clarify potential misconceptions. For example, for guiding students’ discovery of the patterns of concepts, Yang et al. ( 2012 ) adopted an inductive discovery learning approach to design online learning materials in which students were provided with similar examples with a critical attribute of the concept varied. McLaren et al. ( 2017 ) provided students with prompts to correct their common misconceptions about decimals. They conducted a study with the game adopted as a replacement for seven lessons of regular mathematics classes. Their results showed that the educational game could facilitate better learning performance and enjoyment than a conventional instructional approach.

Second, procedural fluency refers to the skill in carrying out calculations correctly and efficiently. For improving procedural fluency, students need to have knowledge of calculation rules (e.g., place values) and practice the procedure without mistakes. Researchers developed various digital games to overcome the boredom of practice. For example, Chen et al. ( 2012a , 2012b ) designed a Cross Number Puzzle game for practicing arithmetic expressions. In the game, students could individually or collaboratively solve a puzzle, which involved extensive calculation. Their study showed that the low-ability students in the collaborative condition made the most improvement in calculation skills. Ku et al. ( 2014 ) developed mini-games to train students’ mental calculation ability. They showed that the mini-games could not only improve students’ calculation performance but also increase their confidence in mathematics.

Third, strategic competence refers to mathematical problem-solving ability, in particular, word problem-solving in elementary education. Some researchers developed multilevel computer-based scaffolds to help students translate word problems to equations step by step (e.g., González-Calero et al. 2014 ), while other researchers noticed the problem of over-scaffolding. Specifically, students could be too scaffolded and have little space to develop their abilities. To avoid this situation, many researchers proposed allowing students to seek help during word problem-solving (Chase and Abrahamson 2015 ; Roll et al. 2014 ). For example, Cheng et al. ( 2015 ) designed a Scaffolding Seeking system to encourage elementary students to solve word problems by themselves by expressing their thinking first, instead of receiving and potentially abusing scaffolds.

Digital educational games for mathematics learning

Because mathematics is an abstract subject, elementary students easily lose interest in it, especially low-achieving students. Some researchers tailored educational games for learning a specific set of mathematical knowledge (e.g., the Decimal Points game; McLaren et al. 2017 ), so that students could be motivated to learn mathematics. However, if our purpose was to support a complete mathematics curriculum for elementary schools, it seemed impractical to design various educational games for all kinds of knowledge. A feasible approach is to adopt a gamified content structure to reorganize all learning materials. For example, inspired by the design of most role-playing games, Chen et al. ( 2012a , 2012b ) proposed a three-tiered framework of game-based learning—a game world, quests, and learning materials—for supporting elementary students’ enjoyment and goal setting in mathematics learning. Furthermore, while a game world may facilitate students’ exploration and participation, quests are the containers of learning materials with specific goals and rewards. In the game world, students receive quests from nonplayer virtual characters, who may enhance social commitments. To complete the quests, students have to make efforts to undertake learning materials. Today, quests have been widely adopted in the design of educational games (e.g., Azevedo et al. 2012 ; Hwang et al. 2015 ).

However, in educational games with quests, students still play the role of receivers rather than active learners. To facilitate elementary students’ initiative, Lao et al. ( 2017 ) designed digital learning contracts, which required students to set weekly learning goals at the beginning of a week and checked whether they achieved the goals at the end of the week. More specifically, when setting weekly goals, students had to decide on the quantity of learning materials that they wanted to undertake in the coming week. Furthermore, they also had to decide the average correctness of the tests that followed the learning materials. To help them set reasonable and feasible goals, the system provided statistics from the past 4 weeks. As a result, the students may reflect on how well they learned and then make appropriate decisions. After setting goals, students are provided with a series of learning materials for attempting to accomplish those goals. At the end of the week, they may reflect on whether they achieved their learning goals in the contracts. In a sense, learning contracts may not only strengthen the sense of commitment but also empower students to take more control of their learning.

In textbooks or classrooms, learning is usually predefined as a specific sequence, which students must follow to learn. Nevertheless, the structure of knowledge is not linear, but a network. If we could reorganize these learning materials according to the structure of knowledge, students could explore knowledge and discover the relationships among different pieces of knowledge when learning (Davenport and Prusak 2000 ). Knowledge mapping has the advantage of providing students concrete content through explicit knowledge graphics (Ebener et al. 2006 ). Previous studies have shown that the incorporation of knowledge structures into educational games could effectively enhance students’ achievement without affecting their motivation and self-efficacy (Chu et al. 2015 ). For this reason, this study attempted to visualize the structure of knowledge in an educational game. In other words, a knowledge map was visualized and gamified so that students could make decisions to construct their own knowledge map in games.

To enhance students’ mathematics achievement and interests, we designed the Math-Island online game by incorporating a gamified knowledge map of the elementary mathematics curriculum. More specifically, we adopt the mechanisms of a construction management game , in which every student owns a virtual island (a city) and plays the role of the mayor. The goal of the game is to build their cities on the islands by learning mathematics.

System architecture

The Math-Island game is a Web application, supporting cross-device interactions among students, teachers, and the mathematics content structure. The system architecture of the Math-Island is shown in Fig.  1 . The pedagogical knowledge and learning materials are stored in the module of digital learning content, organized by a mathematical knowledge map. The students’ portfolios about interactions and works are stored in the portfolio database and the status database. When a student chooses a goal concept in the knowledge map, the corresponding digital learning content is arranged and delivered to his/her browser. Besides, when the student is learning in the Math-Island, the feedback module provides immediate feedback (e.g., hints or scaffolded solutions) for guidance and grants rewards for encouragement. The learning results can also be shared with other classmates by the interaction module. In addition to students, their teachers can also access the databases for the students’ learning information. Furthermore, the information consists of the students’ status (e.g., learning performance or virtual achievement in the game) and processes (e.g., their personal learning logs). In the Math-Island, it is expected that students can manage their learning and monitor the learning results by the construction management mechanism. In the meantime, teachers can also trace students’ learning logs, diagnose their weaknesses from portfolio analysis, and assign students with specific tasks to improve their mathematics learning.

figure 1

The system architecture of Math-Island

  • Knowledge map

To increase students’ mathematics achievement, the Math-Island game targets the complete mathematics curriculum of elementary schools in Taiwan, which mainly contains the four domains: numerical operation , quantity and measure , geometry , and statistics and probability (Ministry of Education of R.O.C. 2003 ). Furthermore, every domain consists of several subdomains with corresponding concepts. For instance, the domain of numerical operation contains four subdomains: numbers, addition, and subtraction for the first and second graders. In the subdomain of subtraction, there are a series of concepts, including the meaning of subtraction, one-digit subtraction, and two-digit subtraction. These concepts should be learned consecutively. In the Math-Island system, the curriculum is restructured as a knowledge map, so that they may preview the whole structure of knowledge, recall what they have learned, and realize what they will learn.

More specifically, the Math-Island system uses the representational metaphor of an “island,” where a virtual city is located and represents the knowledge map. Furthermore, the island comprises areas, roads, and buildings, which are the embodiments of domains, subdomains, and concepts in the curriculum, respectively. As shown in Fig.  2 , for example, in an area of numeral operation in Math-Island, there are many roads, such as an addition road and a subtraction road. On the addition road, the first building should be the meaning of addition, followed by the buildings of one-digit addition and then two-digit addition. Students can choose these buildings to learn mathematical concepts. In each building, the system provides a series of learning tasks for learning the specific concept. Currently, Math-Island provides elementary students with more than 1300 learning tasks from the first grade to the sixth grade, with more than 25,000 questions in the tasks.

figure 2

The knowledge map

In Math-Island, a learning task is an interactive page turner, including video clips and interactive exercises for conceptual understanding, calculation, and word problem-solving. In each task, the learning procedure mainly consists of three steps: watching demonstrations, practicing examples, and getting rewards. First, students learn a mathematical concept by watching videos, in which a human tutor demonstrates examples, explains the rationale, and provides instructions. Second, students follow the instructions to answer a series of questions related to the examples in the videos. When answering questions, students are provided with immediate feedback. Furthermore, if students input wrong answers, the system provides multilevel hints so that they could figure out solutions by themselves. Finally, after completing learning tasks, students receive virtual money according to their accuracy rates in the tasks. The virtual money is used to purchase unique buildings to develop their islands in the game.

Game mechanisms

In the Math-Island game, there are two game mechanisms: construction and sightseeing (as shown in Fig.  3 ). The former is designed to help students manage their learning process, whereas the latter is designed to facilitate social interaction, which may further motivate students to better develop their cities. By doing so, the Math-Island can be regarded as one’s learning portfolio, which is a complete record that purposely collects information about one’s learning processes and outcomes (Arter and Spandel 2005 ). Furthermore, learning portfolios are a valuable research tool for gaining an understanding about personal accomplishments (Birgin and Baki 2007 ), because learning portfolios can display one’s learning process, attitude, and growth after learning (Lin and Tsai 2001 ). The appearance of the island reflects what students have learned and have not learned from the knowledge map. When students observe their learning status in an interesting way, they may be concerned about their learning status with the enhanced awareness of their learning portfolios. By keeping all activity processes, students can reflect on their efforts, growth, and achievements. In a sense, with the game mechanisms, the knowledge map can be regarded as a manipulatable open learner model, which not only represents students’ learning status but also invites students to improve it (Vélez et al. 2009 ).

figure 3

Two game mechanisms for Math-Island

First, the construction mechanism allows students to plan and manage their cities by constructing and upgrading buildings. To do so, they have to decide which buildings they want to construct or upgrade. Then, they are required to complete corresponding learning tasks in the building to determine which levels of buildings they can construct. As shown in Fig.  4 , the levels of buildings depend on the completeness of a certain concept, compared with the thresholds. For example, when students complete one third of the learning tasks, the first level of a building is constructed. Later, when they complete two thirds of the tasks, the building is upgraded to the second level. After completing all the tasks in a building, they also complete the final level and are allowed to construct the next building on the road. Conversely, if students failed the lowest level of the threshold, they might need to watch the video and/or do the learning tasks again. By doing so, students can make their plans to construct the buildings at their own pace. When students manage their cities, they actually attempt to improve their learning status. In other words, the construction mechanism offers an alternative way to guide students to regulate their learning efforts.

figure 4

Screenshots of construction and sightseeing mechanisms in Math-Island

Second, the sightseeing mechanism provides students with a social stage to show other students how well their Math-Islands have been built. This mechanism is implemented as a public space, where other students play the role of tourists who visit Math-Island. In other words, this sightseeing mechanism harnesses social interaction to improve individual learning. As shown in Fig.  4 , because students can construct different areas or roads, their islands may have different appearances. When students visit a well-developed Math-Island, they might have a positive impression, which may facilitate their self-reflection. Accordingly, they may be willing to expend more effort to improve their island. On the other hand, the student who owns the island may also be encouraged to develop their island better. Furthermore, when students see that they have a completely constructed building on a road, they may perceive that they are good at these concepts. Conversely, if their buildings are small, the students may realize their weaknesses or difficulties in these concepts. Accordingly, they may be willing to make more effort for improvement. On the other hand, the student who owns the island may also be encouraged to develop their island better. In a word, the visualization may play the role of stimulators, so that students may be motivated to improve their learning status.

This paper reported a 2-year study in which the Math-Island system was adopted in an elementary school. The study addressed the following two research questions: (1) Did the Math-Island system facilitate students’ mathematics achievement in terms of conceptual understanding, calculating, and word problem-solving? In particular, how was the mathematics achievement of the low-achieving students? (2) What was students’ levels of interest in mathematics and the system, particularly that of low-achieving students?

Participants

The study, conducted from June 2013 to June 2015, included 215 second graders (98 females and 117 males), whose average age was 8 years old, in an elementary school located in a suburban region of a northern city in Taiwan. The school had collaborated with our research team for more than 2 years and was thus chosen as an experimental school for this study. In this school, approximately one third of the students came from families with a low or middle level of socioeconomic status. It was expected that the lessons learned from this study could be applicable to other schools with similar student populations in the future. The parents were supportive of this program and willing to provide personal tablets for their children (Liao et al. 2017 ). By doing so, the students in the experimental school were able to use their tablets to access the Math-Island system as a learning tool at both school and home. To compare the students’ mathematics achievement with a baseline, this study also included 125 second graders (63 females and 62 males) from another school with similar socioeconomic backgrounds in the same region of the city as a control school. The students in the control school received only conventional mathematics instruction without using the Math-Island system during the 2-year period.

Before the first semester, a 3-week training workshop was conducted to familiarize the students with the basic operation of tablets and the Math-Island system. By doing so, it was ensured that all participants had similar prerequisite skills. The procedure of this study was illustrated in Table  1 . At the beginning of the first semester, a mathematics achievement assessment was conducted as a pretest in both the experimental and the control school to examine the students’ initial mathematics ability as second graders. From June 2013 to June 2015, while the students in the control school learned mathematics in a conventional way, the students in the experimental school learned mathematics not only in mathematics classes but also through the Math-Island system. Although the teachers in the experimental school mainly adopted lectures in mathematics classes, they used the Math-Island system as learning materials at school and for homework. At the same time, they allowed the students to explore the knowledge map at their own pace. During the 2 years, every student completed 286.78 learning tasks on average, and each task took them 8.86 min. Given that there were 344 tasks for the second and third graders, the students could finish 83.37% of tasks according to the standard progress. The data also showed that the average correctness rate of the students was 85.75%. At the end of the second year, another mathematics achievement assessment was administered as a posttest in both schools to evaluate students’ mathematics ability as third graders. Additionally, an interest questionnaire was employed in the experimental school to collect the students’ perceptions of mathematics and the Math-Island system. To understand the teachers’ opinions of how they feel about the students using the system, interviews with the teachers in the experimental school were also conducted.

Data collection

Mathematics achievement assessment.

To evaluate the students’ mathematics ability, this study adopted a standardized achievement assessment of mathematics ability (Lin et al. 2009 ), which was developed from a random sample of elementary students from different counties in Taiwan to serve as a norm with appropriate reliability (the internal consistency was 0.85, and the test-retest reliability was 0.86) and validity (the correlation by domain experts in content validity was 0.92, and the concurrent validity was 0.75). As a pretest, the assessment of the second graders consisted of 50 items, including conceptual understanding (23 items), calculating (18 items), and word problem-solving (9 items). As a posttest, the assessment of the third graders consisted of 60 items, including conceptual understanding (18 items), calculating (27 items), and word problem-solving (15 items). The scores of the test ranged from 0 to 50 points. Because some students were absent during the test, this study obtained 209 valid tests from the experimental school and 125 tests from the control school.

Interest questionnaire

The interest questionnaire comprised two parts: students’ interest in mathematics and the Math-Island system. Regarding the first part, this study adopted items from a mathematics questionnaire of PISA and TIMSS 2012 (OECD 2013 ; Mullis et al. 2012 ), the reliability of which was sound. This part included three dimensions: attitude (14 items, Cronbach’s alpha = .83), initiative (17 items, Cronbach’s alpha = .82), and confidence (14 items Cronbach’s alpha = .72). Furthermore, the dimension of attitude was used to assess the tendency of students’ view on mathematics. For example, a sample item of attitudes was “I am interested in learning mathematics.” The dimension of initiatives was used to assess how students were willing to learn mathematics actively. A sample item of initiatives was “I keep studying until I understand mathematics materials.” The dimension of confidences was used to assess students’ perceived mathematics abilities. A sample item was “I am confident about calculating whole numbers such as 3 + 5 × 4.” These items were translated to Chinese for this study. Regarding the second part, this study adopted self-made items to assess students’ motivations for using the Math-Island system. This part included two dimensions: attraction (8 items) and satisfaction (5 items). The dimension of attraction was used to assess how well the system could attract students’ attention. A sample item was “I feel Math-island is very appealing to me.” The dimension of satisfaction was used to assess how the students felt after using the system. A sample item was “I felt that upgrading the buildings in my Math-Island brought me much happiness.” These items were assessed according to a 4-point Likert scale, ranging from “strongly disagreed (1),” “disagreed (2),” “agreed (3),” and “strongly agreed (4)” in this questionnaire. Due to the absences of several students on the day the questionnaire was administered, there were only 207 valid questionnaires in this study.

Teacher interview

This study also included teachers’ perspectives on how the students used the Math-Island system to learn mathematics in the experimental school. This part of the study adopted semistructured interviews of eight teachers, which comprised the following three main questions: (a) Do you have any notable stories about students using the Math-Island system? (b) Regarding Math-Island, what are your teaching experiences that can be shared with other teachers? (c) Do you have any suggestions for the Math-Island system? The interview was recorded and transcribed verbatim. The transcripts were coded and categorized according to the five dimensions of the questionnaire (i.e., the attitude, initiative, and confidence about mathematics, as well as the attraction and satisfaction with the system) as additional evidence of the students’ interest in the experimental school.

Data analysis

For the first research question, this study conducted a multivariate analysis of variance (MANOVA) with the schools as a between-subject variable and the students’ scores (conceptual understanding, calculating, and word problem-solving) in the pre/posttests as dependent variables. Moreover, this study also conducted a MANOVA to compare the low-achieving students from both schools. In addition, the tests were also carried out to compare achievements with the norm (Lin et al. 2009 ). For the second research question, several z tests were used to examine how the interests of the low-achieving students were distributed compared with the whole sample. Teachers’ interviews were also adopted to support the results of the questionnaire.

Mathematics achievement

To examine the homogeneity of the students in both schools in the first year, the MANOVA of the pretest was conducted. The results, as shown in Table  2 , indicated that there were no significant differences in their initial mathematics achievements in terms of conceptual understanding, calculating, and word problem-solving (Wilks’ λ  = 0.982, F (3330) = 2.034, p  > 0.05). In other words, the students of both schools had similar mathematics abilities at the time of the first mathematics achievement assessment and could be fairly compared.

At the end of the fourth grade, the students of both schools received the posttest, the results of which were examined by a MANOVA. As shown in Table  3 , the effect of the posttest on students’ mathematics achievement was significant (Wilks’ λ  = 0.946, p  < 0.05). The results suggested that the students who used Math-Island for 2 years had better mathematics abilities than those who did not. The analysis further revealed that the univariate effects on calculating and word problem-solving were significant, but the effect on conceptual understanding was insignificant. The results indicated that the students in the experimental school outperformed their counterparts in terms of the procedure and application of arithmetic. The reason may be that the system provided students with more opportunities to do calculation exercises and word problems, and the students were more willing to do these exercises in a game-based environment. Furthermore, they were engaged in solving various exercises with the support of immediate feedback until they passed the requirements of every building in their Math-Island. However, the students learned mathematical concepts mainly by watching videos in the system, which provided only demonstrations like lectures in conventional classrooms. For this reason, the effect of the system on conceptual understanding was similar to that of teachers’ conventional instruction.

Furthermore, to examine the differences between the low-achieving students in both schools, another MANOVA was also conducted on the pretest and the posttest. The pretest results indicated that there were no significant differences in their initial mathematics achievement in terms of conceptual understanding, calculating, and word problem-solving (Wilks’ λ  = 0.943, F (3110) = 2.210, p  > 0.05).

The MANOVA analysis of the posttest is shown in Table  4 . The results showed that the effect of the system on the mathematics achievement of low-achieving students was significant (Wilks’ λ  = 0.934, p  < 0.05). The analysis further revealed that only the univariate effect on word problem-solving was significant. The results suggested that the low-achieving students who used Math-Island for 2 years had better word problem-solving ability than those students in the control school, but the effect on conceptual understanding and procedural fluency was insignificant. The results indicated that the Math-Island system could effectively enhance low-achieving students’ ability to solve word problems.

Because the mathematics achievement assessment was a standardized achievement assessment (Lin et al. 2009 ), the research team did a further analysis of the assessments by comparing the results with the norm. In the pretest, the average score of the control school was the percentile rank of a score (PR) 55, but their average score surprisingly decreased to PR 34 in the posttest. The results confirmed the fact that conventional mathematics teaching in Taiwan might result in an M-shape distribution, suggesting that low-achieving students required additional learning resources. Conversely, the average score of the experimental school was PR 48 in the pretest, and their score slightly decreased to PR 44 in the posttest. Overall, both PR values were decreasing, because the mathematics curriculum became more and more difficult from the second grade to the fourth grade. However, it should be noted that the experimental school has been less affected, resulting in a significant difference compared with the control school (see Table  5 ). Notably, the average score of word problem-solving in the posttest of the experimental school was PR 64, which was significantly higher than the nationwide norm ( z  = 20.8, p  < .05). The results were consistent with the univariate effect of the MANOVA on word problem-solving, suggesting that the Math-Island system could help students learn to complete word problems better. This may be because the learning tasks in Math-Island provided students with adequate explanations for various types of word problems and provided feedback for exercises.

To examine whether the low-achieving students had low levels of interest in mathematics and the Math-Island system, the study adopted z tests on the data of the interest questionnaire. Table  5 shows the descriptive statistics and the results of the z tests. Regarding the interest in mathematics, the analysis showed that the interest of the low-achieving students was similar to that of the whole sample in terms of attitude, initiative, and confidence. The results were different from previous studies asserting that low-achieving students tended to have lower levels of interest in mathematics (Al-Zoubi and Younes 2015 ). The reason was perhaps that the low-achieving students were comparably motivated to learn mathematics in the Math-Island system. As a result, a teacher ( #T-301 ) said, “some students would like to go to Math-Island after school, and a handful of students could even complete up to forty tasks (in a day),” implying that the students had a positive attitude and initiative related to learning mathematics.

Another teacher ( T-312 ) also indicated “some students who were frustrated with math could regain confidence when receiving the feedback for correct answers in the basic tasks. Thanks to this, they would not feel high-pressure when moving on to current lessons.” In a sense, the immediate feedback provided the low-achieving students with sufficient support and may encourage them to persistently learn mathematics. Furthermore, by learning individually after class, they could effectively prepare themselves for future learning. The results suggested that the system could serve as a scaffolding on conventional instruction for low-achieving students. The students could benefit from such a blended learning environment and, thus, build confidence in mathematics by learning at their own paces.

The low-achieving students as a whole were also attracted to the system and felt satisfaction from it. Teacher ( #T-307 ) said that, “There was a hyperactive and mischievous student in my class. However, when he was alone, he would go on to Math-Island, concentrating on the tasks quietly. He gradually came to enjoy learning mathematics. It seemed that Math-Island was more attractive to them than a lecture by a teacher. I believed that students could be encouraged, thus improve their ability and learn happily.” Another teacher ( #T-304 ) further pointed out that, “For students, they did not only feel like they were learning mathematics because of the game-based user interface. Conversely, they enjoyed the contentment when completing a task, as if they were going aboard to join a competition.” In teachers’ opinions, such a game-based learning environment did not disturb their instruction. Instead, the system could help the teachers attract students’ attention and motivate them to learn mathematics actively because of its appealing game and joyful learning tasks. Furthermore, continuously overcoming the tasks might bring students a sense of achievement and satisfaction.

Discussion on some features of this study

In addition to the enhancement of achievement and interest, we noticed that there are some features in this study and our design worth some discussion.

The advantages of building a long-term study

Owing to the limitations of deployment time and sample sizes, it is hard for most researchers to conduct a longitudinal study. Fortunately, we had a chance to maintain a long-term collaboration with an experimental school for more than 2 years. From this experiment, we notice that there are two advantages to conducting a long-term study.

Obtaining substantial evidence from the game-based learning environment

The research environment was a natural setting, which could not be entirely controlled and manipulated like most experiments in laboratories. However, this study could provide long-term evidence to investigate how students learned in a game-based learning environment with their tablets. It should be noted that we did not aim to replace teachers in classrooms with the Math-Island game. Instead, we attempted to establish an ordinary learning scenario, in which the teachers and students regarded the game as one of the learning resources. For example, teachers may help low-achieving students to improve their understanding of a specific concept in the Math-Island system. When students are learning mathematics in the Math-Island game, teachers may take the game as a formative assessment and locate students’ difficulties in mathematics.

Supporting teachers’ instructions and facilitating students’ learning

The long-term study not only proved the effectiveness of Math-Island but also offered researchers an opportunity to determine teachers’ roles in such a computer-supported learning environment. For example, teachers may encounter difficulties in dealing with the progress of both high- and low-achieving students. How do they take care of all students with different abilities at the same time? Future teachers may require more teaching strategies in such a self-directed learning environment. Digital technology has an advantage in helping teachers manage students’ learning portfolios. For example, the system can keep track of all the learning activities. Furthermore, the system should provide teachers with monitoring functions so that they know the average status of their class’s and individuals’ learning progress. Even so, it is still a challenge for researchers to develop a well-designed visualization tool to support teachers’ understanding of students’ learning conditions and their choice of appropriate teaching strategies.

Incorporating a gamified knowledge map of the elementary mathematics curriculum

Providing choices of learning paths.

Math-Island uses a representational metaphor of an “island,” where a virtual city is located and represents the knowledge map. Furthermore, the island comprises areas, roads, and buildings, which are the embodiments of domains, subdomains, and concepts in the curriculum, respectively. Because the gamified knowledge map provides students with multiple virtual roads to learn in the system, every student may take different routes. For instance, some students may be more interested in geometry, while others may be confident in exploring the rules of arithmetic. In this study, we noticed that the low-achieving students needed more time to work on basic tasks, while high-achieving students easily passed those tasks and moved on to the next ones. As a result, some of the high-achieving students had already started to learn the materials for the next grade level. This was possibly because high-achieving students were able to respond well to challenging assignments (Singh 2011 ). Therefore, we should provide high-achieving students with more complex tasks to maintain their interest. For example, Math-Island should provide some authentic mathematical problems as advanced exercises.

Visualizing the learning portfolio

In this study, we demonstrated a long-term example of incorporating a gamified knowledge map in an elementary mathematical curriculum. In the Math-Island game, the curriculum is visualized as a knowledge map instead of a linear sequence, as in textbooks. By doing so, students are enabled to explore relationships in the mathematics curriculum represented by the knowledge map; that is, the structure of the different roads on Math-Island. Furthermore, before learning, students may preview what will be learned, and after learning, students may also reflect on how well they learned. Unlike traditional lectures or textbooks, in which students could only follow a predefined order to learn knowledge without thinking why they have to learn it, the knowledge map allows students to understand the structure of knowledge and plan how to achieve advanced knowledge. Although the order of knowledge still remains the same, students take primary control of their learning. In a sense, the knowledge map may liberate elementary students from passive learning.

Adopting the mechanisms of a construction management game

This 2-year study showed that the adaptation of two game mechanisms, construction and sightseeing, into the elementary mathematical curriculum could effectively improve students’ learning achievement. The reason may be that students likely developed interests in using Math-Island to learn mathematics actively, regardless of whether they are high- and low-achieving students.

Gaining a sense of achievement and ownership through the construction mechanism

Regardless of the construction mechanism, Math-Island allows students to plan and manage their cities by constructing and upgrading buildings. Math-Island took the advantages of construction management games to facilitate elementary students’ active participation in their mathematical learning. Furthermore, students may manage their knowledge by planning and constructing of buildings on their virtual islands. Like most construction management games, students set goals and make decisions so that they may accumulate their assets. These assets are not only external rewards but also visible achievements, which may bring a sense of ownership and confidence. In other words, the system gamified the process of self-directed learning.

Demonstrating learning result to peers through the sightseeing mechanism

As for the sightseeing mechanism, in conventional instruction, elementary students usually lack the self-control to learn knowledge actively (Duckworth et al. 2014 ) or require a social stage to show other students, resulting in low achievement and motivation. On the other hand, although previous researchers have already proposed various self-regulated learning strategies (such as Taub et al. 2014 ), it is still hard for children to keep adopting specific learning strategies for a long time. For these reasons, this study uses the sightseeing mechanism to engage elementary students in a social stage to show other students how well their Math-Islands have been built. For example, in Math-Island, although the students think that they construct buildings in their islands, they plan the development of their knowledge maps. After learning, they may also reflect on their progress by observing the appearance of the buildings.

In brief, owing to the construction mechanism, the students are allowed to choose a place and build their unique islands by learning concepts. During the process, students have to do the learning task, get feedback, and get rewards, which are the three major functions of the construction functions. In the sightseeing mechanism, students’ unique islands (learning result) can be shared and visited by other classmates. The student’s Math-Island thus serves as a stage for showing off their learning results. The two mechanisms offer an incentive model connected to the game mechanism’s forming a positive cycle: the more the students learn, the more unique islands they can build, with more visitors.

Conclusion and future work

This study reported the results of a 2-year experiment with the Math-Island system, in which a knowledge map with extensive mathematics content was provided to support the complete elementary mathematics curriculum. Each road in Math-Island represents a mathematical topic, such as addition. There are many buildings on each road, with each building representing a unit of the mathematics curriculum. Students may learn about the concept and practice it in each building while being provided with feedback by the system. In addition, the construction management online game mechanism is designed to enhance and sustain students’ interest in learning mathematics. The aim of this study was not only to examine whether the Math-Island system could improve students’ achievements but also to investigate how much the low-achieving students would be interested in learning mathematics after using the system for 2 years.

As for enhancing achievement, the result indicated that the Math-Island system could effectively improve the students’ ability to calculate expressions and solve word problems. In particular, the low-achieving students outperformed those of the norm in terms of word problem-solving. For enhancing interest, we found that both the low-achieving and the high-achieving students in the experimental school, when using the Math-Island system, maintained a rather high level of interest in learning mathematics and using the system. The results of this study indicated some possibility that elementary students could be able to learn mathematics in a self-directed learning fashion (Nilson 2014 ; Chen et al. 2012a , b ) under the Math-Island environment. This possibility is worthy of future exploration. For example, by analyzing student data, we can investigate how to support students in conducting self-directed learning. Additionally, because we have already collected a considerable amount of student data, we are currently employing machine learning techniques to improve feedback to the students. Finally, to provide students appropriate challenges, the diversity, quantity, and difficulty of content may need to be increased in the Math-Island system.

Abbreviations

Program for International Student Assessment

The percentile rank of a score

Trends in Mathematics and Science Study

Al-Zoubi, S. M., & Younes, M. A. B. (2015). Low academic achievement: causes and results. Theory and Practice in Language Studies, 5 (11), 2262.

Google Scholar  

Arter, J. A., & Spandel, V. (2005). Using portfolios of student work in instruction and assessment. Educational Measurement Issues and Practice, 11 (1), 36–44.

Azevedo, R., Feyzi-Behnagh, R., Duffy, M., Harley, J., & Trevors, G. (2012). Metacognition and self-regulated learning in student-centered leaning environments. In D. Jonassen & S. Land (Eds.), Theoretical foundations of student-centered learning environments (pp. 171–197). New York: Routledge.

Barlett, C. P., Anderson, C. A., & Swing, E. L. (2009). Video game effects confirmed, suspected and speculative: a review of the evidence. Simulation & Gaming, 40 (3), 377–403.

Barr, R. B., & Tagg, J. (1995). From teaching to learning—a new paradigm for undergraduate education. Change The Magazine of Higher Learning, 27 (6), 12–26.

Birgin, O., & Baki, A. (2007). The use of portfolio to assess student’s performance. Journal of Turkish Science Education, 4 (2), 75–90.

Chan, T. W., Roschelle, J., Hsi, S., Kinshuk, Sharples, M., Brown, T., et al. (2006). One-to-one technology-enhanced learning: an opportunity for global research collaboration. Research and Practice in Technology Enhanced Learning, 1 (01), 3–29.

Chase, K., & Abrahamson, D. (2015). Reverse-scaffolding algebra: empirical evaluation of design architecture. ZDM Mathematics Education, 47 (7), 1195–1209.

Chen, Y. H., Looi, C. K., Lin, C. P., Shao, Y. J., & Chan, T. W. (2012a). Utilizing a collaborative cross number puzzle game to develop the computing ability of addition and subtraction. Educational Technology & Society, 15 (1), 354–366.

Chen, Z. H., Liao, C. C., Cheng, H. N., Yeh, C. Y., & Chan, T. W. (2012b). Influence of game quests on pupils’ enjoyment and goal-pursuing in math learning. Journal of Educational Technology & Society, 15 (2), 317–327.

Cheng, H. N. H., Yang, E. F. Y., Liao, C. C. Y., Chang, B., Huang, Y. C. Y., & Chan, T. W. (2015). Scaffold seeking: a reverse design of scaffolding in computer-supported word problem solving. Journal of Educational Computing Research, 53 (3), 409–435.

Chu, H. C., Yang, K. H., & Chen, J. H. (2015). A time sequence-oriented concept map approach to developing educational computer games for history courses. Interactive Learning Environments, 23 (2), 212–229.

Davenport, T. H. & Prusak, L. (2000). Working knowledge: How organizations manage what they know . Boston: Harvard Business School Press.

Duckworth, A. L., Gendler, T. S., & Gross, J. J. (2014). Self-control in school-age children. Educational Psychologist, 49 (3), 199–217.

Ebener, S., Khan, A., Shademani, R., Compernolle, L., Beltran, M., Lansang, M. A., & Lippman, M. (2006). Knowledge mapping as a technique to support knowledge translation. Bulletin of the World Health Organization, 84 , 636–642.

González-Calero, J. A., Arnau, D., Puig, L., & Arevalillo-Herráez, M. (2014). Intensive scaffolding in an intelligent tutoring system for the learning of algebraic word problem solving. British Journal of Educational Technology, 46 (6), 1189–1200.

Hanus, M. D., & Fox, J. (2015). Assessing the effects of gamification in the classroom: a longitudinal study on intrinsic motivation, social comparison, satisfaction, effort, and academic performance. Computers & Education, 80 , 152–161.

Hwang, G. J., Chiu, L. Y., & Chen, C. H. (2015). A contextual game-based learning approach to improving students’ inquiry-based learning performance in social studies courses. Computers & Education, 81 , 13–25.

Hwang, G. J., Su, J. M., & Chen, N. S. (2012). E-learning introduction and practice . Taiwan: Drmaste.

Kiili, K., & Ketamo, H. (2007). Exploring the learning mechanism in educational games. Journal of Computing and Information Technology, 15 (4), 319–324.

Kilpatrick, J., Swafford, J., & Findell, B. (Eds.). (2001). Adding it up: helping children learn mathematics . Washington, DC: National Academies Press.

Koivisto, J., & Hamari, J. (2014). Demographic differences in perceived benefits from gamification. Computers in Human Behavior, 35 , 179–188.

Krapp, A. (1999). Interest, motivation and learning: an educational-psychological perspective. European Journal of Psychology of Education, 14 (1), 23–40.

Ku, O., Chen, S. Y., Wu, D. H., Lao, A. C., & Chan, T. W. (2014). The effects of game-based learning on mathematical confidence and performance: high ability vs. low ability. Journal of Educational Technology & Society, 17 (3), 65–78.

Lao, A. C. C., Cheng, H. N., Huang, M. C., Ku, O., & Chan, T. W. (2017). Examining motivational orientation and learning strategies in computer-supported self-directed learning (CS-SDL) for mathematics: the perspective of intrinsic and extrinsic goals. Journal of Educational Computing Research, 54 (8), 1168–1188.

Lee, Y. M. (2012). Discriminating math low-achievement motivation patterns: comparing disadvantaged and other students in elementary and junior high school. Journal of Research in Education Sciences, 57 (4), 39–71. https://doi.org/10.3966/2073753X2012125704002 .

Li, M.-C., & Tsai, C.-C. (2013). Game-based learning in science education: a review of relevant research. Journal of Science Education and Technology, 22 (6), 877–898. https://doi.org/10.1007/s10956-013-9436-x .

Liao, C. C., Cheng, H. N., Chang, W. C., & Chan, T. W. (2017). Supporting parental engagement in a BYOD (bring your own device) school. Journal of Computers in Education, 4 (2), 107–125.

Lin, B. G., Li, R. P., & Huang, Y. Z. (2009). Instructional manual of mathematical ability test for the school-aged . Taipei: Ministry of Education.

Lin, P. J., & Tsai, W. H. (2001). Using research-based cases to enhance prospective teachers’ understanding of teaching mathematics and their reflections. In F. L. Lin (Ed.), Common sense in mathematics education. Proceedings of 2001 the Netherlands and Taiwan Conference on Common Sense in Mathematics Education (pp. 231–272). Taipei: Taiwan.

Liu, T. Y., & Chu, Y. L. (2010). Using ubiquitous games in an English listening and speaking course: impact on learning outcomes and motivation. Computers & Education, 55 (2), 630–643. https://doi.org/10.1016/j.compedu.2010.02.023 .

McLaren, B. M., Adams, D. M., Mayer, R. E., & Forlizzi, J. (2017). A computer-based game that promotes mathematics learning more than a conventional approach. International Journal of Game-Based Learning, 7 (1), 36–56.

Ministry of Education. (2003). Guidelines of grades 1-9 curriculum of elementary and junior high school education . Retrieved from https://www.k12ea.gov.tw/92_sid17/%E6%96%B0%E7%B8%BD%E7%B6%B1%E8%8B%B1%E6%96%87%E7%89%88.pdf .

Mullis, I. V. S., Martin, M. O., Foy, P., & Drucker, K. T. (2012). PIRLS 2011 international results in reading . Chestnut Hill: TIMSS & PIRLS International Study Center, Boston College.

Mullis, I. V. S., Martin, M. O., Foy, P., & Hooper, M. (2016). TIMSS 2015 International Results in Mathematics. Retrieved from http://timssandpirls.bc.edu/timss2015/international-results/

Nilson, L. B. (2014). The secret of self-regulated learning. In Invited article for Faculty Focus: Higher Ed Teaching Strategies from Magna Publications .

OECD. (2013). PISA 2012 results in focus: what 15-year-olds know and what they can do with what they know: key results from PISA 2012.

OECD. (2016). PISA 2015 results in focus. Retrieved from: https://www.oecd.org/pisa/pisa-2015-results-in-focus.pdf .

Roll, I., Baker, R. S. J. D., Aleven, V., & Koedinger, K. R. (2014). On the benefits of seeking (and avoiding) help in online problem-solving environments. Journal of the Learning Sciences, 23 (4), 537–560.

Schraw, G., Flowerday, T., & Lehman, S. (2001). Increasing situational interest in the classroom. Educational Psychology Review, 13 (3), 211–224.

Singh, K. (2011). Study of achievement motivation in relation to academic achievement of students. International Journal of Educational Planning and Administration, 1 (2), 161–171.

Taub, M., Azevedo, R., Bouchet, F., & Khosravifar, B. (2014). Can the use of cognitive and metacognitive self-regulated learning strategies be predicted by learners’ levels of prior knowledge in hypermedia-learning environments? Computers in Human Behavior, 39 , 356–367.

Vélez, J., Fabregat, R., Bull, S., & Hueva, D. (2009). The potential for open learner models in adaptive virtual learning environments. In S. D. Craig & D. Dicheva (Eds.), AIED 2009: 14th International Conference on Artificial Intelligence in Education Workshops Proceedings Volume 8 (pp. 11–20). Brighton: International AIED Society.

Yang, E. F. Y., Cheng, H. N. H., Ching, E., & Chan, T. W. (2012). Variation based discovery learning design in 1 to 1 mathematics classroom. In G. Biswas, L.-H. Wong, T. Hirashima, & W. Chen (Eds.), Proceedings of the 20th International Conference on Computers in Education (pp. 811–815). Singapore: Asia-Pacific Society for Computers in Education.

Download references

Acknowledgements

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors would like to thank the Ministry of Science and Technology of the Republic of China, Taiwan, for financial support (MOST 106-2511-S-008-003-MY3), and Research Center for Science and Technology forLearning, National Central University, Taiwan.

Availability of data and materials

As a series of subsequent research papers are still in progress, for now, it is temporarily impossible to share research data sets.

Author information

Authors and affiliations.

National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City, 32001, Taiwan, Republic of China

Charles Y. C. Yeh

Central China Normal University, Science Hall 419, No. 152, Luoyu Road, Wuhan, 430079, China

Hercy N. H. Cheng

National Taiwan Normal University, No.162, Sec. 1, Heping E. Rd., Taipei City, 10610, Taiwan, Republic of China

Zhi-Hong Chen

National Taipei University of Nursing and Health Sciences, No.365, Mingde Rd., Beitou Dist., Taipei City, 11219, Taiwan, Republic of China

Calvin C. Y. Liao

Tak-Wai Chan

You can also search for this author in PubMed   Google Scholar

Contributions

CYCY contributed to the study design, data acquisition and analysis, mainly drafted the manuscript and execution project. HNHC was involved in data acquisition, revision of the manuscript and data analysis.ZHC was contributed to the study idea and drafted the manuscript. CCYL of this research was involved in data acquisition and revision of the manuscript. TWC was project manager and revision of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Charles Y. C. Yeh .

Ethics declarations

Authors’ information.

Charles Y.C. Yeh is currently an PhD student in Graduate Institute of Network Learning Technology at National Central University. The research interests include one-to-one learning environments and game-based learning.

Hercy N. H. Cheng is currently an associate professor and researcher in National Engineering Research Center for E-Learning at Central China Normal University, China. His research interests include one-to-one learning environments and game-based learning.

Zhi-Hong Chen is an associate professor in Graduate Institute of Information and Computer Education at National Taiwan Normal University. His research interests focus on learning technology and interactive stories, technology intensive language learning and game-based learning.

Calvin C. Y. Liao is currently an Assistant Professor and Dean’s Special Assistant in College of Nursing at National Taipei University of Nursing and Health Sciences in Taiwan. His research focuses on computer-based language learning for primary schools. His current research interests include a game-based learning environment and smart technology for caregiving & wellbeing.

Tak-Wai Chan is Chair Professor of the Graduate Institute of Network Learning Technology at National Central University in Taiwan. He has worked on various areas of digital technology supported learning, including artificial intelligence in education, computer supported collaborative learning, digital classrooms, online learning communities, mobile and ubiquitous learning, digital game based learning, and, most recently, technology supported mathematics and language arts learning.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Cite this article.

Yeh, C.Y.C., Cheng, H.N.H., Chen, ZH. et al. Enhancing achievement and interest in mathematics learning through Math-Island. RPTEL 14 , 5 (2019). https://doi.org/10.1186/s41039-019-0100-9

Download citation

Received : 29 October 2018

Accepted : 22 February 2019

Published : 11 March 2019

DOI : https://doi.org/10.1186/s41039-019-0100-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Mathematics learning
  • Game-based learning
  • Construction management games

teaching mathematics research papers

College of Natural Sciences and Mathematics

News & events, fifteen nsm faculty and two graduate students honored with uh faculty excellence and research excellence awards.

April 26, 2024

Awards Include UH’s Highest Faculty Honor - the Esther Farfel Award – Moores Professorships and Awards for Excellence in Teaching and Research

Congratulations to the 15 College of Natural Sciences and Mathematics faculty members and two graduate students recognized for excellence in teaching, mentoring, scholarship and research. These exceptional faculty members and students were honored at the 2024 Faculty Excellence Awards celebration on April 25.

The awards are among the highest honors bestowed by the University of Houston.

“The 17 individuals recognized represent the best in teaching, research and mentorship,” said Dan E. Wells, NSM dean. “Their efforts are making a tremendous difference in the lives and career paths of our students.”

Esther Farfel Award – Zhifeng Ren

Zhifeng Ren , Paul C. W. Chu and May P. Chern Endowed Chair in Condensed Matter Physics, received the Esther Farfel Award, the highest honor accorded to a University faculty member. The award is a symbol of overall career excellence. Recipients are chosen for the significance and national/international impact of their research or creative activity, outstanding teaching ability, and distinctive and exemplary service to the University, the profession and the community. The award carries a cash prize of $10,000.

Moores Professorships

Mini Das , Physics Seema Khurana , Biology & Biochemistry This five-year, renewable professorship is given to faculty in recognition of outstanding teaching, research and service.

Teaching Excellence Awards

Distinguished leadership in teaching excellence.

Donna Pattison , Biology & Biochemistry This award is given in recognition of faculty who have made sustained and significant contributions to education within the context of their responsibilities as a full-time faculty member.

Teaching Excellence

Chin-Yo Lin , Biology & Biochemistry, CNRCS This award is given to faculty in recognition of outstanding achievements in teaching.

Teaching Excellence – Provost Core

Ann Cheek , Biology & Biochemistry Tai-Yen Chen , Chemistry This award is given to faculty who have demonstrated outstanding teaching in undergraduate core curriculum courses.

Teaching Excellence – Instructor/Clinical

Cathy Poliak , Mathematics This award is given in recognition of outstanding teaching by faculty instructors, clinical faculty, research faculty, artist affiliates and lecturers.

Teaching Excellence – Graduate Teaching Assistant

Lukasz Krzywon , Mathematics Elliot Lagueux , Biology & Biochemistry This award is given to graduate students who have demonstrated excellence in teaching.

Teaching Excellence – Group Teaching

Paige Evans , teach HOUSTON-Mathematics Jacqueline Ekeoba , teach HOUSTON-Mathematics Ramona Mateer , teach HOUSTON-Mathematics Rachel Glenn , teach HOUSTON-Mathematics This award recognizes faculty who demonstrate a strong commitment to teaching and student success, who have worked together collaboratively to improve student outcomes.

Undergraduate Research Mentor

Melissa Zastrow , Chemistry This award acknowledges faculty who are making a significant impact in their field by supporting and mentoring undergraduate students in research and scholarship endeavors and who have demonstrated at least five years of mentorship involvement.

Awards for Excellence in Research, Scholarship and Creative Activity

Research excellence – professor.

Gopal Pandurangan , Computer Science This award recognizes faculty who have a substantial continuing record of outstanding research, scholarship and creative activities.

Research Excellence – Assistant Professor

Weiyi Peng , Biology & Biochemistry, CNRCS This award recognizes faculty who have demonstrated great potential in research, scholarship and creative endeavors by virtue of the exceptional quality of their early contributions.

- Kathy Major, College of Natural Sciences and Mathematics

Get full access to NTA UGC NET '24 Paper 1 by KVS Madaan| Teaching and Research Aptitude NET/SET/JRF |Includes 2023 Paper (2 Sets) & 23 years chapter wise solved Previous Year Questions and 60K+ other titles, with a free 10-day trial of O'Reilly.

There are also live events, courses curated by job role, and more.

NTA UGC NET '24 Paper 1 by KVS Madaan| Teaching and Research Aptitude NET/SET/JRF |Includes 2023 Paper (2 Sets) & 23 years chapter wise solved Previous Year Questions

NTA UGC NET '24 Paper 1 by KVS Madaan| Teaching and Research Aptitude NET/SET/JRF |Includes 2023 Paper (2 Sets) & 23 years chapter wise solved Previous Year Questions

Read it now on the O’Reilly learning platform with a 10-day free trial.

O’Reilly members get unlimited access to books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.

Book description

NTA UGC NET '24 Paper 1 by KVS Madaan| Teaching and Research Aptitude NET/SET/JRF |Includes 2023 Paper (2 Sets) & 23 years chapter wise solved Previous Year Questions | Includes 2600+ Questions, 8th Edition ( English Edition)

Table of contents

  • About Pearson
  • About the Author
  • Strategy about NTA Exam
  • UGC NET Question Paper December 2023
  • UGC NET Question Paper June 2023 - Set 1
  • UGC NET Question Paper June 2023 - Set 2
  • Chapter 1 Teaching Aptitude
  • Chapter 2 Research Aptitude
  • Chapter 3 Comprehension
  • Chapter 4 Communication
  • Chapter 5 Mathematical Reasoning and Aptitude
  • Chapter 6 Logical Reasoning
  • Chapter 7 Data Interpretation
  • Chapter 8 Information and Communication Technology (ICT)
  • Chapter 9 People, Development and Environment
  • Chapter 10 Higher Education System
  • Previous Years’ Papers
  • UGC NET QuestionPaper 2022 - Set 1
  • UGC NET QuestionPaper 2022 - Set 2
  • UGC NET QuestionPaper 2021 - Set 1

Product information

  • Title: NTA UGC NET '24 Paper 1 by KVS Madaan| Teaching and Research Aptitude NET/SET/JRF |Includes 2023 Paper (2 Sets) & 23 years chapter wise solved Previous Year Questions
  • Author(s): KVS Madaan
  • Release date: April 2024
  • Publisher(s): Pearson India
  • ISBN: 9789361599453

You might also like

Nta ugc net/set/jrf previous years' solved papers 1 (2014-2023) | solved 2023 (june and december) papers | chapter-wise for ample practice 2000 + questions for practice.

by KVS Madaan

NTA UGC NET/SET/JRF Previous Years' Solved Papers 1 (2014-2023), now in its eighth edition, is an …

NTA CUET- UG 2024 Economics|Fully solved 2023 paper | Chapterwise summed pointers for revision | Digital Question Bank & Mock Tests

by Shelly Jolly

The NTA along with UGC has formulated the CENTRAL UNIVERSITY ENTRANCE TEST (CUET) to enrol students …

NTA CUET Mathematics With Fully Solved 2023 Papers by Pearson

by Prakash Gupta, Prashant Jain

What Is Logistic Regression in 3 Minutes?

by Thomas Nield

These videos are a series of shorts explaining critical data science concepts through visuals and concise …

Don’t leave empty-handed

Get Mark Richards’s Software Architecture Patterns ebook to better understand how to design components—and how they should interact.

It’s yours, free.

Cover of Software Architecture Patterns

Check it out now on O’Reilly

Dive in for free with a 10-day trial of the O’Reilly learning platform—then explore all the other resources our members count on to build skills and solve problems every day.

teaching mathematics research papers

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection

Logo of phenaturepg

Future themes of mathematics education research: an international survey before and during the pandemic

Arthur bakker.

1 Utrecht University, Utrecht, Netherlands

2 University of Delaware, Newark, DE USA

Linda Zenger

Before the pandemic (2019), we asked: On what themes should research in mathematics education focus in the coming decade? The 229 responses from 44 countries led to eight themes plus considerations about mathematics education research itself. The themes can be summarized as teaching approaches, goals, relations to practices outside mathematics education, teacher professional development, technology, affect, equity, and assessment. During the pandemic (November 2020), we asked respondents: Has the pandemic changed your view on the themes of mathematics education research for the coming decade? If so, how? Many of the 108 respondents saw the importance of their original themes reinforced (45), specified their initial responses (43), and/or added themes (35) (these categories were not mutually exclusive). Overall, they seemed to agree that the pandemic functions as a magnifying glass on issues that were already known, and several respondents pointed to the need to think ahead on how to organize education when it does not need to be online anymore. We end with a list of research challenges that are informed by the themes and respondents’ reflections on mathematics education research.

An international survey in two rounds

Around the time when Educational Studies in Mathematics (ESM) and the Journal for Research in Mathematics Education (JRME) were celebrating their 50th anniversaries, Arthur Bakker (editor of ESM) and Jinfa Cai (editor of JRME) saw a need to raise the following future-oriented question for the field of mathematics education research:

Q2019: On what themes should research in mathematics education focus in the coming decade?

To that end, we administered a survey with just this one question between June 17 and October 16, 2019.

When we were almost ready with the analysis, the COVID-19 pandemic broke out, and we were not able to present the results at the conferences we had planned to attend (NCTM and ICME in 2020). Moreover, with the world shaken up by the crisis, we wondered if colleagues in our field might think differently about the themes formulated for the future due to the pandemic. Hence, on November 26, 2020, we asked a follow-up question to those respondents who in 2019 had given us permission to approach them for elaboration by email:

Q2020: Has the pandemic changed your view on the themes of mathematics education research for the coming decade? If so, how?

In this paper, we summarize the responses to these two questions. Similar to Sfard’s ( 2005 ) approach, we start by synthesizing the voices of the respondents before formulating our own views. Some colleagues put forward the idea of formulating a list of key themes or questions, similar to the 23 unsolved mathematical problems that David Hilbert published around 1900 (cf. Schoenfeld, 1999 ). However, mathematics and mathematics education are very different disciplines, and very few people share Hilbert’s formalist view on mathematics; hence, we do not want to suggest that we could capture the key themes of mathematics education in a similar way. Rather, our overview of themes drawn from the survey responses is intended to summarize what is valued in our global community at the time of the surveys. Reasoning from these themes, we end with a list of research challenges that we see worth addressing in the future (cf. Stephan et al., 2015 ).

Methodological approach

Themes for the coming decade (2019).

We administered the 1-question survey through email lists that we were aware of (e.g., Becker, ICME, PME) and asked mathematics education researchers to spread it in their national networks. By October 16, 2019, we had received 229 responses from 44 countries across 6 continents (Table 1 ). Although we were happy with the larger response than Sfard ( 2005 ) received (74, with 28 from Europe), we do not know how well we have reached particular regions, and if potential respondents might have faced language or other barriers. We did offer a few Chinese respondents the option to write in Chinese because the second author offered to translate their emails into English. We also received responses in Spanish, which were translated for us.

Numbers of responses per continent (2019)

Note : When a respondent filled in two countries on two continents, we attributed half to one and the other half to the other continent

Ethical approval was given by the Ethical Review Board of the Faculties of Science and Geo-science of Utrecht University (Bèta L-19247). We asked respondents to indicate if they were willing to be quoted by name and if we were allowed to approach them for subsequent information. If they preferred to be named, we mention their name and country; otherwise, we write “anonymous.” In our selection of quotes, we have focused on content, not on where the response came from. On March 2, 2021, we approached all respondents who were quoted to double-check if they agreed to be quoted and named. One colleague preferred the quote and name to be deleted; three suggested small changes in wording; the others approved.

On September 20, 2019, the three authors met physically at Utrecht University to analyze the responses. After each individual proposal, we settled on a joint list of seven main themes (the first seven in Table ​ Table2), 2 ), which were neither mutually exclusive nor exhaustive. The third author (Zenger, then still a student in educational science) next color coded all parts of responses belonging to a category. These formed the basis for the frequencies and percentages presented in the tables and text. The first author (Bakker) then read all responses categorized by a particular code to identify and synthesize the main topics addressed within each code. The second author (Cai) read all of the survey responses and the response categories, and commented. After the initial round of analysis, we realized it was useful to add an eighth theme: assessment (including evaluation).

Percentages of responses mentioned in each theme (2019)

Note. Percentages do not add up to 100, because many respondents mentioned multiple themes

Moreover, given that a large number of respondents made comments about mathematics education research itself, we decided to summarize these separately. For analyzing this category of research, we used the following four labels to distinguish types of comments on our discipline of mathematics education research: theory, methodology, self-reflection (including ethical considerations), interdisciplinarity, and transdisciplinarity. We then summarized the responses per type of comment.

It has been a daunting and humbling experience to study the huge coverage and diversity of topics that our colleagues care about. Any categorization felt like a reduction of the wealth of ideas, and we are aware of the risks of “sorting things out” (Bowker & Star, 2000 ), which come with foregrounding particular challenges rather than others (Stephan et al., 2015 ). Yet the best way to summarize the bigger picture seemed by means of clustering themes and pointing to their relationships. As we identified these eight themes of mathematics education research for the future, a recurring question during the analysis was how to represent them. A list such as Table ​ Table2 2 does not do justice to the interrelations between the themes. Some relationships are very clear, for example, educational approaches (theme 2) working toward educational or societal goals (theme 1). Some themes are pervasive; for example, equity and (positive) affect are both things that educators want to achieve but also phenomena that are at stake during every single moment of learning and teaching. Diagrams we considered to represent such interrelationships were either too specific (limiting the many relevant options, e.g., a star with eight vertices that only link pairs of themes) or not specific enough (e.g., a Venn diagram with eight leaves such as the iPhone symbol for photos). In the end, we decided to use an image and collaborated with Elisabeth Angerer (student assistant in an educational sciences program), who eventually made the drawing in Fig. ​ Fig.1 1 to capture themes in their relationships.

An external file that holds a picture, illustration, etc.
Object name is 10649_2021_10049_Fig1_HTML.jpg

Artistic impression of the future themes

Has the pandemic changed your view? (2020)

On November 26, 2020, we sent an email to the colleagues who responded to the initial question and who gave permission to be approached by email. We cited their initial response and asked: “Has the pandemic changed your view on the themes of mathematics education research for the coming decade? If so, how?” We received 108 responses by January 12, 2021. The countries from which the responses came included China, Italy, and other places that were hit early by the COVID-19 virus. The length of responses varied from a single word response (“no”) to elaborate texts of up to 2215 words. Some people attached relevant publications. The median length of the responses was 87 words, with a mean length of 148 words and SD = 242. Zenger and Bakker classified them as “no changes” (9 responses) or “clearly different views” (8); the rest of the responses saw the importance of their initial themes reinforced (45), specified their initial responses (43), or added new questions or themes (35). These last categories were not mutually exclusive, because respondents could first state that they thought the initial themes were even more relevant than before and provide additional, more specified themes. We then used the same themes that had been identified in the first round and identified what was stressed or added in the 2020 responses.

The most frequently mentioned theme was what we labeled approaches to teaching (64% of the respondents, see Table ​ Table2). 2 ). Next was the theme of goals of mathematics education on which research should shed more light in the coming decade (54%). These goals ranged from specific educational goals to very broad societal ones. Many colleagues referred to mathematics education’s relationships with other practices (communities, institutions…) such as home, continuing education, and work. Teacher professional development is a key area for research in which the other themes return (what should students learn, how, how to assess that, how to use technology and ensure that students are interested?). Technology constitutes its own theme but also plays a key role in many other themes, just like affect. Another theme permeating other ones is what can be summarized as equity, diversity, and inclusion (also social justice, anti-racism, democratic values, and several other values were mentioned). These values are not just societal and educational goals but also drivers for redesigning teaching approaches, using technology, working on more just assessment, and helping learners gain access, become confident, develop interest, or even love for mathematics. To evaluate if approaches are successful and if goals have been achieved, assessment (including evaluation) is also mentioned as a key topic of research.

In the 2020 responses, many wise and general remarks were made. The general gist is that the pandemic (like earlier crises such as the economic crisis around 2008–2010) functioned as a magnifying glass on themes that were already considered important. Due to the pandemic, however, systemic societal and educational problems were said to have become better visible to a wider community, and urge us to think about the potential of a “new normal.”

Approaches to teaching

We distinguish specific teaching strategies from broader curricular topics.

Teaching strategies

There is a widely recognized need to further design and evaluate various teaching approaches. Among the teaching strategies and types of learning to be promoted that were mentioned in the survey responses are collaborative learning, critical mathematics education, dialogic teaching, modeling, personalized learning, problem-based learning, cross-curricular themes addressing the bigger themes in the world, embodied design, visualization, and interleaved learning. Note, however, that students can also enhance their mathematical knowledge independently from teachers or parents through web tutorials and YouTube videos.

Many respondents emphasized that teaching approaches should do more than promote cognitive development. How can teaching be entertaining or engaging? How can it contribute to the broader educational goals of developing students’ identity, contribute to their empowerment, and help them see the value of mathematics in their everyday life and work? We return to affect in Section 3.7 .

In the 2020 responses, we saw more emphasis on approaches that address modeling, critical thinking, and mathematical or statistical literacy. Moreover, respondents stressed the importance of promoting interaction, collaboration, and higher order thinking, which are generally considered to be more challenging in distance education. One approach worth highlighting is challenge-based education (cf. Johnson et al. 2009 ), because it takes big societal challenges as mentioned in the previous section as its motivation and orientation.

Approaches by which mathematics education can contribute to the aforementioned goals can be distinguished at various levels. Several respondents mentioned challenges around developing a coherent mathematics curriculum, smoothing transitions to higher school levels, and balancing topics, and also the typical overload of topics, the influence of assessment on what is taught, and what teachers can teach. For example, it was mentioned that mathematics teachers are often not prepared to teach statistics. There seems to be little research that helps curriculum authors tackle some of these hard questions as well as how to monitor reform (cf. Shimizu & Vithal, 2019 ). Textbook analysis is mentioned as a necessary research endeavor. But even if curricula within one educational system are reasonably coherent, how can continuity between educational systems be ensured (cf. Jansen et al., 2012 )?

In the 2020 responses, some respondents called for free high-quality curriculum resources. In several countries where Internet access is a problem in rural areas, a shift can be observed from online resources to other types of media such as radio and TV.

Goals of mathematics education

The theme of approaches is closely linked to that of the theme of goals. For example, as Fulvia Furinghetti (Italy) wrote: “It is widely recognized that critical thinking is a fundamental goal in math teaching. Nevertheless it is still not clear how it is pursued in practice.” We distinguish broad societal and more specific educational goals. These are often related, as Jane Watson (Australia) wrote: “If Education is to solve the social, cultural, economic, and environmental problems of today’s data-driven world, attention must be given to preparing students to interpret the data that are presented to them in these fields.”

Societal goals

Respondents alluded to the need for students to learn to function in the economy and in society more broadly. Apart from instrumental goals of mathematics education, some emphasized goals related to developing as a human being, for instance learning to see the mathematics in the world and develop a relation with the world. Mathematics education in these views should empower students to combat anti-expertise and post-fact tendencies. Several respondents mentioned even larger societal goals such as avoiding extinction as a human species and toxic nationalism, resolving climate change, and building a sustainable future.

In the second round of responses (2020), we saw much more emphasis on these bigger societal issues. The urgency to orient mathematics education (and its research) toward resolving these seemed to be felt more than before. In short, it was stressed that our planet needs to be saved. The big question is what role mathematics education can play in meeting these challenges.

Educational goals

Several respondents expressed a concern that the current goals of mathematics education do not reflect humanity’s and societies’ needs and interests well. Educational goals to be stressed more were mathematical literacy, numeracy, critical, and creative thinking—often with reference to the changing world and the planet being at risk. In particular, the impact of technology was frequently stressed, as this may have an impact on what people need to learn (cf. Gravemeijer et al., 2017 ). If computers can do particular things much better than people, what is it that students need to learn?

Among the most frequently mentioned educational goals for mathematics education were statistical literacy, computational and algorithmic thinking, artificial intelligence, modeling, and data science. More generally, respondents expressed that mathematics education should help learners deploy evidence, reasoning, argumentation, and proof. For example, Michelle Stephan (USA) asked:

What mathematics content should be taught today to prepare students for jobs of the future, especially given growth of the digital world and its impact on a global economy? All of the mathematics content in K-12 can be accomplished by computers, so what mathematical procedures become less important and what domains need to be explored more fully (e.g., statistics and big data, spatial geometry, functional reasoning, etc.)?

One challenge for research is that there is no clear methodology to arrive at relevant and feasible learning goals. Yet there is a need to choose and formulate such goals on the basis of research (cf. Van den Heuvel-Panhuizen, 2005 ).

Several of the 2020 responses mentioned the sometimes problematic way in which numbers, data, and graphs are used in the public sphere (e.g., Ernest, 2020 ; Kwon et al., 2021 ; Yoon et al., 2021 ). Many respondents saw their emphasis on relevant educational goals reinforced, for example, statistical and data literacy, modeling, critical thinking, and public communication. A few pandemic-specific topics were mentioned, such as exponential growth.

Relation of mathematics education to other practices

Many responses can be characterized as highlighting boundary crossing (Akkerman & Bakker, 2011 ) with disciplines or communities outside mathematics education, such as in science, technology, engineering, art, and mathematics education (STEM or STEAM); parents or families; the workplace; and leisure (e.g., drama, music, sports). An interesting example was the educational potential of mathematical memes—“humorous digital objects created by web users copying an existing image and overlaying a personal caption” (Bini et al., 2020 , p. 2). These boundary crossing-related responses thus emphasize the movements and connections between mathematics education and other practices.

In the 2020 responses, we saw that during the pandemic, the relationship between school and home has become much more important, because most students were (and perhaps still are) learning at home. Earlier research on parental involvement and homework (Civil & Bernier, 2006 ; de Abreu et al., 2006 ; Jackson, 2011 ) proves relevant in the current situation where many countries are still or again in lockdown. Respondents pointed to the need to monitor students and their work and to promote self-regulation. They also put more stress on the political, economic, and financial contexts in which mathematics education functions (or malfunctions, in many respondents’ views).

Teacher professional development

Respondents explicitly mentioned teacher professional development as an important domain of mathematics education research (including teacher educators’ development). For example, Loide Kapenda (Namibia) wrote, “I am supporting UNESCO whose idea is to focus on how we prepare teachers for the future we want.” (e.g., UNESCO, 2015 ) And, Francisco Rojas (Chile) wrote:

Although the field of mathematics education is broad and each time faced with new challenges (socio-political demands, new intercultural contexts, digital environments, etc.), all of them will be handled at school by the mathematics teacher, both in primary as well as in secondary education. Therefore, from my point of view, pre-service teacher education is one of the most relevant fields of research for the next decade, especially in developing countries.

It is evident from the responses that teaching mathematics is done by a large variety of people, not only by people who are trained as primary school teachers, secondary school mathematics teachers, or mathematicians but also parents, out-of-field teachers, and scientists whose primary discipline is not mathematics but who do use mathematics or statistics. How teachers of mathematics are trained varies accordingly. Respondents frequently pointed to the importance of subject-matter knowledge and particularly noted that many teachers seem ill-prepared to teach statistics (e.g., Lonneke Boels, the Netherlands).

Key questions were raised by several colleagues: “How to train mathematics teachers with a solid foundation in mathematics, positive attitudes towards mathematics teaching and learning, and wide knowledge base linking to STEM?” (anonymous); “What professional development, particularly at the post-secondary level, motivates changes in teaching practices in order to provide students the opportunities to engage with mathematics and be successful?” (Laura Watkins, USA); “How can mathematics educators equip students for sustainable, equitable citizenship? And how can mathematics education equip teachers to support students in this?” (David Wagner, Canada)

In the 2020 responses, it was clear that teachers are incredibly important, especially in the pandemic era. The sudden change to online teaching means that

higher requirements are put forward for teachers’ educational and teaching ability, especially the ability to carry out education and teaching by using information technology should be strengthened. Secondly, teachers’ ability to communicate and cooperate has been injected with new connotation. (Guangming Wang, China)

It is broadly assumed that education will stay partly online, though more so in higher levels of education than in primary education. This has implications for teachers, for instance, they will have to think through how they intend to coordinate teaching on location and online. Hence, one important focus for professional development is the use of technology.

Technology deserves to be called a theme in itself, but we want to emphasize that it ran through most of the other themes. First of all, some respondents argued that, due to technological advances in society, the societal and educational goals of mathematics education need to be changed (e.g., computational thinking to ensure employability in a technological society). Second, responses indicated that the changed goals have implications for the approaches in mathematics education. Consider the required curriculum reform and the digital tools to be used in it. Students do not only need to learn to use technology; the technology can also be used to learn mathematics (e.g., visualization, embodied design, statistical thinking). New technologies such as 3D printing, photo math, and augmented and virtual reality offer new opportunities for learning. Society has changed very fast in this respect. Third, technology is suggested to assist in establishing connections with other practices , such as between school and home, or vocational education and work, even though there is a great disparity in how successful these connections are.

In the 2020 responses, there was great concern about the current digital divide (cf. Hodgen et al., 2020 ). The COVID-19 pandemic has thus given cause for mathematics education research to understand better how connections across educational and other practices can be improved with the help of technology. Given the unequal distribution of help by parents or guardians, it becomes all the more important to think through how teachers can use videos and quizzes, how they can monitor their students, how they can assess them (while respecting privacy), and how one can compensate for the lack of social, gestural, and embodied interaction that is possible when being together physically.

Where mobile technology was considered very innovative before 2010, smartphones have become central devices in mathematics education in the pandemic with its reliance on distance learning. Our direct experience showed that phone applications such as WhatsApp and WeChat have become key tools in teaching and learning mathematics in many rural areas in various continents where few people have computers (for a report on podcasts distributed through WhatsApp, community loudspeakers, and local radio stations in Colombia, see Saenz et al., 2020 ).

Equity, diversity, and inclusion

Another cross-cutting theme can be labeled “equity, diversity, and inclusion.” We use this triplet to cover any topic that highlights these and related human values such as equality, social and racial justice, social emancipation, and democracy that were also mentioned by respondents (cf. Dobie & Sherin, 2021 ). In terms of educational goals , many respondents stressed that mathematics education should be for all students, including those who have special needs, who live in poverty, who are learning the instruction language, who have a migration background, who consider themselves LGBTQ+, have a traumatic or violent history, or are in whatever way marginalized. There is broad consensus that everyone should have access to high-quality mathematics education. However, as Niral Shah (USA) notes, less attention has been paid to “how phenomena related to social markers (e.g., race, class, gender) interact with phenomena related to the teaching and learning of mathematical content.”

In terms of teaching approaches , mathematics education is characterized by some respondents from particular countries as predominantly a white space where some groups feel or are excluded (cf. Battey, 2013 ). There is a general concern that current practices of teaching mathematics may perpetuate inequality, in particular in the current pandemic. In terms of assessment , mathematics is too often used or experienced as a gatekeeper rather than as a powerful resource (cf. Martin et al., 2010 ). Steve Lerman (UK) “indicates that understanding how educational opportunities are distributed inequitably, and in particular how that manifests in each end every classroom, is a prerequisite to making changes that can make some impact on redistribution.” A key research aim therefore is to understand what excludes students from learning mathematics and what would make mathematics education more inclusive (cf. Roos, 2019 ). And, what does professional development of teachers that promotes equity look like?

In 2020, many respondents saw their emphasis on equity and related values reinforced in the current pandemic with its risks of a digital divide, unequal access to high-quality mathematics education, and unfair distribution of resources. A related future research theme is how the so-called widening achievement gaps can be remedied (cf. Bawa, 2020 ). However, warnings were also formulated that thinking in such deficit terms can perpetuate inequality (cf. Svensson et al., 2014 ). A question raised by Dor Abrahamson (USA) is, “What roles could digital technology play, and in what forms, in restoring justice and celebrating diversity?”

Though entangled with many other themes, affect is also worth highlighting as a theme in itself. We use the term affect in a very broad sense to point to psychological-social phenomena such as emotion, love, belief, attitudes, interest, curiosity, fun, engagement, joy, involvement, motivation, self-esteem, identity, anxiety, alienation, and feeling of safety (cf. Cobb et al., 2009 ; Darragh, 2016 ; Hannula, 2019 ; Schukajlow et al., 2017 ). Many respondents emphasized the importance of studying these constructs in relation to (and not separate from) what is characterized as cognition. Some respondents pointed out that affect is not just an individual but also a social phenomenon, just like learning (cf. Chronaki, 2019 ; de Freitas et al., 2019 ; Schindler & Bakker, 2020 ).

Among the educational goals of mathematics education, several participants mentioned the need to generate and foster interest in mathematics. In terms of approaches , much emphasis was put on the need to avoid anxiety and alienation and to engage students in mathematical activity.

In the 2020 responses, more emphasis was put on the concern about alienation, which seems to be of special concern when students are socially distanced from peers and teachers as to when teaching takes place only through technology . What was reiterated in the 2020 responses was the importance of students’ sense of belonging in a mathematics classroom (cf. Horn, 2017 )—a topic closely related to the theme of equity, diversity, and inclusion discussed before.

Assessment and evaluation were not often mentioned explicitly, but they do not seem less important than the other related themes. A key challenge is to assess what we value rather than valuing what we assess. In previous research, the assessment of individual students has received much attention, but what seems to be neglected is the evaluation of curricula. As Chongyang Wang (China) wrote, “How to evaluate the curriculum reforms. When we pay much energy in reforming our education and curriculum, do we imagine how to ensure it will work and there will be pieces of evidence found after the new curricula are carried out? How to prove the reforms work and matter?” (cf. Shimizu & Vithal, 2019 )

In the 2020 responses, there was an emphasis on assessment at a distance. Distance education generally is faced with the challenge of evaluating student work, both formatively and summatively. We predict that so-called e-assessment, along with its privacy challenges, will generate much research interest in the near future (cf. Bickerton & Sangwin, 2020 ).

Mathematics education research itself

Although we only asked for future themes, many respondents made interesting comments about research in mathematics education and its connections with other disciplines and practices (such as educational practice, policy, home settings). We have grouped these considerations under the subheadings of theory, methodology, reflection on our discipline, and interdisciplinarity and transdisciplinarity. As with the previous categorization into themes, we stress that these four types are not mutually exclusive as theoretical and methodological considerations can be intricately intertwined (Radford, 2008 ).

Several respondents expressed their concern about the fragmentation and diversity of theories used in mathematics education research (cf. Bikner-Ahsbahs & Prediger, 2014 ). The question was raised how mathematics educators can “work together to obtain valid, reliable, replicable, and useful findings in our field” and “How, as a discipline, can we encourage sustained research on core questions using commensurable perspectives and methods?” (Keith Weber, USA). One wish was “comparing theoretical perspectives for explanatory power” (K. Subramaniam, India). At the same time, it was stressed that “we cannot continue to pretend that there is just one culture in the field of mathematics education, that all the theoretical framework may be applied in whichever culture and that results are universal” (Mariolina Bartolini Bussi, Italy). In addition, the wish was expressed to deepen theoretical notions such as numeracy, equity, and justice as they play out in mathematics education.

Methodology

Many methodological approaches were mentioned as potentially useful in mathematics education research: randomized studies, experimental studies, replication, case studies, and so forth. Particular attention was paid to “complementary methodologies that bridge the ‘gap’ between mathematics education research and research on mathematical cognition” (Christian Bokhove, UK), as, for example, done in Gilmore et al. ( 2018 ). Also, approaches were mentioned that intend to bridge the so-called gap between educational practice and research, such as lesson study and design research. For example, Kay Owens (Australia) pointed to the challenge of studying cultural context and identity: “Such research requires a multi-faceted research methodology that may need to be further teased out from our current qualitative (e.g., ethnographic) and quantitative approaches (‘paper and pencil’ (including computing) testing). Design research may provide further possibilities.”

Francisco Rojas (Chile) highlighted the need for more longitudinal and cross-sectional research, in particular in the context of teacher professional development:

It is not enough to investigate what happens in pre-service teacher education but understand what effects this training has in the first years of the professional career of the new teachers of mathematics, both in primary and secondary education. Therefore, increasingly more longitudinal and cross-sectional studies will be required to understand the complexity of the practice of mathematics teachers, how the professional knowledge that articulates the practice evolves, and what effects have the practice of teachers on the students’ learning of mathematics.

Reflection on our discipline

Calls were made for critical reflection on our discipline. One anonymous appeal was for more self-criticism and scientific modesty: Is research delivering, or is it drawing away good teachers from teaching? Do we do research primarily to help improve mathematics education or to better understand phenomena? (cf. Proulx & Maheux, 2019 ) The general gist of the responses was a sincere wish to be of value to the world and mathematics education more specifically and not only do “research for the sake of research” (Zahra Gooya, Iran). David Bowers (USA) expressed several reflection-inviting views about the nature of our discipline, for example:

  • We must normalize (and expect) the full taking up the philosophical and theoretical underpinnings of all of our work (even work that is not considered “philosophical”). Not doing so leads to uncritical analysis and implications.
  • We must develop norms wherein it is considered embarrassing to do “uncritical” research.
  • There is no such thing as “neutral.” Amongst other things, this means that we should be cultivating norms that recognize the inherent political nature of all work, and norms that acknowledge how superficially “neutral” work tends to empower the oppressor.
  • We must recognize the existence of but not cater to the fragility of privilege.

In terms of what is studied, some respondents felt that the mathematics education research “literature has been moving away from the original goals of mathematics education. We seem to have been investigating everything but the actual learning of important mathematics topics.” (Lyn English, Australia) In terms of the nature of our discipline, Taro Fujita (UK) argued that our discipline can be characterized as a design science, with designing mathematical learning environments as the core of research activities (cf. Wittmann, 1995 ).

A tension that we observe in different views is the following: On the one hand, mathematics education research has its origin in helping teachers teach particular content better. The need for such so-called didactical, topic-specific research is not less important today but perhaps less fashionable for funding schemes that promote innovative, ground-breaking research. On the other hand, over time it has become clear that mathematics education is a multi-faceted socio-cultural and political endeavor under the influence of many local and global powers. It is therefore not surprising that the field of mathematics education research has expanded so as to include an increasingly wide scope of themes that are at stake, such as the marginalization of particular groups. We therefore highlight Niral Shah’s (USA) response that “historically, these domains of research [content-specific vs socio-political] have been decoupled. The field would get closer to understanding the experiences of minoritized students if we could connect these lines of inquiry.”

Another interesting reflective theme was raised by Nouzha El Yacoubi (Morocco): To what extent can we transpose “research questions from developed to developing countries”? As members of the plenary panel at PME 2019 (e.g., Kazima, 2019 ; Kim, 2019 ; Li, 2019 ) conveyed well, adopting interventions that were successful in one place in another place is far from trivial (cf. Gorard, 2020 ).

Juan L. Piñeiro (Spain in 2019, Chile in 2020) highlighted that “mathematical concepts and processes have different natures. Therefore, can it be characterized using the same theoretical and methodological tools?” More generally, one may ask if our theories and methodologies—often borrowed from other disciplines—are well suited to the ontology of our own discipline. A discussion started by Niss ( 2019 ) on the nature of our discipline, responded to by Bakker ( 2019 ) and Cai and Hwang ( 2019 ), seems worth continuing.

An important question raised in several comments is how close research should be to existing curricula. One respondent (Benjamin Rott, Germany) noted that research on problem posing often does “not fit into school curricula.” This makes the application of research ideas and findings problematic. However, one could argue that research need not always be tied to existing (local) educational contexts. It can also be inspirational, seeking principles of what is possible (and how) with a longer-term view on how curricula may change in the future. One option is, as Simon Zell (Germany) suggests, to test designs that cover a longer timeframe than typically done. Another way to bridge these two extremes is “collaboration between teachers and researchers in designing and publishing research” (K. Subramaniam, India) as is promoted by facilitating teachers to do PhD research (Bakx et al., 2016 ).

One of the responding teacher-researchers (Lonneke Boels, the Netherlands) expressed the wish that research would become available “in a more accessible form.” This wish raises the more general questions of whose responsibility it is to do such translation work and how to communicate with non-researchers. Do we need a particular type of communication research within mathematics education to learn how to convey particular key ideas or solid findings? (cf. Bosch et al., 2017 )

Interdisciplinarity and transdisciplinarity

Many respondents mentioned disciplines which mathematics education research can learn from or should collaborate with (cf. Suazo-Flores et al., 2021 ). Examples are history, mathematics, philosophy, psychology, psychometry, pedagogy, educational science, value education (social, emotional), race theory, urban education, neuroscience/brain research, cognitive science, and computer science didactics. “A big challenge here is how to make diverse experts approach and talk to one another in a productive way.” (David Gómez, Chile)

One of the most frequently mentioned disciplines in relation to our field is history. It is a common complaint in, for instance, the history of medicine that historians accuse medical experts of not knowing historical research and that medical experts accuse historians of not understanding the medical discipline well enough (Beckers & Beckers, 2019 ). This tension raises the question who does and should do research into the history of mathematics or of mathematics education and to what broader purpose.

Some responses go beyond interdisciplinarity, because resolving the bigger issues such as climate change and a more equitable society require collaboration with non-researchers (transdisciplinarity). A typical example is the involvement of educational practice and policy when improving mathematics education (e.g., Potari et al., 2019 ).

Let us end this section with a word of hope, from an anonymous respondent: “I still believe (or hope?) that the pandemic, with this making-inequities-explicit, would help mathematics educators to look at persistent and systemic inequalities more consistently in the coming years.” Having learned so much in the past year could indeed provide an opportunity to establish a more equitable “new normal,” rather than a reversion to the old normal, which one reviewer worried about.

The themes in their coherence: an artistic impression

As described above, we identified eight themes of mathematics education research for the future, which we discussed one by one. The disadvantage of this list-wise discussion is that the entanglement of the themes is backgrounded. To compensate for that drawback, we here render a brief interpretation of the drawing of Fig. ​ Fig.1. 1 . While doing so, we invite readers to use their own creative imagination and perhaps use the drawing for other purposes (e.g., ask researchers, students, or teachers: Where would you like to be in this landscape? What mathematical ideas do you spot?). The drawing mainly focuses on the themes that emerged from the first round of responses but also hints at experiences from the time of the pandemic, for instance distance education. In Appendix 1 , we specify more of the details in the drawing and we provide a link to an annotated image (available at https://www.fisme.science.uu.nl/toepassingen/28937/ ).

The boat on the river aims to represent teaching approaches. The hand drawing of the boat hints at the importance of educational design: A particular approach is being worked out. On the boat, a teacher and students work together toward educational and societal goals, further down the river. The graduation bridge is an intermediate educational goal to pass, after which there are many paths leading to other goals such as higher education, citizenship, and work in society. Relations to practices outside mathematics education are also shown. In the left bottom corner, the house and parents working and playing with children represent the link of education with the home situation and leisure activity.

The teacher, represented by the captain in the foreground of the ship, is engaged in professional development, consulting a book, but also learning by doing (cf. Bakkenes et al., 2010 , on experimenting, using resources, etc.). Apart from graduation, there are other types of goals for teachers and students alike, such as equity, positive affect, and fluent use of technology. During their journey (and partially at home, shown in the left bottom corner), students learn to orient themselves in the world mathematically (e.g., fractal tree, elliptical lake, a parabolic mountain, and various platonic solids). On their way toward various goals, both teacher and students use particular technology (e.g., compass, binoculars, tablet, laptop). The magnifying glass (representing research) zooms in on a laptop screen that portrays distance education, hinting at the consensus that the pandemic magnifies some issues that education was already facing (e.g., the digital divide).

Equity, diversity, and inclusion are represented with the rainbow, overarching everything. On the boat, students are treated equally and the sailing practice is inclusive in the sense that all perform at their own level—getting the support they need while contributing meaningfully to the shared activity. This is at least what we read into the image. Affect is visible in various ways. First of all, the weather represents moods in general (rainy and dark side on the left; sunny bright side on the right). Second, the individual students (e.g., in the crow’s nest) are interested in, anxious about, and attentive to the things coming up during their journey. They are motivated to engage in all kinds of tasks (handling the sails, playing a game of chance with a die, standing guard in the crow’s nest, etc.). On the bridge, the graduates’ pride and happiness hints at positive affect as an educational goal but also represents the exam part of the assessment. The assessment also happens in terms of checks and feedback on the boat. The two people next to the house (one with a camera, one measuring) can be seen as assessors or researchers observing and evaluating the progress on the ship or the ship’s progress.

More generally, the three types of boats in the drawing represent three different spaces, which Hannah Arendt ( 1958 ) would characterize as private (paper-folded boat near the boy and a small toy boat next to the girl with her father at home), public/political (ships at the horizon), and the in-between space of education (the boat with the teacher and students). The students and teacher on the boat illustrate school as a special pedagogic form. Masschelein and Simons ( 2019 ) argue that the ancient Greek idea behind school (σχολή, scholè , free time) is that students should all be treated as equal and should all get equal opportunities. At school, their descent does not matter. At school, there is time to study, to make mistakes, without having to work for a living. At school, they learn to collaborate with others from diverse backgrounds, in preparation for future life in the public space. One challenge of the lockdown situation as a consequence of the pandemic is how to organize this in-between space in a way that upholds its special pedagogic form.

Research challenges

Based on the eight themes and considerations about mathematics education research itself, we formulate a set of research challenges that strike us as deserving further discussion (cf. Stephan et al., 2015 ). We do not intend to suggest these are more important than others or that some other themes are less worthy of investigation, nor do we suggest that they entail a research agenda (cf. English, 2008 ).

Aligning new goals, curricula, and teaching approaches

There seems to be relatively little attention within mathematics education research for curricular issues, including topics such as learning goals, curriculum standards, syllabi, learning progressions, textbook analysis, curricular coherence, and alignment with other curricula. Yet we feel that we as mathematics education researchers should care about these topics as they may not necessarily be covered by other disciplines. For example, judging from Deng’s ( 2018 ) complaint about the trends in the discipline of curriculum studies, we cannot assume scholars in that field to address issues specific to the mathematics-focused curriculum (e.g., the Journal of Curriculum Studies and Curriculum Inquiry have published only a limited number of studies on mathematics curricula).

Learning goals form an important element of curricula or standards. It is relatively easy to formulate important goals in general terms (e.g., critical thinking or problem solving). As a specific example, consider mathematical problem posing (Cai & Leikin, 2020 ), which curriculum standards have specifically pointed out as an important educational goal—developing students’ problem-posing skills. Students should be provided opportunities to formulate their own problems based on situations. However, there are few problem-posing activities in current mathematics textbooks and classroom instruction (Cai & Jiang, 2017 ). A similar observation can be made about problem solving in Dutch primary textbooks (Kolovou et al., 2009 ). Hence, there is a need for researchers and educators to align problem posing in curriculum standards, textbooks, classroom instruction, and students’ learning.

The challenge we see for mathematics education researchers is to collaborate with scholars from other disciplines (interdisciplinarity) and with non-researchers (transdisciplinarity) in figuring out how the desired societal and educational goals can be shaped in mathematics education. Our discipline has developed several methodological approaches that may help in formulating learning goals and accompanying teaching approaches (cf. Van den Heuvel-Panhuizen, 2005 ), including epistemological analyses (Sierpinska, 1990 ), historical and didactical phenomenology (Bakker & Gravemeijer, 2006 ; Freudenthal, 1986 ), and workplace studies (Bessot & Ridgway, 2000 ; Hoyles et al., 2001 ). However, how should the outcomes of such research approaches be weighed against each other and combined to formulate learning goals for a balanced, coherent curriculum? What is the role of mathematics education researchers in relation to teachers, policymakers, and other stakeholders (Potari et al., 2019 )? In our discipline, we seem to lack a research-informed way of arriving at the formulation of suitable educational goals without overloading the curricula.

Researching mathematics education across contexts

Though methodologically and theoretically challenging, it is of great importance to study learning and teaching mathematics across contexts. After all, students do not just learn at school; they can also participate in informal settings (Nemirovsky et al., 2017 ), online forums, or affinity networks (Ito et al., 2018 ) where they may share for instance mathematical memes (Bini et al., 2020 ). Moreover, teachers are not the only ones teaching mathematics: Private tutors, friends, parents, siblings, or other relatives can also be involved in helping children with their mathematics. Mathematics learning could also be situated on streets or in museums, homes, and other informal settings. This was already acknowledged before 2020, but the pandemic has scattered learners and teachers away from the typical central school locations and thus shifted the distribution of labor.

In particular, physical and virtual spaces of learning have been reconfigured due to the pandemic. Issues of timing also work differently online, for example, if students can watch online lectures or videos whenever they like (asynchronously). Such reconfigurations of space and time also have an effect on the rhythm of education and hence on people’s energy levels (cf. Lefebvre, 2004 ). More specifically, the reconfiguration of the situation has affected many students’ levels of motivation and concentration (e.g., Meeter et al., 2020 ). As Engelbrecht et al. ( 2020 ) acknowledged, the pandemic has drastically changed the teaching and learning model as we knew it. It is quite possible that some existing theories about teaching and learning no longer apply in the same way. An interesting question is whether and how existing theoretical frameworks can be adjusted or whether new theoretical orientations need to be developed to better understand and promote productive ways of blended or online teaching, across contexts.

Focusing teacher professional development

Professional development of teachers and teacher educators stands out from the survey as being in need of serious investment. How can teachers be prepared for the unpredictable, both in terms of beliefs and actions? During the pandemic, teachers have been under enormous pressure to make quick decisions in redesigning their courses, to learn to use new technological tools, to invent creative ways of assessment, and to do what was within their capacity to provide opportunities to their students for learning mathematics—even if technological tools were limited (e.g., if students had little or no computer or internet access at home). The pressure required both emotional adaption and instructional adjustment. Teachers quickly needed to find useful information, which raises questions about the accessibility of research insights. Given the new situation, limited resources, and the uncertain unfolding of education after lockdowns, focusing teacher professional development on necessary and useful topics will need much attention. In particular, there is a need for longitudinal studies to investigate how teachers’ learning actually affects teachers’ classroom instruction and students’ learning.

In the surveys, respondents mainly referred to teachers as K-12 school mathematics teachers, but some also stressed the importance of mathematics teacher educators (MTEs). In addition to conducting research in mathematics education, MTEs are acting in both the role of teacher educators and of mathematics teachers. There has been increased research on MTEs as requiring professional development (Goos & Beswick, 2021 ). Within the field of mathematics education, there is an emerging need and interest in how mathematics teacher educators themselves learn and develop. In fact, the changing situation also provides an opportunity to scrutinize our habitual ways of thinking and become aware of what Jullien ( 2018 ) calls the “un-thought”: What is it that we as educators and researchers have not seen or thought about so much about that the sudden reconfiguration of education forces us to reflect upon?

Using low-tech resources

Particular strands of research focus on innovative tools and their applications in education, even if they are at the time too expensive (even too labor intensive) to use at large scale. Such future-oriented studies can be very interesting given the rapid advances in technology and attractive to funding bodies focusing on innovation. Digital technology has become ubiquitous, both in schools and in everyday life, and there is already a significant body of work capitalizing on aspects of technology for research and practice in mathematics education.

However, as Cai et al. ( 2020 ) indicated, technology advances so quickly that addressing research problems may not depend so much on developing a new technological capability as on helping researchers and practitioners learn about new technologies and imagine effective ways to use them. Moreover, given the millions of students in rural areas who during the pandemic have only had access to low-tech resources such as podcasts, radio, TV, and perhaps WhatsApp through their parents’ phones, we would like to see more research on what learning, teaching, and assessing mathematics through limited tools such as Whatsapp or WeChat look like and how they can be improved. In fact, in China, a series of WeChat-based mini-lessons has been developed and delivered through the WeChat video function during the pandemic. Even when the pandemic is under control, mini-lessons are still developed and circulated through WeChat. We therefore think it is important to study the use and influence of low-tech resources in mathematics education.

Staying in touch online

With the majority of students learning at home, a major ongoing challenge for everyone has been how to stay in touch with each other and with mathematics. With less social interaction, without joint attention in the same physical space and at the same time, and with the collective only mediated by technology, becoming and staying motivated to learn has been a widely felt challenge. It is generally expected that in the higher levels of education, more blended or distant learning elements will be built into education. Careful research on the affective, embodied, and collective aspects of learning and teaching mathematics is required to overcome eventually the distance and alienation so widely experienced in online education. That is, we not only need to rethink social interactions between students and/or teachers in different settings but must also rethink how to engage and motivate students in online settings.

Studying and improving equity without perpetuating inequality

Several colleagues have warned, for a long time, that one risk of studying achievement gaps, differences between majority and minority groups, and so forth can also perpetuate inequity. Admittedly, pinpointing injustice and the need to invest in particular less privileged parts of education is necessary to redirect policymakers’ and teachers’ attention and gain funding. However, how can one reorient resources without stigmatizing? For example, Svensson et al. ( 2014 ) pointed out that research findings can fuel political debates about groups of people (e.g., parents with a migration background), who then may feel insecure about their own capacities. A challenge that we see is to identify and understand problematic situations without legitimizing problematic stereotyping (Hilt, 2015 ).

Furthermore, the field of mathematics education research does not have a consistent conceptualization of equity. There also seem to be regional differences: It struck us that equity is the more common term in the responses from the Americas, whereas inclusion and diversity were more often mentioned in the European responses. Future research will need to focus on both the conceptualization of equity and on improving equity and related values such as inclusion.

Assessing online

A key challenge is how to assess online and to do so more effectively. This challenge is related to both privacy, ethics, and performance issues. It is clear that online assessment may have significant advantages to assess student mathematics learning, such as more flexibility in test-taking and fast scoring. However, many teachers have faced privacy concerns, and we also have the impression that in an online environment it is even more challenging to successfully assess what we value rather than merely assessing what is relatively easy to assess. In particular, we need to systematically investigate any possible effect of administering assessments online as researchers have found a differential effect of online assessment versus paper-and-pencil assessment (Backes & Cowan, 2019 ). What further deserves careful ethical attention is what happens to learning analytics data that can and are collected when students work online.

Doing and publishing interdisciplinary research

When analyzing the responses, we were struck by a discrepancy between what respondents care about and what is typically researched and published in our monodisciplinary journals. Most of the challenges mentioned in this section require interdisciplinary or even transdisciplinary approaches (see also Burkhardt, 2019 ).

An overarching key question is: What role does mathematics education research play in addressing the bigger and more general challenges mentioned by our respondents? The importance of interdisciplinarity also raises a question about the scope of journals that focus on mathematics education research. Do we need to broaden the scope of monodisciplinary journals so that they can publish important research that combines mathematics education research with another disciplinary perspective? As editors, we see a place for interdisciplinary studies as long as there is one strong anchor in mathematics education research. In fact, there are many researchers who do not identify themselves as mathematics education researchers but who are currently doing high-quality work related to mathematics education in fields such as educational psychology and the cognitive and learning sciences. Encouraging the reporting of high-quality mathematics education research from a broader spectrum of researchers would serve to increase the impact of the mathematics education research journals in the wider educational arena. This, in turn, would serve to encourage further collaboration around mathematics education issues from various disciplines. Ultimately, mathematics education research journals could act as a hub for interdisciplinary collaboration to address the pressing questions of how mathematics is learned and taught.

Concluding remarks

In this paper, based on a survey conducted before and during the pandemic, we have examined how scholars in the field of mathematics education view the future of mathematics education research. On the one hand, there are no major surprises about the areas we need to focus on in the future; the themes are not new. On the other hand, the responses also show that the areas we have highlighted still persist and need further investigation (cf. OECD, 2020 ). But, there are a few areas, based on both the responses of the scholars and our own discussions and views, that stand out as requiring more attention. For example, we hope that these survey results will serve as propelling conversation about mathematics education research regarding online assessment and pedagogical considerations for virtual teaching.

The survey results are limited in two ways. The set of respondents to the survey is probably not representative of all mathematics education researchers in the world. In that regard, perhaps scholars in each country could use the same survey questions to survey representative samples within each country to understand how the scholars in that country view future research with respect to regional needs. The second limitation is related to the fact that mathematics education is a very culturally dependent field. Cultural differences in the teaching and learning of mathematics are well documented. Given the small numbers of responses from some continents, we did not break down the analysis for regional comparison. Representative samples from each country would help us see how scholars from different countries view research in mathematics education; they will add another layer of insights about mathematics education research to complement the results of the survey presented here. Nevertheless, we sincerely hope that the findings from the surveys will serve as a discussion point for the field of mathematics education to pursue continuous improvement.

Acknowledgments

We thank Anna Sfard for her advice on the survey, based on her own survey published in Sfard ( 2005 ). We are grateful for Stephen Hwang’s careful copyediting for an earlier version of the manuscript. Thanks also to Elisabeth Angerer, Elske de Waal, Paul Ernest, Vilma Mesa, Michelle Stephan, David Wagner, and anonymous reviewers for their feedback on earlier drafts.

Appendix 1: Explanation of Fig. ​ Fig.1 1

An external file that holds a picture, illustration, etc.
Object name is 10649_2021_10049_Figa_HTML.jpg

We have divided Fig. ​ Fig.1 1 in 12 rectangles called A1 (bottom left) up to C4 (top right) to explain the details (for image annotation go to https://www.fisme.science.uu.nl/toepassingen/28937 )

Declarations

In line with the guidelines of the Code of Publication Ethics (COPE), we note that the review process of this article was blinded to the authors.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

  • Akkerman SF, Bakker A. Boundary crossing and boundary objects. Review of Educational Research. 2011; 81 (2):132–169. doi: 10.3102/0034654311404435. [ CrossRef ] [ Google Scholar ]
  • Arendt, H. (1958/1998). The human condition (2nd ed.). University of Chicago Press.
  • Backes B, Cowan J. Is the pen mightier than the keyboard? The effect of online testing on measured student achievement. Economics of Education Review. 2019; 68 :89–103. doi: 10.1016/j.econedurev.2018.12.007. [ CrossRef ] [ Google Scholar ]
  • Bakkenes, I., Vermunt, J. D., & Wubbels, T. (2010). Teacher learning in the context of educational innovation: Learning activities and learning outcomes of experienced teachers. Learning and Instruction , 20 (6), 533–548. 10.1016/j.learninstruc.2009.09.001
  • Bakker A. What is worth publishing? A response to Niss. For the Learning of Mathematics. 2019; 39 (3):43–45. [ Google Scholar ]
  • Bakker A, Gravemeijer KP. An historical phenomenology of mean and median. Educational Studies in Mathematics. 2006; 62 (2):149–168. doi: 10.1007/s10649-006-7099-8. [ CrossRef ] [ Google Scholar ]
  • Bakx A, Bakker A, Koopman M, Beijaard D. Boundary crossing by science teacher researchers in a PhD program. Teaching and Teacher Education. 2016; 60 :76–87. doi: 10.1016/j.tate.2016.08.003. [ CrossRef ] [ Google Scholar ]
  • Battey, D. (2013). Access to mathematics: “A possessive investment in whiteness”. Curriculum Inquiry , 43 (3), 332–359.
  • Bawa, P. (2020). Learning in the age of SARS-COV-2: A quantitative study of learners’ performance in the age of emergency remote teaching. Computers and Education Open , 1 , 100016. 10.1016/j.caeo.2020.100016
  • Beckers D, Beckers A. ‘Newton was heel exact wetenschappelijk – ook in zijn chemische werk’. Nederlandse wetenschapsgeschiedenis in niet-wetenschapshistorische tijdschriften, 1977–2017. Studium. 2019; 12 (4):185–197. doi: 10.18352/studium.10203. [ CrossRef ] [ Google Scholar ]
  • Bessot, A., & Ridgway, J. (Eds.). (2000). Education for mathematics in the workplace . Springer.
  • Bickerton, R. T., & Sangwin, C. (2020). Practical online assessment of mathematical proof. arXiv preprint:2006.01581 . https://arxiv.org/pdf/2006.01581.pdf .
  • Bikner-Ahsbahs, A., & Prediger, S. (Eds.). (2014). Networking of theories as a research practice in mathematics education . Springer.
  • Bini, G., Robutti, O., & Bikner-Ahsbahs, A. (2020). Maths in the time of social media: Conceptualizing the Internet phenomenon of mathematical memes. International Journal of Mathematical Education in Science and Technology , 1–40. 10.1080/0020739x.2020.1807069
  • Bosch, M., Dreyfus, T., Primi, C., & Shiel, G. (2017, February). Solid findings in mathematics education: What are they and what are they good for? CERME 10 . Ireland: Dublin https://hal.archives-ouvertes.fr/hal-01849607
  • Bowker, G. C., & Star, S. L. (2000). Sorting things out: Classification and its consequences . MIT Press. 10.7551/mitpress/6352.001.0001
  • Burkhardt, H. (2019). Improving policy and practice. Educational Designer , 3 (12) http://www.educationaldesigner.org/ed/volume3/issue12/article46/
  • Cai J, Hwang S. Constructing and employing theoretical frameworks in (mathematics) education research. For the Learning of Mathematics. 2019; 39 (3):44–47. [ Google Scholar ]
  • Cai J, Jiang C. An analysis of problem-posing tasks in Chinese and U.S. elementary mathematics textbooks. International Journal of Science and Mathematics Education. 2017; 15 (8):1521–1540. doi: 10.1007/s10763-016-9758-2. [ CrossRef ] [ Google Scholar ]
  • Cai, J., & Leikin, R. (2020). Affect in mathematical problem posing: Conceptualization, advances, and future directions for research. Educational Studies in Mathematics , 105 , 287–301. 10.1007/s10649-020-10008-x
  • Cai, J., Morris, A., Hohensee, C., Hwang, S., Robison, V., Cirillo, M., … Hiebert, J. (2020). Improving the impact of research on practice: Capitalizing on technological advances for research. Journal for Research in Mathematics Education , 51 (5), 518–529 https://pubs.nctm.org/view/journals/jrme/51/5/article-p518.xml
  • Chronaki, A. (2019). Affective bodying of mathematics, children and difference: Choreographing ‘sad affects’ as affirmative politics in early mathematics teacher education. ZDM-Mathematics Education , 51 (2), 319–330. 10.1007/s11858-019-01045-9
  • Civil, M., & Bernier, E. (2006). Exploring images of parental participation in mathematics education: Challenges and possibilities. Mathematical Thinking and Learning , 8 (3), 309–330. 10.1207/s15327833mtl0803_6
  • Cobb P, Gresalfi M, Hodge LL. An interpretive scheme for analyzing the identities that students develop in mathematics classrooms. Journal for Research in Mathematics Education. 2009; 40 (1):40–68. [ Google Scholar ]
  • Darragh L. Identity research in mathematics education. Educational Studies in Mathematics. 2016; 93 (1):19–33. doi: 10.1007/s10649-016-9696-5. [ CrossRef ] [ Google Scholar ]
  • de Abreu, G., Bishop, A., & Presmeg, N. C. (Eds.). (2006). Transitions between contexts of mathematical practices . Kluwer.
  • de Freitas, E., Ferrara, F., & Ferrari, G. (2019). The coordinated movements of collaborative mathematical tasks: The role of affect in transindividual sympathy. ZDM-Mathematics Education , 51 (2), 305–318. 10.1007/s11858-018-1007-4
  • Deng, Z. (2018). Contemporary curriculum theorizing: Crisis and resolution. Journal of Curriculum Studies , 50 (6), 691–710. 10.1080/00220272.2018.1537376
  • Dobie, T. E., & Sherin, B. (2021). The language of mathematics teaching: A text mining approach to explore the zeitgeist of US mathematics education. Educational Studies in Mathematics . 10.1007/s10649-020-10019-8
  • Eames, C., & Eames, R. (1977). Powers of Ten [Film]. YouTube. https://www.youtube.com/watch?v=0fKBhvDjuy0
  • Engelbrecht, J., Borba, M. C., Llinares, S., & Kaiser, G. (2020). Will 2020 be remembered as the year in which education was changed? ZDM-Mathematics Education , 52 (5), 821–824. 10.1007/s11858-020-01185-3 [ PMC free article ] [ PubMed ]
  • English, L. (2008). Setting an agenda for international research in mathematics education. In L. D. English (Ed.), Handbook of international research in mathematics education (2nd ed., pp. 3–19). Routledge.
  • Ernest, P. (2020). Unpicking the meaning of the deceptive mathematics behind the COVID alert levels. Philosophy of Mathematics Education Journal , 36 http://socialsciences.exeter.ac.uk/education/research/centres/stem/publications/pmej/pome36/index.html
  • Freudenthal, H. (1986). Didactical phenomenology of mathematical structures . Springer.
  • Gilmore, C., Göbel, S. M., & Inglis, M. (2018). An introduction to mathematical cognition . Routledge.
  • Goos, M., & Beswick, K. (Eds.). (2021). The learning and development of mathematics teacher educators: International perspectives and challenges . Springer. 10.1007/978-3-030-62408-8
  • Gorard, S. (Ed.). (2020). Getting evidence into education. Evaluating the routes to policy and practice . Routledge.
  • Gravemeijer, K., Stephan, M., Julie, C., Lin, F.-L., & Ohtani, M. (2017). What mathematics education may prepare students for the society of the future? International Journal of Science and Mathematics Education , 15 (1), 105–123. 10.1007/s10763-017-9814-6
  • Hannula, M. S. (2019). Young learners’ mathematics-related affect: A commentary on concepts, methods, and developmental trends. Educational Studies in Mathematics , 100 (3), 309–316. 10.1007/s10649-018-9865-9
  • Hilt, L. T. (2015). Included as excluded and excluded as included: Minority language pupils in Norwegian inclusion policy. International Journal of Inclusive Education , 19 (2), 165–182.
  • Hodgen, J., Taylor, B., Jacques, L., Tereshchenko, A., Kwok, R., & Cockerill, M. (2020). Remote mathematics teaching during COVID-19: Intentions, practices and equity . UCL Institute of Education https://discovery.ucl.ac.uk/id/eprint/10110311/
  • Horn, I. S. (2017). Motivated: Designing math classrooms where students want to join in . Heinemann.
  • Hoyles C, Noss R, Pozzi S. Proportional reasoning in nursing practice. Journal for Research in Mathematics Education. 2001; 32 (1):4–27. doi: 10.2307/749619. [ CrossRef ] [ Google Scholar ]
  • Ito, M., Martin, C., Pfister, R. C., Rafalow, M. H., Salen, K., & Wortman, A. (2018). Affinity online: How connection and shared interest fuel learning . NYU Press.
  • Jackson K. Approaching participation in school-based mathematics as a cross-setting phenomenon. The Journal of the Learning Sciences. 2011; 20 (1):111–150. doi: 10.1080/10508406.2011.528319. [ CrossRef ] [ Google Scholar ]
  • Jansen, A., Herbel-Eisenmann, B., & Smith III, J. P. (2012). Detecting students’ experiences of discontinuities between middle school and high school mathematics programs: Learning during boundary crossing. Mathematical Thinking and Learning , 14 (4), 285–309. 10.1080/10986065.2012.717379
  • Johnson, L. F., Smith, R. S., Smythe, J. T., & Varon, R. K. (2009). Challenge-based learning: An approach for our time (pp. 1–38). The New Media Consortium https://www.learntechlib.org/p/182083
  • Jullien, F. (2018). Living off landscape: Or the unthought-of in reason . Rowman & Littlefield.
  • Kazima, M. (2019). What is proven to work in successful countries should be implemented in other countries: The case of Malawi and Zambia. In M. Graven, H. Venkat, A. A. Essien, & P. Vale (Eds.), Proceedings of the 43rd conference of the international group for the Psychology of Mathematics Education (Vol. 1, pp. 73–78). PME.
  • Kim, H. (2019). Ask again, “why should we implement what works in successful countries?” In M. Graven, H. Venkat, A. A. Essien, & P. Vale (Eds.), Proceedings of the 43rd conference of the international group for the Psychology of Mathematics Education (Vol. 1, pp. 79–82). PME.
  • Kolovou, A., Van Den Heuvel-Panhuizen, M., & Bakker, A. (2009). Non-routine problem solving tasks in primary school mathematics textbooks—a needle in a haystack. Mediterranean Journal for Research in Mathematics Education , 8 (2), 29–66.
  • Kwon, O. N., Han, C., Lee, C., Lee, K., Kim, K., Jo, G., & Yoon, G. (2021). Graphs in the COVID-19 news: A mathematics audit of newspapers in Korea. Educational Studies in Mathematics . 10.1007/s10649-021-10029-0 [ PMC free article ] [ PubMed ]
  • Lefebvre, H. (2004). Rhythmanalysis: Space, time and everyday life (Original 1992; Translation by S. Elden & G. Moore) . Bloomsbury Academic. 10.5040/9781472547385.
  • Li, Y. (2019). Should what works in successful countries be implemented in other countries? In M. Graven, H. Venkat, A. A. Essien, & P. Vale (Eds.), Proceedings of the 43rd conference of the international group for the Psychology of Mathematics Education (Vol. 1, pp. 67–72). PME.
  • Martin, D., Gholson, M., & Leonard, J. (2010). Mathematics as gatekeeper: Power and privilege in the production of power. Journal of Urban Mathematics Education , 3 (2), 12–24.
  • Masschelein, J., & Simons, M. (2019). Bringing more ‘school’ into our educational institutions. Reclaiming school as pedagogic form. In A. Bikner-Ahsbahs & M. Peters (Eds.), Unterrichtsentwicklung macht Schule (pp. 11–26) . Springer. 10.1007/978-3-658-20487-7_2
  • Meeter, M., Bele, T., den Hartogh, C., Bakker, T., de Vries, R. E., & Plak, S. (2020). College students’ motivation and study results after COVID-19 stay-at-home orders. https://psyarxiv.com .
  • Nemirovsky, R., Kelton, M. L., & Civil, M. (2017). Toward a vibrant and socially significant informal mathematics education. In J. Cai (Ed.), Compendium for Research in Mathematics Education (pp. 968–979). National Council of Teachers of Mathematics.
  • Niss M. The very multi-faceted nature of mathematics education research. For the Learning of Mathematics. 2019; 39 (2):2–7. [ Google Scholar ]
  • OECD. (2020). Back to the Future of Education: Four OECD Scenarios for Schooling. Educational Research and Innovation . OECD Publishing. 10.1787/20769679
  • Potari, D., Psycharis, G., Sakonidis, C., & Zachariades, T. (2019). Collaborative design of a reform-oriented mathematics curriculum: Contradictions and boundaries across teaching, research, and policy. Educational Studies in Mathematics , 102 (3), 417–434. 10.1007/s10649-018-9834-3
  • Proulx, J., & Maheux, J. F. (2019). Effect sizes, epistemological issues, and identity of mathematics education research: A commentary on editorial 102(1). Educational Studies in Mathematics , 102 (2), 299–302. 10.1007/s10649-019-09913-7
  • Roos, H. (2019). Inclusion in mathematics education: An ideology, A way of teaching, or both? Educational Studies in Mathematics , 100 (1), 25–41. 10.1007/s10649-018-9854-z
  • Saenz, M., Medina, A., & Urbine Holguin, B. (2020). Colombia: La prender al onda (to turn on the wave). Education continuity stories series . OECD Publishing https://oecdedutoday.com/wp-content/uploads/2020/12/Colombia-a-prender-la-onda.pdf
  • Schindler, M., & Bakker, A. (2020). Affective field during collaborative problem posing and problem solving: A case study. Educational Studies in Mathematics , 105 , 303–324. 10.1007/s10649-020-09973-0
  • Schoenfeld, A. H. (1999). Looking toward the 21st century: Challenges of educational theory and practice. Educational Researcher , 28 (7), 4–14. 10.3102/0013189x028007004
  • Schukajlow, S., Rakoczy, K., & Pekrun, R. (2017). Emotions and motivation in mathematics education: Theoretical considerations and empirical contributions. ZDM-Mathematics Education , 49 (3), 307–322. 10.1007/s11858-017-0864-6 [ PMC free article ] [ PubMed ]
  • Sfard A. What could be more practical than good research? Educational Studies in Mathematics. 2005; 58 (3):393–413. doi: 10.1007/s10649-005-4818-5. [ CrossRef ] [ Google Scholar ]
  • Shimizu, Y., & Vithal, R. (Eds.). (2019). ICMI Study 24 Conference Proceedings. School mathematics curriculum reforms: Challenges, changes and opportunities . ICMI: University of Tsukuba & ICMI http://www.human.tsukuba.ac.jp/~icmi24/
  • Sierpinska A. Some remarks on understanding in mathematics. For the Learning of Mathematics. 1990; 10 (3):24–41. [ Google Scholar ]
  • Stephan, M. L., Chval, K. B., Wanko, J. J., Civil, M., Fish, M. C., Herbel-Eisenmann, B., … Wilkerson, T. L. (2015). Grand challenges and opportunities in mathematics education research. Journal for Research in Mathematics Education , 46 (2), 134–146. 10.5951/jresematheduc.46.2.0134
  • Suazo-Flores, E., Alyami, H., Walker, W. S., Aqazade, M., & Kastberg, S. E. (2021). A call for exploring mathematics education researchers’ interdisciplinary research practices. Mathematics Education Research Journal , 1–10. 10.1007/s13394-021-00371-0
  • Svensson, P., Meaney, T., & Norén, E. (2014). Immigrant students’ perceptions of their possibilities to learn mathematics: The case of homework. For the Learning of Mathematics , 34 (3), 32–37.
  • UNESCO. (2015). Teacher policy development guide . UNESCO, International Task Force on Teachers for Education 2030. https://teachertaskforce.org/sites/default/files/2020-09/370966eng_0_1.pdf .
  • Van den Heuvel-Panhuizen M. Can scientific research answer the ‘what’ question of mathematics education? Cambridge Journal of Education. 2005; 35 (1):35–53. doi: 10.1080/0305764042000332489. [ CrossRef ] [ Google Scholar ]
  • Wittmann EC. Mathematics education as a ‘design science’ Educational Studies in Mathematics. 1995; 29 (4):355–374. doi: 10.1007/BF01273911. [ CrossRef ] [ Google Scholar ]
  • Yoon, H., Byerley, C. O. N., Joshua, S., Moore, K., Park, M. S., Musgrave, S., Valaas, L., & Drimalla, J. (2021). United States and South Korean citizens’ interpretation and assessment of COVID-19 quantitative data. The Journal of Mathematical Behavior . 10.1016/j.jmathb.2021.100865.

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

Partisan divides over K-12 education in 8 charts

Proponents and opponents of teaching critical race theory attend a school board meeting in Yorba Linda, California, in November 2021. (Robert Gauthier/Los Angeles Times via Getty Images)

K-12 education is shaping up to be a key issue in the 2024 election cycle. Several prominent Republican leaders, including GOP presidential candidates, have sought to limit discussion of gender identity and race in schools , while the Biden administration has called for expanded protections for transgender students . The coronavirus pandemic also brought out partisan divides on many issues related to K-12 schools .

Today, the public is sharply divided along partisan lines on topics ranging from what should be taught in schools to how much influence parents should have over the curriculum. Here are eight charts that highlight partisan differences over K-12 education, based on recent surveys by Pew Research Center and external data.

Pew Research Center conducted this analysis to provide a snapshot of partisan divides in K-12 education in the run-up to the 2024 election. The analysis is based on data from various Center surveys and analyses conducted from 2021 to 2023, as well as survey data from Education Next, a research journal about education policy. Links to the methodology and questions for each survey or analysis can be found in the text of this analysis.

Most Democrats say K-12 schools are having a positive effect on the country , but a majority of Republicans say schools are having a negative effect, according to a Pew Research Center survey from October 2022. About seven-in-ten Democrats and Democratic-leaning independents (72%) said K-12 public schools were having a positive effect on the way things were going in the United States. About six-in-ten Republicans and GOP leaners (61%) said K-12 schools were having a negative effect.

A bar chart that shows a majority of Republicans said K-12 schools were having a negative effect on the U.S. in 2022.

About six-in-ten Democrats (62%) have a favorable opinion of the U.S. Department of Education , while a similar share of Republicans (65%) see it negatively, according to a March 2023 survey by the Center. Democrats and Republicans were more divided over the Department of Education than most of the other 15 federal departments and agencies the Center asked about.

A bar chart that shows wide partisan differences in views of most federal agencies, including the Department of Education.

In May 2023, after the survey was conducted, Republican lawmakers scrutinized the Department of Education’s priorities during a House Committee on Education and the Workforce hearing. The lawmakers pressed U.S. Secretary of Education Miguel Cardona on topics including transgender students’ participation in sports and how race-related concepts are taught in schools, while Democratic lawmakers focused on school shootings.

Partisan opinions of K-12 principals have become more divided. In a December 2021 Center survey, about three-quarters of Democrats (76%) expressed a great deal or fair amount of confidence in K-12 principals to act in the best interests of the public. A much smaller share of Republicans (52%) said the same. And nearly half of Republicans (47%) had not too much or no confidence at all in principals, compared with about a quarter of Democrats (24%).

A line chart showing that confidence in K-12 principals in 2021 was lower than before the pandemic — especially among Republicans.

This divide grew between April 2020 and December 2021. While confidence in K-12 principals declined significantly among people in both parties during that span, it fell by 27 percentage points among Republicans, compared with an 11-point decline among Democrats.

Democrats are much more likely than Republicans to say teachers’ unions are having a positive effect on schools. In a May 2022 survey by Education Next , 60% of Democrats said this, compared with 22% of Republicans. Meanwhile, 53% of Republicans and 17% of Democrats said that teachers’ unions were having a negative effect on schools. (In this survey, too, Democrats and Republicans include independents who lean toward each party.)

A line chart that show from 2013 to 2022, Republicans' and Democrats' views of teachers' unions grew further apart.

The 38-point difference between Democrats and Republicans on this question was the widest since Education Next first asked it in 2013. However, the gap has exceeded 30 points in four of the last five years for which data is available.

Republican and Democratic parents differ over how much influence they think governments, school boards and others should have on what K-12 schools teach. About half of Republican parents of K-12 students (52%) said in a fall 2022 Center survey that the federal government has too much influence on what their local public schools are teaching, compared with two-in-ten Democratic parents. Republican K-12 parents were also significantly more likely than their Democratic counterparts to say their state government (41% vs. 28%) and their local school board (30% vs. 17%) have too much influence.

A bar chart showing Republican and Democratic parents have different views of the influence government, school boards, parents and teachers have on what schools teach

On the other hand, more than four-in-ten Republican parents (44%) said parents themselves don’t have enough influence on what their local K-12 schools teach, compared with roughly a quarter of Democratic parents (23%). A larger share of Democratic parents – about a third (35%) – said teachers don’t have enough influence on what their local schools teach, compared with a quarter of Republican parents who held this view.

Republican and Democratic parents don’t agree on what their children should learn in school about certain topics. Take slavery, for example: While about nine-in-ten parents of K-12 students overall agreed in the fall 2022 survey that their children should learn about it in school, they differed by party over the specifics. About two-thirds of Republican K-12 parents said they would prefer that their children learn that slavery is part of American history but does not affect the position of Black people in American society today. On the other hand, 70% of Democratic parents said they would prefer for their children to learn that the legacy of slavery still affects the position of Black people in American society today.

A bar chart showing that, in 2022, Republican and Democratic parents had different views of what their children should learn about certain topics in school.

Parents are also divided along partisan lines on the topics of gender identity, sex education and America’s position relative to other countries. Notably, 46% of Republican K-12 parents said their children should not learn about gender identity at all in school, compared with 28% of Democratic parents. Those shares were much larger than the shares of Republican and Democratic parents who said that their children should not learn about the other two topics in school.

Many Republican parents see a place for religion in public schools , whereas a majority of Democratic parents do not. About six-in-ten Republican parents of K-12 students (59%) said in the same survey that public school teachers should be allowed to lead students in Christian prayers, including 29% who said this should be the case even if prayers from other religions are not offered. In contrast, 63% of Democratic parents said that public school teachers should not be allowed to lead students in any type of prayers.

Bar charts that show nearly six-in-ten Republican parents, but fewer Democratic parents, said in 2022 that public school teachers should be allowed to lead students in prayer.

In June 2022, before the Center conducted the survey, the Supreme Court ruled in favor of a football coach at a public high school who had prayed with players at midfield after games. More recently, Texas lawmakers introduced several bills in the 2023 legislative session that would expand the role of religion in K-12 public schools in the state. Those proposals included a bill that would require the Ten Commandments to be displayed in every classroom, a bill that would allow schools to replace guidance counselors with chaplains, and a bill that would allow districts to mandate time during the school day for staff and students to pray and study religious materials.

Mentions of diversity, social-emotional learning and related topics in school mission statements are more common in Democratic areas than in Republican areas. K-12 mission statements from public schools in areas where the majority of residents voted Democratic in the 2020 general election are at least twice as likely as those in Republican-voting areas to include the words “diversity,” “equity” or “inclusion,” according to an April 2023 Pew Research Center analysis .

A dot plot showing that public school district mission statements in Democratic-voting areas mention some terms more than those in areas that voted Republican in 2020.

Also, about a third of mission statements in Democratic-voting areas (34%) use the word “social,” compared with a quarter of those in Republican-voting areas, and a similar gap exists for the word “emotional.” Like diversity, equity and inclusion, social-emotional learning is a contentious issue between Democrats and Republicans, even though most K-12 parents think it’s important for their children’s schools to teach these skills . Supporters argue that social-emotional learning helps address mental health needs and student well-being, but some critics consider it emotional manipulation and want it banned.

In contrast, there are broad similarities in school mission statements outside of these hot-button topics. Similar shares of mission statements in Democratic and Republican areas mention students’ future readiness, parent and community involvement, and providing a safe and healthy educational environment for students.

  • Education & Politics
  • Partisanship & Issues
  • Politics & Policy

Jenn Hatfield is a writer/editor at Pew Research Center

Most Americans think U.S. K-12 STEM education isn’t above average, but test results paint a mixed picture

About 1 in 4 u.s. teachers say their school went into a gun-related lockdown in the last school year, about half of americans say public k-12 education is going in the wrong direction, what public k-12 teachers want americans to know about teaching, what’s it like to be a teacher in america today, most popular.

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Age & Generations
  • Coronavirus (COVID-19)
  • Economy & Work
  • Family & Relationships
  • Gender & LGBTQ
  • Immigration & Migration
  • International Affairs
  • Internet & Technology
  • Methodological Research
  • News Habits & Media
  • Non-U.S. Governments
  • Other Topics
  • Race & Ethnicity
  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

Terms & Conditions

Privacy Policy

Cookie Settings

Reprints, Permissions & Use Policy

teaching mathematics research papers

Mathematics Education Research Journal

The Mathematics Education Research Journal seeks to promote high quality research that is of interest to the international community.  

The Mathematics Education Research Journal seeks to present research that promotes new knowledge, ideas, methodologies and epistemologies in the field of mathematics education.   

The Mathematics Education Research Journal actively seeks to promote research from the Australasian region either as research conducted in the region; conducted by researchers from the region and/or draws on research from the region.  The Mathematics Education Research Journal accepts papers from authors from all regions internationally but authors must draw on the extensive research that has been produced in the Australasian region. 

This is a transformative journal , you may have access to funding.

  • Vincent Geiger

Societies and partnerships

New Content Item

Latest issue

Volume 36, Issue 1

Latest articles

Mathematics education researchers’ practices in interdisciplinary collaborations: embracing different ways of knowing.

  • Elizabeth Suazo-Flores
  • William S. Walker III
  • Hanan Alyami

Effects of a Learning Trajectory for statistical inference on 9th-grade students’ statistical literacy

  • Marianne van Dijke-Droogers
  • Paul Drijvers
  • Arthur Bakker

teaching mathematics research papers

Professional development and teacher agency in Mathematics Teacher Education for Sustainability

  • Ángel Alsina
  • Claudia Vásquez

Profiles of general, test, and mathematics anxiety in 9- and 12-year-olds: relations to gender and mathematics achievement

  • Kate Williams
  • Sonia L. J. White
  • Lyn D. English

teaching mathematics research papers

An empirically validated rational number sense framework

  • Marios Pittalis

teaching mathematics research papers

Journal updates

Meet the editor-in-chief: vince geiger.

New Content Item

Imortant Notice on Submissions: Statements and Declarations on Title Page

Call for papers: special issue - approaches to investigating young children’s mathematical activity.

The focus of the Special Issue is on the evolving and emerging qualitative methodologies for researching the mathematical behaviours, thinking and dispositions of young children – from birth up to about 10 years of age. 

the main purpose of the Special Issue is to gather together a set of papers that provide explications of a range of research methods that are particularly well-suited to the particularities of research with children, for the benefit of other researchers.

Mathematics Education Research Group of Australasia

hrough two peer-reviewed journals – Mathematics Education Research Journal and Mathematics Teacher Education and Development – and an engaging annual Conference, The Mathematics Education Research Group of Australasia promotes, shares and disseminates rigorous research in mathematics education across Australasia.

Journal information

  • Astrophysics Data System (ADS)
  • Emerging Sources Citation Index
  • Google Scholar
  • Japanese Science and Technology Agency (JST)
  • Norwegian Register for Scientific Journals and Series
  • OCLC WorldCat Discovery Service
  • TD Net Discovery Service
  • UGC-CARE List (India)

Rights and permissions

Springer policies

© Mathematics Education Research Group of Australasia, Inc.

  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. (PDF) What Construct of Mathematical Knowledge for Teaching do

    teaching mathematics research papers

  2. Mathematics Research Project (20-2)

    teaching mathematics research papers

  3. Writing a Mathematics Research Paper

    teaching mathematics research papers

  4. (PDF) Research on Teaching and Learning Mathematics at the Tertiary

    teaching mathematics research papers

  5. (PDF) The Impact of a Teacher Training Program on Mathematics Teaching

    teaching mathematics research papers

  6. Math Extended Essay

    teaching mathematics research papers

VIDEO

  1. How do we use inquiry when teaching mathematics?

  2. International conference of Mathematics & Mathematics Education (ICKME)

  3. STEM Education Series 5: Mathematical Literacy in PISA Mathematics Framework

  4. How can mathematics be taught through STEM?

  5. Research Methodology in Mathematics

  6. New Book: Teaching Mathematics Using Interactive Mapping

COMMENTS

  1. TEACHING AND LEARNING MATHEMATICS RESEARCH SERIES I: Effective Instructional Strategies TITLE: Teaching and Learning Mathematics Research Series l: Effective Instructional Strategies

    tha n paper and pencil strategies and need to be cultivated (Victoria State Government, ... synthesis of mathematics education research from 2002-2013 explaining that multiple studies .

  2. Journal for Research in Mathematics Education

    An official journal of the National Council of Teachers of Mathematics (NCTM), JRME is the premier research journal in mathematics education and is devoted to the interests of teachers and researchers at all levels--preschool through college. Online ISSN: 1945-2306. eTOC Alerts. Latest Issue TOC RSS.

  3. TR51 vol 16 no 1 of the Mathematics Teaching-Research Journal

    TR51 vol 16 no 1 of the Mathematics Teaching-Research Journal. ... The trajectory of the papers begins with problem solving, then shifts to thinking, cognition and later to challenges of the pre-service teachers. Papers about thinking and cognition revolve around various aspects of the mind, and include hermeneutics phenomenological aspects ...

  4. Research paper A scoping review of research into mathematics classroom

    The affective search terms were developed by consulting Hannula's (2012) widely cited typology of affect and mathematics education research, Goldin et al. (2016) ... In 190 of the papers, the research was related to students' affect and teaching strategies in some way. In 59 of those papers there was some focus on the teacher explicitly ...

  5. Journal for Research in Mathematics Education

    Search the journal. An official journal of the National Council of Teachers of Mathematics (NCTM), JRME is the premier research journal in mathematics education and is devoted to the interests of teachers and researchers at all levels--preschool through college. Journal information. 2018 (Vol. 49)

  6. Research in Mathematics Education: Vol 25, No 3 (Current issue)

    Report | Published online: 7 Mar 2024. Mathematicians' conceptualisations of isomorphism and homomorphism: a story of contexts, contrasts, and utility. Rachel Rupnow et al. Article | Published online: 28 Feb 2024. Explore the current issue of Research in Mathematics Education, Volume 25, Issue 3, 2023.

  7. Teaching Mathematics and its Applications: An International Journal of

    This will be a broad special issue and papers covering any aspects related to teaching and learning of mathematics for economics in higher and upper secondary education are welcome. ... Explore a collection of freely available high-impact research published in Teaching Mathematics and its Applications within the past two years.

  8. The relationship between mathematical practice and mathematics pedagogy

    This paper introduces two central questions (1) what are available methodologies for making claims about mathematical practice and (2) when and how do claims about mathematical practice influence mathematics instruction. To motivate these questions, we critically analyze the relationship between research into mathematicians' practice and the design of mathematics instruction in three ways ...

  9. Future themes of mathematics education research: an international

    The 229 responses from 44 countries led to eight themes plus considerations about mathematics education research itself. The themes can be summarized as teaching approaches, goals, relations to practices outside mathematics education, teacher professional development, technology, affect, equity, and assessment. ... In this paper, based on a ...

  10. Learning to Teach Mathematics Through Problem Solving

    While there has been much research focused on beginning teachers; and mathematical problem solving in the classroom, little is known about beginning primary teachers' learning to teach mathematics through problem solving. This longitudinal study examined what supported beginning teachers to start and sustain teaching mathematics through problem solving in their first 2 years of teaching ...

  11. Full article: Resilience in mathematics education research: a

    In recent years, the number of studies examining resilience in relation to mathematics teaching/learning (or mathematical resilience, according to some), increased significantly. This paper is a systematic review of 78 studies published between 2010 and 2021, and investigates (a) conceptualisations of mathematical resilience, (b) demographic ...

  12. Problematizing teaching and learning mathematics as "given" in STEM

    Mathematics is fundamental for many professions, especially science, technology, and engineering. Yet, mathematics is often perceived as difficult and many students leave disciplines in science, technology, engineering, and mathematics (STEM) as a result, closing doors to scientific, engineering, and technological careers. In this editorial, we argue that how mathematics is traditionally ...

  13. PDF Teaching Mathematics with Technology: TPACK and Effective Teaching

    1. Introduction. Teaching with technology to support conceptual development has been a focus in math-ematics education for decades (National Council of Teachers of Mathematics (NCTM) [1-3]). Employing multiple technologies in the teaching of mathematics is much more challenging than using technology in everyday life.

  14. Enhancing achievement and interest in mathematics learning through Math

    Knowledge map. To increase students' mathematics achievement, the Math-Island game targets the complete mathematics curriculum of elementary schools in Taiwan, which mainly contains the four domains: numerical operation, quantity and measure, geometry, and statistics and probability (Ministry of Education of R.O.C. 2003).Furthermore, every domain consists of several subdomains with ...

  15. Digital Games and the Teaching and Learning of Mathematics: A Survey

    Despite their research support, digital games are not widely used in mathematics classrooms. One main contributor to this lack of adoption is the paucity of extant research on the extent to which mathematics teachers are using digital games, how teachers are using digital games in the mathematics classroom, and what barriers hinder their use of ...

  16. Using Technology in Teaching Mathematics

    This upcoming Special Issue of Education Sciences aims to present an overview of the latest research on how technology can be used to promote and measure conceptual understanding. Papers on (but not limited to) the following themes are of interest: Assessing student outcomes of technology in mathematics education.

  17. Trends, insights, and developments in research on the teaching and

    This paper addresses the recent body of research in algebra and algebraic thinking from 2018 to 2022. We reviewed 74 journal articles and identified four clusters of content areas: (a) literal symbols and symbolizing, (b) equivalence and the equal sign, (c) equations and systems, and (d) functions and graphing. We present the research on each of these content clusters, and we discuss insights ...

  18. Research-Based Strategies to Improve Math Instruction for Teachers and

    Practitioner journals like Beyond Behavior play a critical role in translating research to practice for teaching professionals (Hott et al., 2018; Lastrapes & Mooney, 2021).Informing educators of research- or evidence-based academic, behavioral, and social-emotional practices is particularly important within the field of emotional and behavioral disorders (EBD), given the poor outcomes of ...

  19. Full article: Integrating digital technology in mathematics education

    The Bray and Tangney (Citation 2017) review of empirical research of the use of digital technology in mathematics education classified the majority of interventions (61% of the papers in the sample) as augmentation, suggesting that technology was used to improve traditional approaches, with some functional or conceptual development and/or to ...

  20. The transition from school to university in mathematics education

    The fourth, the paper by Artigue , discussed the challenges of the research in mathematics education at the tertiary level. As for the empirical papers, four reported and interpreted students' difficulties in STT using the lens of the anthropological theory of didactic.

  21. Describing a teacher's pedagogical mathematical knowledge in STEM teaching

    Describing and analyzing teaching practice has been a focus of researchers interested in the interaction and connections between teachers' content knowledge and their pedagogical knowledge. This study described the role of a teacher's mathematical content and pedagogical content knowledge in involving students in learning and solving Science, Technology, Engineering, and Mathematics (STEM ...

  22. Fifteen NSM Faculty and Two Graduate Students Honored with UH Faculty

    Congratulations to the 15 College of Natural Sciences and Mathematics faculty members and two graduate students recognized for excellence in teaching, mentoring, scholarship and research. These exceptional faculty members and students were honored at the 2024 Faculty Excellence Awards celebration on April 25.

  23. NTA UGC NET '24 Paper 1 by KVS Madaan| Teaching and Research Aptitude

    Get full access to NTA UGC NET '24 Paper 1 by KVS Madaan| Teaching and Research Aptitude NET/SET/JRF |Includes 2023 Paper (2 Sets) & 23 years chapter wise solved Previous Year Questions and 60K+ other titles, with a free 10-day trial of O'Reilly.. There are also live events, courses curated by job role, and more.

  24. Future themes of mathematics education research: an international

    In this paper, based on a survey conducted before and during the pandemic, we have examined how scholars in the field of mathematics education view the future of mathematics education research. ... Mathematics Education Research Journal, 1-10. 10.1007/s13394-021-00371-0; Svensson, P., Meaney, T., & Norén, E. (2014). Immigrant students ...

  25. How Democrats, Republicans differ over K-12 education

    Most Democrats say K-12 schools are having a positive effect on the country, but a majority of Republicans say schools are having a negative effect, according to a Pew Research Center survey from October 2022. About seven-in-ten Democrats and Democratic-leaning independents (72%) said K-12 public schools were having a positive effect on the way things were going in the United States.

  26. Home

    The Mathematics Education Research Journal accepts papers from authors from all regions internationally but authors must draw on the extensive research that has been produced in the Australasian region. This is a transformative journal, you may have access to funding. Editor-in-Chief. Vincent Geiger. Impact factor. 1.8 (2022) 5 year impact factor.