• Prodigy Math
  • Prodigy English
  • Is a Premium Membership Worth It?
  • Promote a Growth Mindset
  • Help Your Child Who's Struggling with Math
  • Parent's Guide to Prodigy
  • Assessments
  • Math Curriculum Coverage
  • English Curriculum Coverage
  • Game Portal

How to Solve Math Problems Faster: 15 Techniques to Show Students

no image

Written by Marcus Guido

  • Teaching Strategies

“Test time. No calculators.”

You’ll intimidate many students by saying this, but teaching techniques to solve math problems with ease and speed can make it less daunting.

This can also  make math more rewarding . Instead of relying on calculators, students learn strategies that can improve their concentration and estimation skills while building number sense. And, while there are educators who  oppose math “tricks”  for valid reasons, proponents point to benefits such as increased confidence to handle difficult problems.

Here are 15 techniques to show students,  helping them solve math problems faster:

Addition and Subtraction

1. two-step addition.

no image

Many students struggle when learning to add integers of three digits or higher together, but changing the process’s steps can make it easier.

The first step is to  add what’s easy.  The second step is to  add the rest.

Let’s say students must find the sum of 393 and 89. They should quickly see that adding 7 onto 393 will equal 400 — an easier number to work with. To balance the equation, they can then subtract 7 from 89.

Broken down, the process is:

  • (393 + 7) + (89 – 7)

With this fast technique, big numbers won’t look as scary now.

2. Two-Step Subtraction

There’s a similar method for subtraction.

Remove what’s easy. Then remove what’s left.

Suppose students must find the difference of 567 and 153. Most will feel that 500 is a simpler number than 567. So, they just have to take away 67 from the minuend — 567 — and the subtrahend — 153 — before solving the equation.

Here’s the process:

  • (567 – 67) – (153 – 67)

Instead of two complex numbers, students will only have to tackle one.

no image

3. Subtracting from 1,000

You can  give students confidence  to handle four-digit integers with this fast technique.

To subtract a number from 1,000, subtract that number’s first two digits from 9. Then, subtract the final digit from 10.

Let’s say students must solve 1,000 – 438.  Here are the steps:

This also applies to 10,000, 100,000 and other integers that follow this pattern.

Multiplication and Division

4. doubling and halving.

no image

When students have to multiply two integers, they can speed up the process when one is an even number. They just need to  halve the even number and double the other number.

Students can stop the process when they can no longer halve the even integer, or when the equation becomes manageable.

Using 33 x 48 as an example,  here’s the process:

The only prerequisite is understanding the 2 times table.

5. Multiplying by Powers of 2

This tactic is a speedy variation of doubling and halving.

It simplifies multiplication if a number in the equation is a power of 2, meaning it works for 2, 4, 8, 16 and so on.

Here’s what to do:  For each power of 2 that makes up that number, double the other number.

For example, 9 x 16 is the same thing as 9 x (2 x 2 x 2 x 2) or 9 x 24. Students can therefore double 9 four times to reach the answer:

Unlike doubling and halving, this technique demands an understanding of exponents along with a strong command of the 2 times table.

no image

6. Multiplying by 9

For most students, multiplying by 9 — or 99, 999 and any number that follows this pattern — is difficult compared with multiplying by a power of 10.

But there’s an easy tactic to solve this issue, and  it has two parts.

First, students round up the 9  to 10. Second, after solving the new equation, they subtract the number they just multiplied by 10 from the answer.

For example, 67 x 9 will lead to the same answer as 67 x 10 – 67. Following the order of operations will give a result of 603. Similarly, 67 x 99 is the same as 67 x 100 – 67.

Despite more steps, altering the equation this way is usually faster.

7. Multiplying by 11

no image

There’s an easier way for multiplying two-digit integers by 11.

Let’s say students must find the product of 11 x 34.

The idea is to put a space between the digits, making it 3_4. Then, add the two digits together and put the sum in the space.

The answer is 374.

What happens if the sum is two digits? Students would put the second digit in the space and add 1 to the digit to the left of the space.  For example:

It’s multiplication without having to multiply.

8. Multiplying Even Numbers by 5

This technique only requires basic division skills.

There are two steps,  and 5 x 6 serves as an example. First, divide the number being multiplied by 5 — which is 6 — in half. Second, add 0 to the right of number.

The result is 30, which is the correct answer.

It’s an ideal, easy technique for students mastering the 5 times table.

9. Multiplying Odd Numbers by 5

This is another time-saving tactic that works well when teaching students the 5 times table.

This one has three steps,  which 5 x 7 exemplifies.

First, subtract 1 from the number being multiplied by 5, making it an even number. Second, cut that number in half — from 6 to 3 in this instance. Third, add 5 to the right of the number.

The answer is 35.

Who needs a calculator?

10. Squaring a Two-Digit Number that Ends with 1

no image

Squaring a high two-digit number can be tedious, but there’s a shortcut if 1 is the second digit.

There are four steps to this shortcut,  which 812 exemplifies:

  • Subtract 1 from the integer: 81 – 1 = 80
  • Square the integer, which is now an easier number: 80 x 80 = 6,400
  • Add the integer with the resulting square twice: 6,400 + 80 + 80 = 6,560
  • Add 1: 6,560 + 1 = 6,561

This work-around eliminates the difficulty surrounding the second digit, allowing students to work with multiples of 10.

11. Squaring a Two-Digit Numbers that Ends with 5

Squaring numbers ending in 5 is easier, as there are  only two parts of the process.

First, students will always make 25 the product’s last digits.

Second, to determine the product’s first digits, students must multiply the number’s first digit — 9, for example — by the integer that’s one higher — 10, in this case.

So, students would solve 952 by designating 25 as the last two digits. They would then multiply 9 x 10 to receive 90. Putting these numbers together, the  result is 9,025.

Just like that, a hard problem becomes easy multiplication for many students.

12. Calculating Percentages

Cross-multiplication is an  important skill  to develop, but there’s an easier way to calculate percentages.

For example, if students want to know what 65% of 175 is, they can multiply the numbers together and move the decimal place two digits to the left.

The result is 113.75, which is indeed the correct answer.

This shortcut is a useful timesaver on tests and quizzes.

13. Balancing Averages

no image

To determine the average among a set of numbers, students can balance them instead of using a complex formula.

Suppose a student wants to volunteer for an average of 10 hours a week over a period of four weeks. In the first three weeks, the student worked for 10, 12 and 14 hours.

To determine the number of hours required in the fourth week, the student must  add how much he or she surpassed or missed the target average  in the other weeks:

  • 14 hours – 10 hours = 4 hours
  • 12 – 10 = 2
  • 10 – 10 = 0
  • 4 hours + 2 hours + 0 hours = 6 hours

To learn the number of hours for the final week, the student must  subtract the sum from the target average:

  • 10 hours – 6 hours = 4 hours

With practice, this method may not even require pencil and paper. That’s how easy it is. 

no image

Word Problems

14. identifying buzzwords.

Students who struggle to translate  word problems  into equations will benefit from learning how to spot buzzwords — phrases that indicate specific actions.

This isn’t a trick. It’s a tactic.

Teach students to look for these buzzwords,  and what skill they align with in most contexts:

Be sure to include buzzwords that typically appear in their textbooks (or other classroom  math books ), as well as ones you use on tests and assignments.

As a result, they should have an  easier time processing word problems .

15. Creating Sub-Questions

no image

For complex word problems, show students how to dissect the question by answering three specific sub-questions.

Each student should ask him or herself:

  • What am I looking for?  — Students should read the question over and over, looking for buzzwords and identifying important details.
  • What information do I need?  — Students should determine which facts, figures and variables they need to solve the question. For example, if they determine the question is rooted in subtraction, they need the minuend and subtrahend.
  • What information do I have?  — Students should be able to create the core equation using the information in the word problem, after determining which details are important.

These sub-questions help students avoid overload.

Instead of writing and analyzing each detail of the question, they’ll be able to identify key information. If you identify students who are struggling with these, you can use  peer learning  as needed.  

For more fresh approaches to teaching math in your classroom, consider treating your students to a range of  fun math activities .

Final Thoughts About these Ways to Solve Math Problems Faster

Showing these 15 techniques to students can give them the  confidence to tackle tough questions .

They’re also  mental math  exercises, helping them build skills related to focus, logic and critical thinking.

A rewarding class equals an  engaging class . That’s an easy equation to remember.

> Create or log into your teacher account on Prodigy  — a free, adaptive math game that adjusts content to accommodate player trouble spots and learning speeds. Aligned to US and Canadian curricula, it’s loved by more than 500,000 teachers and 15 million students.

Resilient Educator logo

ChatGPT for Teachers

Trauma-informed practices in schools, teacher well-being, cultivating diversity, equity, & inclusion, integrating technology in the classroom, social-emotional development, covid-19 resources, invest in resilience: summer toolkit, civics & resilience, all toolkits, degree programs, trauma-informed professional development, teacher licensure & certification, how to become - career information, classroom management, instructional design, lifestyle & self-care, online higher ed teaching, current events, 10 ways to do fast math: tricks and tips for doing math in your head.

10 Ways to Do Fast Math: Tricks and Tips for Doing Math in Your Head

You don’t have to be a math teacher to know that a lot of students—and likely a lot of parents (it’s been awhile!)—are intimidated by math problems, especially if they involve large numbers. Learning techniques on how to do math quickly can help students develop greater confidence in math , improve math skills and understanding, and excel in advanced courses.

If it’s your job to teach those, here’s a great refresher.

Fast math tricks infographic. Learning techniques on how to do math quickly can help students develop greater confidence in math, improve math skills and understanding, and excel in advanced courses. Add large numbers. Subtract 1,000. Multiplying 5 times any number. Division tricks. Multiplying by 9. Percentage. Square a 2-digit number ending in 5. Tough multiplication. Multiplying numbers ending in zero. 10 and 11 multiplication tricks.

Fast math tricks infographic

10 tricks for doing fast math

Here are 10 fast math strategies students (and adults!) can use to do math in their heads. Once these strategies are mastered, students should be able to accurately and confidently solve math problems that they once feared solving.

1. Adding large numbers

Adding large numbers just in your head can be difficult. This method shows how to simplify this process by making all the numbers a multiple of 10. Here is an example:

While these numbers are hard to contend with, rounding them up will make them more manageable. So, 644 becomes 650 and 238 becomes 240.

Now, add 650 and 240 together. The total is 890. To find the answer to the original equation, it must be determined how much we added to the numbers to round them up.

650 – 644 = 6 and 240 – 238 = 2

Now, add 6 and 2 together for a total of 8

To find the answer to the original equation, 8 must be subtracted from the 890.

890 – 8 = 882

So the answer to 644 +238 is 882.

2. Subtracting from 1,000

Here’s a basic rule to subtract a large number from 1,000: Subtract every number except the last from 9 and subtract the final number from 10

For example:

1,000 – 556

Step 1: Subtract 5 from 9 = 4

Step 2: Subtract 5 from 9 = 4

Step 3: Subtract 6 from 10 = 4

The answer is 444.

3. Multiplying 5 times any number

When multiplying the number 5 by an even number, there is a quick way to find the answer.

For example, 5 x 4 =

  • Step 1: Take the number being multiplied by 5 and cut it in half, this makes the number 4 become the number 2.
  • Step 2: Add a zero to the number to find the answer. In this case, the answer is 20.

When multiplying an odd number times 5, the formula is a bit different.

For instance, consider 5 x 3.

  • Step 1: Subtract one from the number being multiplied by 5, in this instance the number 3 becomes the number 2.
  • Step 2: Now halve the number 2, which makes it the number 1. Make 5 the last digit. The number produced is 15, which is the answer.

4. Division tricks

Here’s a quick way to know when a number can be evenly divided by these certain numbers:

  • 10 if the number ends in 0
  • 9 when the digits are added together and the total is evenly divisible by 9
  • 8 if the last three digits are evenly divisible by 8 or are 000
  • 6 if it is an even number and when the digits are added together the answer is evenly divisible by 3
  • 5 if it ends in a 0 or 5
  • 4 if it ends in 00 or a two digit number that is evenly divisible by 4
  • 3 when the digits are added together and the result is evenly divisible by the number 3
  • 2 if it ends in 0, 2, 4, 6, or 8

5. Multiplying by 9

This is an easy method that is helpful for multiplying any number by 9. Here is how it works:

Let’s use the example of 9 x 3.

Step 1 : Subtract 1 from the number that is being multiplied by 9.

3 – 1 = 2

The number 2 is the first number in the answer to the equation.

Step 2 : Subtract that number from the number 9.

9 – 2 = 7

The number 7 is the second number in the answer to the equation.

So, 9 x 3 = 27

6. 10 and 11 times tricks

The trick to multiplying any number by 10 is to add a zero to the end of the number. For example, 62 x 10 = 620.

There is also an easy trick for multiplying any two-digit number by 11. Here it is:

Take the original two-digit number and put a space between the digits. In this example, that number is 25.

Now add those two numbers together and put the result in the center:

2_(2 + 5)_5

The answer to 11 x 25 is 275.

If the numbers in the center add up to a number with two digits, insert the second number and add 1 to the first one. Here is an example for the equation 11 x 88

(8 + 1)_6_8

There is the answer to 11 x 88: 968

7. Percentage

Finding a percentage of a number can be somewhat tricky, but thinking about it in the right terms makes it much easier to understand. For instance, to find out what 5% of 235 is, follow this method:

  • Step 1: Move the decimal point over by one place, 235 becomes 23.5.
  • Step 2: Divide 23.5 by the number 2, the answer is 11.75. That is also the answer to the original equation.

8. Quickly square a two-digit number that ends in 5

Let’s use the number 35 as an example.

  • Step 1: Multiply the first digit by itself plus 1.
  • Step 2: Put a 25 at the end.

35 squared = [3 x (3 + 1)] & 25

[3 x (3 + 1)] = 12

12 & 25 = 1225

35 squared = 1225

9. Tough multiplication

When multiplying large numbers, if one of the numbers is even, divide the first number in half, and then double the second number. This method will solve the problem quickly. For instance, consider

Step 1: Divide the 20 by 2, which equals 10. Double 120, which equals 240.

Then multiply your two answers together.

10 x 240 = 2400

The answer to 20 x 120 is 2,400.

10. Multiplying numbers that end in zero

Multiplying numbers that end in zero is actually quite simple. It involves multiplying the other numbers together and then adding the zeros at the end. For instance, consider:

Step 1: Multiply the 2 times the 4

Step 2: Put all four of the zeros after the 8

200 x 400= 80,000

Practicing these fast math tricks can help both students and teachers improve their math skills and become secure in their knowledge of mathematics—and unafraid to work with numbers in the future.

You may also like to read

  • Research-Based Math Teaching Strategies
  • Tips in Teaching a Hands-On Math Curriculum
  • 5 Tips to Help Get Students Engaged in High School Math
  • 3 Tips for Running an Elementary School Math Workshop
  • Seven Everyday Online Math Resources for Teachers
  • Three Tips for Developing Elementary Math Tests

Categorized as: Tips for Teachers and Classroom Resources

Tagged as: Math and Science ,  Mathematics

  • Master's in Trauma-Informed Education and Car...
  • Online Associate's Degree Programs in Educati...
  • 2020 Civics Engagement & Resilience: Tools fo...
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Additional menu

Khan Academy Blog

Unlocking the Power of Math Learning: Strategies and Tools for Success

posted on September 20, 2023

problem solving tips maths

Mathematics, the foundation of all sciences and technology, plays a fundamental role in our everyday lives. Yet many students find the subject challenging, causing them to shy away from it altogether. This reluctance is often due to a lack of confidence, a misunderstanding of unclear concepts, a move ahead to more advanced skills before they are ready, and ineffective learning methods. However, with the right approach, math learning can be both rewarding and empowering. This post will explore different approaches to learning math, strategies for success, and cutting-edge tools to help you achieve your goals.

Math Learning

Math learning can take many forms, including traditional classroom instruction, online courses, and self-directed learning. A multifaceted approach to math learning can improve understanding, engage students, and promote subject mastery. A 2014 study by the National Council of Teachers of Mathematics found that the use of multiple representations, such as visual aids, graphs, and real-world examples, supports the development of mathematical connections, reasoning, and problem-solving skills.

Moreover, the importance of math learning goes beyond solving equations and formulas. Advanced math skills are essential for success in many fields, including science, engineering, finance, health care, and technology. In fact, a report by Burning Glass Technologies found that 71% of high-salary, entry-level positions require advanced math skills.

Benefits of Math Learning

In today’s 21st-century world, having a broad knowledge base and strong reading and math skills is essential. Mathematical literacy plays a crucial role in this success. It empowers individuals to comprehend the world around them and make well-informed decisions based on data-driven understanding. More than just earning good grades in math, mathematical literacy is a vital life skill that can open doors to economic opportunities, improve financial management, and foster critical thinking. We’re not the only ones who say so:

  • Math learning enhances problem-solving skills, critical thinking, and logical reasoning abilities. (Source: National Council of Teachers of Mathematics )
  • It improves analytical skills that can be applied in various real-life situations, such as budgeting or analyzing data. (Source: Southern New Hampshire University )
  • Math learning promotes creativity and innovation by fostering a deep understanding of patterns and relationships. (Source: Purdue University )
  • It provides a strong foundation for careers in fields such as engineering, finance, computer science, and more. These careers generally correlate to high wages. (Source: U.S. Bureau of Labor Statistics )
  • Math skills are transferable and can be applied across different academic disciplines. (Source: Sydney School of Education and Social Work )

How to Know What Math You Need to Learn

Often students will find gaps in their math knowledge; this can occur at any age or skill level. As math learning is generally iterative, a solid foundation and understanding of the math skills that preceded current learning are key to success. The solution to these gaps is called mastery learning, the philosophy that underpins Khan Academy’s approach to education .

Mastery learning is an educational philosophy that emphasizes the importance of a student fully understanding a concept before moving on to the next one. Rather than rushing students through a curriculum, mastery learning asks educators to ensure that learners have “mastered” a topic or skill, showing a high level of proficiency and understanding, before progressing. This approach is rooted in the belief that all students can learn given the appropriate learning conditions and enough time, making it a markedly student-centered method. It promotes thoroughness over speed and encourages individualized learning paths, thus catering to the unique learning needs of each student.

Students will encounter mastery learning passively as they go through Khan Academy coursework, as our platform identifies gaps and systematically adjusts to support student learning outcomes. More details can be found in our Educators Hub . 

Try Our Free Confidence Boosters

How to learn math.

Learning at School

One of the most common methods of math instruction is classroom learning. In-class instruction provides students with real-time feedback, practical application, and a peer-learning environment. Teachers can personalize instruction by assessing students’ strengths and weaknesses, providing remediation when necessary, and offering advanced instruction to students who need it.

Learning at Home

Supplemental learning at home can complement traditional classroom instruction. For example, using online resources that provide additional practice opportunities, interactive games, and demonstrations, can help students consolidate learning outside of class. E-learning has become increasingly popular, with a wealth of online resources available to learners of all ages. The benefits of online learning include flexibility, customization, and the ability to work at one’s own pace. One excellent online learning platform is Khan Academy, which offers free video tutorials, interactive practice exercises, and a wealth of resources across a range of mathematical topics.

Moreover, parents can encourage and monitor progress, answer questions, and demonstrate practical applications of math in everyday life. For example, when at the grocery store, parents can ask their children to help calculate the price per ounce of two items to discover which one is the better deal. Cooking and baking with your children also provides a lot of opportunities to use math skills, like dividing a recipe in half or doubling the ingredients. 

Learning Math with the Help of Artificial Intelligence (AI) 

AI-powered tools are changing the way students learn math. Personalized feedback and adaptive practice help target individual needs. Virtual tutors offer real-time help with math concepts while AI algorithms identify areas for improvement. Custom math problems provide tailored practice, and natural language processing allows for instant question-and-answer sessions. 

Using Khan Academy’s AI Tutor, Khanmigo

Transform your child’s grasp of mathematics with Khanmigo , the 24/7 AI-powered tutor that specializes in tailored, one-on-one math instruction. Available at any time, Khanmigo provides personalized support that goes beyond mere answers to nurture genuine mathematical understanding and critical thinking. Khanmigo can track progress, identify strengths and weaknesses, and offer real-time feedback to help students stay on the right track. Within a secure and ethical AI framework, your child can tackle everything from basic arithmetic to complex calculus, all while you maintain oversight using robust parental controls.

Get Math Help with Khanmigo Right Now

You can learn anything .

Math learning is essential for success in the modern world, and with the right approach, it can also be enjoyable and rewarding. Learning math requires curiosity, diligence, and the ability to connect abstract concepts with real-world applications. Strategies for effective math learning include a multifaceted approach, including classroom instruction, online courses, homework, tutoring, and personalized AI support. 

So, don’t let math anxiety hold you back; take advantage of available resources and technology to enhance your knowledge base and enjoy the benefits of math learning.

National Council of Teachers of Mathematics, “Principles to Actions: Ensuring Mathematical Success for All” , April 2014

Project Lead The Way Research Report, “The Power of Transportable Skills: Assessing the Demand and Value of the Skills of the Future” , 2020

Page. M, “Why Develop Quantitative and Qualitative Data Analysis Skills?” , 2016

Mann. EL, Creativity: The Essence of Mathematics, Journal for the Education of the Gifted. Vol. 30, No. 2, 2006, pp. 236–260, http://www.prufrock.com ’

Nakakoji Y, Wilson R.” Interdisciplinary Learning in Mathematics and Science: Transfer of Learning for 21st Century Problem Solving at University ”. J Intell. 2020 Sep 1;8(3):32. doi: 10.3390/jintelligence8030032. PMID: 32882908; PMCID: PMC7555771.

Get Khanmigo

The best way to learn and teach with AI is here. Ace the school year with our AI-powered guide, Khanmigo. 

For learners     For teachers     For parents

  • Our Mission

6 Tips for Teaching Math Problem-Solving Skills

Solving word problems is tougher than computing with numbers, but elementary teachers can guide students to do the deep thinking involved.

Photo of elementary school teacher with students

A growing concern with students is the ability to problem-solve, especially with complex, multistep problems. Data shows that students struggle more when solving word problems than they do with computation , and so problem-solving should be considered separately from computation. Why?

Consider this. When we’re on the way to a new destination and we plug in our location to a map on our phone, it tells us what lane to be in and takes us around any detours or collisions, sometimes even buzzing our watch to remind us to turn. When I experience this as a driver, I don’t have to do the thinking. I can think about what I’m going to cook for dinner, not paying much attention to my surroundings other than to follow those directions. If I were to be asked to go there again, I wouldn’t be able to remember, and I would again seek help.

If we can switch to giving students strategies that require them to think instead of giving them too much support throughout the journey to the answer, we may be able to give them the ability to learn the skills to read a map and have several ways to get there.

Here are six ways we can start letting students do this thinking so that they can go through rigorous problem-solving again and again, paving their own way to the solution. 

1. Link problem-solving to reading

When we can remind students that they already have many comprehension skills and strategies they can easily use in math problem-solving, it can ease the anxiety surrounding the math problem. For example, providing them with strategies to practice, such as visualizing, acting out the problem with math tools like counters or base 10 blocks, drawing a quick sketch of the problem, retelling the story in their own words, etc., can really help them to utilize the skills they already have to make the task less daunting.

We can break these skills into specific short lessons so students have a bank of strategies to try on their own. Here's an example of an anchor chart that they can use for visualizing . Breaking up comprehension into specific skills can increase student independence and help teachers to be much more targeted in their problem-solving instruction. This allows students to build confidence and break down the barriers between reading and math to see they already have so many strengths that are transferable to all problems.

2. Avoid boxing students into choosing a specific operation

It can be so tempting to tell students to look for certain words that might mean a certain operation. This might even be thoroughly successful in kindergarten and first grade, but just like when our map tells us where to go, that limits students from becoming deep thinkers. It also expires once they get into the upper grades, where those words could be in a problem multiple times, creating more confusion when students are trying to follow a rule that may not exist in every problem.

We can encourage a variety of ways to solve problems instead of choosing the operation first. In first grade, a problem might say, “Joceline has 13 stuffed animals and Jordan has 17. How many more does Jordan have?” Some students might choose to subtract, but a lot of students might just count to find the amount in between. If we tell them that “how many more” means to subtract, we’re taking the thinking out of the problem altogether, allowing them to go on autopilot without truly solving the problem or using their comprehension skills to visualize it. 

3. Revisit ‘representation’

The word “representation” can be misleading. It seems like something to do after the process of solving. When students think they have to go straight to solving, they may not realize that they need a step in between to be able to support their understanding of what’s actually happening in the problem first.

Using an anchor chart like one of these ( lower grade , upper grade ) can help students to choose a representation that most closely matches what they’re visualizing in their mind. Once they sketch it out, it can give them a clearer picture of different ways they could solve the problem.

Think about this problem: “Varush went on a trip with his family to his grandmother’s house. It was 710 miles away. On the way there, three people took turns driving. His mom drove 214 miles. His dad drove 358 miles. His older sister drove the rest. How many miles did his sister drive?”

If we were to show this student the anchor chart, they would probably choose a number line or a strip diagram to help them understand what’s happening.

If we tell students they must always draw base 10 blocks in a place value chart, that doesn’t necessarily match the concept of this problem. When we ask students to match our way of thinking, we rob them of critical thinking practice and sometimes confuse them in the process. 

4. Give time to process

Sometimes as educators, we can feel rushed to get to everyone and everything that’s required. When solving a complex problem, students need time to just sit with a problem and wrestle with it, maybe even leaving it and coming back to it after a period of time.

This might mean we need to give them fewer problems but go deeper with those problems we give them. We can also speed up processing time when we allow for collaboration and talk time with peers on problem-solving tasks. 

5. Ask questions that let Students do the thinking

Questions or prompts during problem-solving should be very open-ended to promote thinking. Telling a student to reread the problem or to think about what tools or resources would help them solve it is a way to get them to try something new but not take over their thinking.

These skills are also transferable across content, and students will be reminded, “Good readers and mathematicians reread.” 

6. Spiral concepts so students frequently use problem-solving skills

When students don’t have to switch gears in between concepts, they’re not truly using deep problem-solving skills. They already kind of know what operation it might be or that it’s something they have at the forefront of their mind from recent learning. Being intentional within their learning stations and assessments about having a variety of rigorous problem-solving skills will refine their critical thinking abilities while building more and more resilience throughout the school year as they retain content learning in the process. 

Problem-solving skills are so abstract, and it can be tough to pinpoint exactly what students need. Sometimes we have to go slow to go fast. Slowing down and helping students have tools when they get stuck and enabling them to be critical thinkers will prepare them for life and allow them multiple ways to get to their own destination.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Mathematics LibreTexts

1.3: Problem Solving Strategies

  • Last updated
  • Save as PDF
  • Page ID 9823

  • Michelle Manes
  • University of Hawaii

Think back to the first problem in this chapter, the ABC Problem. What did you do to solve it? Even if you did not figure it out completely by yourself, you probably worked towards a solution and figured out some things that did not work.

Unlike exercises, there is never a simple recipe for solving a problem. You can get better and better at solving problems, both by building up your background knowledge and by simply practicing. As you solve more problems (and learn how other people solved them), you learn strategies and techniques that can be useful. But no single strategy works every time.

How to Solve It

George Pólya was a great champion in the field of teaching effective problem solving skills. He was born in Hungary in 1887, received his Ph.D. at the University of Budapest, and was a professor at Stanford University (among other universities). He wrote many mathematical papers along with three books, most famously, “How to Solve it.” Pólya died at the age 98 in 1985. [1]

George_Pólya_ca_1973.jpg

George Pólya, circa 1973

  • Image of Pólya by Thane Plambeck from Palo Alto, California (Flickr) [CC BY 2.0 ( http://creativecommons.org/licenses/by/2.0 )], via Wikimedia Commons ↵

In 1945, Pólya published the short book How to Solve It , which gave a four-step method for solving mathematical problems:

  • First, you have to understand the problem.
  • After understanding, then make a plan.
  • Carry out the plan.
  • Look back on your work. How could it be better?

This is all well and good, but how do you actually do these steps?!?! Steps 1. and 2. are particularly mysterious! How do you “make a plan?” That is where you need some tools in your toolbox, and some experience to draw upon.

Much has been written since 1945 to explain these steps in more detail, but the truth is that they are more art than science. This is where math becomes a creative endeavor (and where it becomes so much fun). We will articulate some useful problem solving strategies, but no such list will ever be complete. This is really just a start to help you on your way. The best way to become a skilled problem solver is to learn the background material well, and then to solve a lot of problems!

We have already seen one problem solving strategy, which we call “Wishful Thinking.” Do not be afraid to change the problem! Ask yourself “what if” questions:

  • What if the picture was different?
  • What if the numbers were simpler?
  • What if I just made up some numbers?

You need to be sure to go back to the original problem at the end, but wishful thinking can be a powerful strategy for getting started.

This brings us to the most important problem solving strategy of all:

Problem Solving Strategy 2 (Try Something!).

If you are really trying to solve a problem, the whole point is that you do not know what to do right out of the starting gate. You need to just try something! Put pencil to paper (or stylus to screen or chalk to board or whatever!) and try something. This is often an important step in understanding the problem; just mess around with it a bit to understand the situation and figure out what is going on.

And equally important: If what you tried first does not work, try something else! Play around with the problem until you have a feel for what is going on.

Last week, Alex borrowed money from several of his friends. He finally got paid at work, so he brought cash to school to pay back his debts. First he saw Brianna, and he gave her 1/4 of the money he had brought to school. Then Alex saw Chris and gave him 1/3 of what he had left after paying Brianna. Finally, Alex saw David and gave him 1/2 of what he had remaining. Who got the most money from Alex?

Think/Pair/Share

After you have worked on the problem on your own for a while, talk through your ideas with a partner (even if you have not solved it). What did you try? What did you figure out about the problem? This problem lends itself to two particular strategies. Did you try either of these as you worked on the problem? If not, read about the strategy and then try it out before watching the solution.

Problem Solving Strategy 3 (Draw a Picture).

Some problems are obviously about a geometric situation, and it is clear you want to draw a picture and mark down all of the given information before you try to solve it. But even for a problem that is not geometric, like this one, thinking visually can help! Can you represent something in the situation by a picture?

Draw a square to represent all of Alex’s money. Then shade 1/4 of the square — that’s what he gave away to Brianna. How can the picture help you finish the problem?

After you have worked on the problem yourself using this strategy (or if you are completely stuck), you can watch someone else’s solution.

Problem Solving Strategy 4 (Make Up Numbers).

Part of what makes this problem difficult is that it is about money, but there are no numbers given. That means the numbers must not be important. So just make them up!

You can work forwards: Assume Alex had some specific amount of money when he showed up at school, say $100. Then figure out how much he gives to each person. Or you can work backwards: suppose he has some specific amount left at the end, like $10. Since he gave Chris half of what he had left, that means he had $20 before running into Chris. Now, work backwards and figure out how much each person got.

Watch the solution only after you tried this strategy for yourself.

If you use the “Make Up Numbers” strategy, it is really important to remember what the original problem was asking! You do not want to answer something like “Everyone got $10.” That is not true in the original problem; that is an artifact of the numbers you made up. So after you work everything out, be sure to re-read the problem and answer what was asked!

(Squares on a Chess Board)

How many squares, of any possible size, are on a 8 × 8 chess board? (The answer is not 64... It’s a lot bigger!)

Remember Pólya’s first step is to understand the problem. If you are not sure what is being asked, or why the answer is not just 64, be sure to ask someone!

Think / Pair / Share

After you have worked on the problem on your own for a while, talk through your ideas with a partner (even if you have not solved it). What did you try? What did you figure out about the problem, even if you have not solved it completely?

It is clear that you want to draw a picture for this problem, but even with the picture it can be hard to know if you have found the correct answer. The numbers get big, and it can be hard to keep track of your work. Your goal at the end is to be absolutely positive that you found the right answer. You should never ask the teacher, “Is this right?” Instead, you should declare, “Here’s my answer, and here is why I know it is correct!”

Problem Solving Strategy 5 (Try a Simpler Problem).

Pólya suggested this strategy: “If you can’t solve a problem, then there is an easier problem you can solve: find it.” He also said: “If you cannot solve the proposed problem, try to solve first some related problem. Could you imagine a more accessible related problem?” In this case, an 8 × 8 chess board is pretty big. Can you solve the problem for smaller boards? Like 1 × 1? 2 × 2? 3 × 3?

Of course the ultimate goal is to solve the original problem. But working with smaller boards might give you some insight and help you devise your plan (that is Pólya’s step (2)).

Problem Solving Strategy 6 (Work Systematically).

If you are working on simpler problems, it is useful to keep track of what you have figured out and what changes as the problem gets more complicated.

For example, in this problem you might keep track of how many 1 × 1 squares are on each board, how many 2 × 2 squares on are each board, how many 3 × 3 squares are on each board, and so on. You could keep track of the information in a table:

Problem Solving Strategy 7 (Use Manipulatives to Help You Investigate).

Sometimes even drawing a picture may not be enough to help you investigate a problem. Having actual materials that you move around can sometimes help a lot!

For example, in this problem it can be difficult to keep track of which squares you have already counted. You might want to cut out 1 × 1 squares, 2 × 2 squares, 3 × 3 squares, and so on. You can actually move the smaller squares across the chess board in a systematic way, making sure that you count everything once and do not count anything twice.

Problem Solving Strategy 8 (Look for and Explain Patterns).

Sometimes the numbers in a problem are so big, there is no way you will actually count everything up by hand. For example, if the problem in this section were about a 100 × 100 chess board, you would not want to go through counting all the squares by hand! It would be much more appealing to find a pattern in the smaller boards and then extend that pattern to solve the problem for a 100 × 100 chess board just with a calculation.

If you have not done so already, extend the table above all the way to an 8 × 8 chess board, filling in all the rows and columns. Use your table to find the total number of squares in an 8 × 8 chess board. Then:

  • Describe all of the patterns you see in the table.
  • Can you explain and justify any of the patterns you see? How can you be sure they will continue?
  • What calculation would you do to find the total number of squares on a 100 × 100 chess board?

(We will come back to this question soon. So if you are not sure right now how to explain and justify the patterns you found, that is OK.)

(Broken Clock)

This clock has been broken into three pieces. If you add the numbers in each piece, the sums are consecutive numbers. ( Consecutive numbers are whole numbers that appear one after the other, such as 1, 2, 3, 4 or 13, 14, 15.)

index-12_1-300x282-1.png

Can you break another clock into a different number of pieces so that the sums are consecutive numbers? Assume that each piece has at least two numbers and that no number is damaged (e.g. 12 isn’t split into two digits 1 and 2.)

Remember that your first step is to understand the problem. Work out what is going on here. What are the sums of the numbers on each piece? Are they consecutive?

After you have worked on the problem on your own for a while, talk through your ideas with a partner (even if you have not solved it). What did you try? What progress have you made?

Problem Solving Strategy 9 (Find the Math, Remove the Context).

Sometimes the problem has a lot of details in it that are unimportant, or at least unimportant for getting started. The goal is to find the underlying math problem, then come back to the original question and see if you can solve it using the math.

In this case, worrying about the clock and exactly how the pieces break is less important than worrying about finding consecutive numbers that sum to the correct total. Ask yourself:

  • What is the sum of all the numbers on the clock’s face?
  • Can I find two consecutive numbers that give the correct sum? Or four consecutive numbers? Or some other amount?
  • How do I know when I am done? When should I stop looking?

Of course, solving the question about consecutive numbers is not the same as solving the original problem. You have to go back and see if the clock can actually break apart so that each piece gives you one of those consecutive numbers. Maybe you can solve the math problem, but it does not translate into solving the clock problem.

Problem Solving Strategy 10 (Check Your Assumptions).

When solving problems, it is easy to limit your thinking by adding extra assumptions that are not in the problem. Be sure you ask yourself: Am I constraining my thinking too much?

In the clock problem, because the first solution has the clock broken radially (all three pieces meet at the center, so it looks like slicing a pie), many people assume that is how the clock must break. But the problem does not require the clock to break radially. It might break into pieces like this:

index-13_1-300x296.png

Were you assuming the clock would break in a specific way? Try to solve the problem now, if you have not already.

How to Study Maths: 7 Tips for Solving Maths Problems

How to study maths.

How to study Maths

Maths is one of those subjects which you can easily spend hours studying, but end up none the wiser. However much you have studied, if you can not solve the problem on day of the test, you are lost. Thankfully, there are some  techniques for studying maths that you can do regardless of your level. You may even end up loving mathematics by the end of the blog post!

einstein quote

 7 Tips for Maths Problem Solving

1. practice, practice & more practice.

It is impossible to study maths properly by just reading and listening. To study maths you have to roll up your sleeves and actually solve some problems.   The more you practice answering maths problems, the better . Each problem has its own characteristics and it’s important to have solved it in numerous ways before tackling the exam. There is no escaping this reality, to do well in a Maths exam you need to have solved a LOT of mathematical problems beforehand.

2. Review Errors

When you’re practising with these problems, it’s important to work through the process for each solution . If you have made any mistakes, you should review them and understand where your problem-solving skills let you down. Understanding how you approached the problem and where you went wrong is a great way of becoming stronger and avoiding the same mistakes in the future.

GoConqr

Need some Help with your Maths Problems?

Join thousands of students in our Maths Group and experience the power of collaborative learning. It’s free!

3. Master the Key Concepts

Do not try to memorise the processes. This is counter-productive. It is much better and rewarding in the long-run to focus on understanding the process and logic that is involved. This will help you understand how you should approach such problems in the future.

Remember that Maths is a sequential subject so it’s important to have a firm understanding of the key concepts that underpin a mathematical topic before moving on to work on other, more complex solutions which are based on understanding the basics.

4. Understand your Doubts

Sometimes you can get stuck trying to solve part of a maths problem and find it difficult to move on to the next stage.  It’s common for many students to skip this question and continue on to the next. You should avoid doing this and instead spend time trying to understand the process of solving the problem. Once you have grasped an understanding of the initial problem, you can use this as a stepping stone to progress to the remainder of the question.

Remember : Maths requires time and patience to master.

It is a good idea to study with a friend who you can consult with and bounce ideas off when trying to solve complex problems.

5. Create a Distraction Free Study Environment

Mathematics is a subject that requires more  concentration  than any other. A proper study environment and a  distraction free area  could be the determining factor when solving complex equations or problems in geometry, algebra or trigonometry!

Studying with music can help create a relaxing atmosphere and stimulate the flow of information. Having suitable background music can foster an environment of maximum concentration. Of course, you should steer clear of  Pitbull and Eminem , instrumental music is the best thing in these times.

Our blog post “ Music for Studying: 10 Tips to Pick the Best Study Music ” gives more advice on picking the best study music for you.

6. Create a Mathematical Dictionary

Mathematics has specific terminology with a lot of  vocabulary . We suggest you create Notes  or Flashcards  with all the concepts, terminology and definitions you need to know. You should include their meanings, some key points and even some sample answers so you can consult them at any time and recap.

7. Apply Maths to Real World Problems

As much as possible, try to apply real-world problems when approaching maths. Maths can be very abstract sometimes so looking for a practical application can help change your perspective and assimilate ideas differently.

Probability, for example, can be used in everyday life to predict the outcome of something happening and determine whether you want to take a risk such as if you should buy a lottery ticket or gamble.

Oh and don’t forget that it’s also important  to have confidence in yourself  and face the exam knowing that you have prepared properly!

About the GoConqr Blog

Our blog is part of GoConqr, a Free Learning Platform for Creating, Sharing & Discovering Learning Resources that help students and teachers achieve their learning objectives. Click here to start creating Mind Maps, Flashcards, Notes, Quizzes, Slides Flowcharts & Courses now!

Related Articles

study hacks

Try GoConqr Learning Apps

Learn to create Mind Maps

Search the Blog

  • Benefits of education
  • Creating resources
  • Education and Economy
  • Education research
  • ExamTime Blog Posts
  • How to Study with ExamTime
  • Latest news
  • Teaching Tips

Brasileiro

The ExamTime App has moved to GoConqr

GoConqr

Don’t worry, it's still the same great tools, same great features, just a new name.

Www.goconqr.com, we are re-directing you there now....

problem solving tips maths

Mastery-Aligned Maths Tutoring

“The best thing has been the increase in confidence and tutors being there to deal with any misunderstandings straight away."

FREE daily maths challenges

A new KS2 maths challenge every day. Perfect as lesson starters - no prep required!

FREE daily maths challenges

Maths Problem Solving: Engaging Your Students And Strengthening Their Mathematical Skills

Meriel Willatt

Maths problem solving can be challenging for pupils. There’s no ‘one size fits all’ approach or strategy and questions often combine different topic areas. Pupils often don’t know where to start. It’s no surprise that problem solving is a common topic teachers struggle to teach effectively to their pupils.

In this blog, we consider the importance of problem solving and share with you some ideas and resources for you to tackle problem solving in your maths classroom, from KS2 up to GCSE.

What is maths problem solving?

Why is maths problem solving so difficult, how to develop problem solving skills in maths, maths problem solving ks2, maths problem solving ks3, maths problem solving gcse.

Maths problem solving is when a mathematical task challenges pupils to apply their knowledge, logic and reasoning in unfamiliar contexts. Problem solving questions often combine several elements of maths.

We know from talking to the hundreds of school leaders and maths teachers that we work with as one to one online maths tutoring providers that this is one of their biggest challenges: equipping pupils with the skills and confidence necessary to approach problem solving questions.

The Ultimate Guide to Problem Solving Techniques

The Ultimate Guide to Problem Solving Techniques

Download these 9 ready-to-go problem solving techniques that every pupil should know

The challenge with problem solving in maths is that there is no generic problem solving skill that can be taught in an isolated maths lesson. It’s a skill that teachers must explicitly teach to pupils, embed into their learning and revisit often.

When pupils are first introduced to a topic, they cannot start problem solving straight away using it. Problem solving relies on deep knowledge of concepts. Pupils need to become familiar with it and practice using it in different contexts before they can make connections, reason and problem solve with it. In fact, some researchers suggest that it could take up to two years to do this (Burkhardt, 2017). 

At Third Space Learning, we specialise in online one to one maths tutoring for schools, from KS1 all the way up to GCSE. Our lessons are designed by maths teachers and pedagogy experts to break down complex problems into their constituent parts. Our specialist tutors then carefully scaffold learning to build students’ confidence in key skills before combining them to tackle problem solving questions.

sample problem solving maths lessons

In order to develop problem solving skills in maths, pupils need lots of different contexts and word problems in which to practise them and the opportunity to engage in mathematical talk that draws on their metacognitive skills. 

The EEF suggests that to develop problem solving skills in maths, teachers need to teach pupils:

  • To use different approaches to problem solving
  • Use worked examples
  • To use metacognition to plan, monitor and reflect on their approaches to problem solving

Below, we take a closer look at problem solving at each stage, from primary school all the way to GCSEs. We’ve also included links to maths resources and CPD to support you and your team’s classroom teaching.

At lower KS2, the National Curriculum states that pupils should develop their ability to solve a range of problems. However, these will involve simple calculations as pupils develop their numeracy skills. As pupils progress to upper KS2, the demand for problem solving skills increases. 

“At this stage, pupils should develop their ability to solve a wider range of problems, including increasingly complex properties of numbers and arithmetic, and problems demanding efficient written and mental methods of calculation. With this foundation in arithmetic, pupils are introduced to the language of algebra as a means for solving a variety of problems.” National curriculum in England: mathematics programmes of study (Upper key stage 2 – years 5 and 6)

KS2 problem solving can often fall into the trap of relying on acronyms, such as RICE, RIDE or even QUACK. The most popular is RUCSAC (Read, Underline, Calculate, Solve, Answer, Check). While these do aim to simplify the process for young minds, it encourages a superficial, formulaic approach to problem solving, rather than deep mathematical thinking. Also, consider how much is wrapped up within the word ‘solve’ – is this helpful?

We teach thousands of pupils KS2 maths problem solving skills every week through our one to one online tutoring programme for maths. In our interventions, we encourage deep mathematical thinking by using a simplified version of George Polya’s four stages of problem solving. Here are the four stages:

Understand the problem

  • Devise a strategy for solving it
  • Carry out the problem solving strategy
  • Check the result

We use UCR as a simplified model: Understand, Communicate & Reflect. You may choose to adapt this depending on the age and ability of your class.

For example:

Maisy, Heidi and Freddie are children in the same family. The product of their ages is a score. How old might they be?

There are three people.

There are three numbers that multiply together to make twenty (a score is equal to 20). There will be lots of answers, but no ‘right’ answer.

Communicate

To solve the word problem we need to find the numbers that will go into 20 without a remainder (the factors).

The factors of 20 are 1, 2, 4, 5, 10 and 20.

Combinations of numbers that could work are: 1, 1, 20 1, 2, 10 1, 4, 5 2, 2, 5.

The question says children, which means ‘under 18 years’, so that would mean we could remove 1, 1, 20 from our list of possibilities. 

In our sessions, we create a nurturing learning environment where pupils feel safe to make mistakes. This is so important in the context of problem solving as the best problem solvers will be resilient and able to overcome challenges in the ‘Reflect’ stage. Read more: What is a growth mindset

Looking for more support teaching KS2 problem solving? We’ve developed a powerpoint on problem solving, reasoning and planning for depth that is designed to be used as CPD by primary school teachers, maths leads and SLT. 

The resource reflects on how metacognition can enhance reasoning and problem solving abilities, the ‘curse’ of real life maths (think ‘Carl buys 60 watermelons…) and how teachers can practically implement and teach strategies in the classroom.

You may also be interested in: 

  • Developing Thinking Skills At KS2
  • KS2 Maths Investigations
  • Word problems for Year 6

At KS3, the importance of seeing mathematical concepts as interconnected with other skills, including problem solving, is foregrounded. The National Curriculum also stresses the importance of a strong foundation in maths before moving on to complex problem solving.

“Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. The programme of study for key stage 3 is organised into apparently distinct domains, but pupils should build on key stage 2 and connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems” National curriculum in England: mathematics programmes of study (Key stage 3)

“Decisions about progression should be based on the security of pupils’ understanding and their readiness to progress to the next stage. Pupils who grasp concepts rapidly should be challenged through being offered rich and sophisticated problems before any acceleration through new content in preparation for key stage 4.” National curriculum in England: mathematics programmes of study (Key stage 3)

For many students, the transition from primary to secondary school can be a huge challenge.

Especially in the aftermath of the Covid-19 pandemic and the resultant school closures, students may arrive into Year 7 with various learning gaps and misconceptions that will hold them. Some students may need focused support to plug these gaps and grow in confidence.

You can give pupils a smoother transition from KS2 to KS3 with personalised one to one online tuition with specialist tutors with Third Space Learning. Our lessons cover content from Years 5-7 and build a solid foundation for pupils to develop their problem solving skills. Pupils are supported towards independent practice through worked examples, questioning and support slides.

KS3 problem solving maths activities

The challenge for KS3 maths problem solving activities is that learners may struggle to get invested unless you start with a convincing hook. Engage your young mathematicians on topics you know well or you know they’ll be invested in and try your hand at designing your own mathematical problems. Alternatively, get some inspiration from our crossover ability and fun maths problems .

Since the new GCSE specification began in 2015, there has been an increased focus on non-routine problem solving questions. These questions demand students to make sense of lots of new information at once before they even move on to selecting the strategies they’ll use to find the correct answer. This is where many learners get stuck.

In recent years, teachers and researchers in pedagogy (including Ofsted) have recognised that open ended problem solving tasks do not in fact lead to improved student understanding. While they may be enjoyable and engage learners, they may not lead to improved results.

SSDD problems (Same Surface Different Depth) can offer a solution that develops students’ critical thinking skills, while ensuring they engage fully with the information they’re provided. The idea behind them is to provide a set of questions that look the same and use the same mathematical hook but each question requires a different mathematical process to be solved.

ssdd questions example problem solving maths

Read more about SSDD problems , tips on writing your own questions and download free printable examples. There are also plenty of more examples on the NRICH website.

Worked examples, careful questioning and constructing visual representations can help students to convert the information embedded in a maths challenge into mathematical notations. Read our blog on problem solving maths questions for Foundation, Crossover & Higher examples, worked solutions and strategies.

Remember that students can only move on to mathematics problem solving once they have secure knowledge in a topic. If you know there are areas your students need extra support, check our Secondary Maths Resources library for revision guides, teaching resources and worksheets for KS3 and GCSE topics.

DO YOU HAVE STUDENTS WHO NEED MORE SUPPORT IN MATHS?

Every week Third Space Learning’s specialist online maths tutors support thousands of students across hundreds of schools with weekly online 1 to 1 maths lessons designed to plug gaps and boost progress.

Since 2013 these personalised one to 1 lessons have helped over 150,000 primary and secondary students become more confident, able mathematicians.

Learn how the programmes are aligned to maths mastery teaching or request a personalised quote for your school to speak to us about your school’s needs and how we can help.

Related articles

Free Year 7 Maths Test With Answers And Mark Scheme: Mixed Topic Questions

Free Year 7 Maths Test With Answers And Mark Scheme: Mixed Topic Questions

What Is A Number Square? Explained For Primary School Teachers, Parents & Pupils

What Is A Number Square? Explained For Primary School Teachers, Parents & Pupils

What Is Numicon? Explained For Primary School Teachers, Parents And Pupils

What Is Numicon? Explained For Primary School Teachers, Parents And Pupils

30 Problem Solving Maths Questions And Answers For GCSE

30 Problem Solving Maths Questions And Answers For GCSE

FREE Guide to Maths Mastery

All you need to know to successfully implement a mastery approach to mathematics in your primary school, at whatever stage of your journey.

Ideal for running staff meetings on mastery or sense checking your own approach to mastery.

Privacy Overview

  • PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • This Or That Game New
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications
  • Mathematics

How to Solve Math Problems

Last Updated: April 15, 2024 Fact Checked

This article was co-authored by Daron Cam . Daron Cam is an Academic Tutor and the Founder of Bay Area Tutors, Inc., a San Francisco Bay Area-based tutoring service that provides tutoring in mathematics, science, and overall academic confidence building. Daron has over eight years of teaching math in classrooms and over nine years of one-on-one tutoring experience. He teaches all levels of math including calculus, pre-algebra, algebra I, geometry, and SAT/ACT math prep. Daron holds a BA from the University of California, Berkeley and a math teaching credential from St. Mary's College. This article has been fact-checked, ensuring the accuracy of any cited facts and confirming the authority of its sources. This article has been viewed 590,381 times.

Although math problems may be solved in different ways, there is a general method of visualizing, approaching and solving math problems that may help you to solve even the most difficult problem. Using these strategies can also help you to improve your math skills overall. Keep reading to learn about some of these math problem solving strategies.

Understanding the Problem

Step 1 Identify the type of problem.

  • Draw a Venn diagram. A Venn diagram shows the relationships among the numbers in your problem. Venn diagrams can be especially helpful with word problems.
  • Draw a graph or chart.
  • Arrange the components of the problem on a line.
  • Draw simple shapes to represent more complex features of the problem.

Step 5 Look for patterns.

Developing a Plan

Step 1 Figure out what formulas you will need to solve the problem.

Solving the Problem

Step 1 Follow your plan.

Joseph Meyer

When doing practice problems, promptly check to see if your answers are correct. Use worksheets that provide answer keys for instant feedback. Discuss answers with a classmate or find explanations online. Immediate feedback will help you correct your mistakes, avoid bad habits, and advance your learning more quickly.

Expert Q&A

Daron Cam

  • Seek help from your teacher or a math tutor if you get stuck or if you have tried multiple strategies without success. Your teacher or a math tutor may be able to easily identify what is wrong and help you to understand how to correct it. Thanks Helpful 0 Not Helpful 0
  • Keep practicing sums and diagrams. Go through the concept your class notes regularly. Write down your understanding of the methods and utilize it. Thanks Helpful 0 Not Helpful 0

problem solving tips maths

You Might Also Like

Do Math Proofs

  • ↑ Daron Cam. Math Tutor. Expert Interview. 29 May 2020.
  • ↑ http://www.interventioncentral.org/academic-interventions/math/math-problem-solving-combining-cognitive-metacognitive-strategies
  • ↑ http://tutorial.math.lamar.edu/Extras/StudyMath/ProblemSolving.aspx
  • ↑ https://math.berkeley.edu/~gmelvin/polya.pdf

About This Article

Daron Cam

To solve a math problem, try rewriting the problem in your own words so it's easier to solve. You can also make a drawing of the problem to help you figure out what it's asking you to do. If you're still completely stuck, try solving a different problem that's similar but easier and then use the same steps to solve the harder problem. Even if you can't figure out how to solve it, try to make an educated guess instead of leaving the question blank. To learn how to come up with a solid plan to use to help you solve a math problem, scroll down! Did this summary help you? Yes No

  • Send fan mail to authors

Reader Success Stories

Thakgalo Mokalapa

Thakgalo Mokalapa

Feb 16, 2018

Did this article help you?

Offor Chukwuemeka

Offor Chukwuemeka

May 17, 2018

Anonymous

Jan 21, 2017

Isha Ahmed

May 3, 2018

Am I a Narcissist or an Empath Quiz

Featured Articles

Relive the 1970s (for Kids)

Trending Articles

How to Celebrate Passover: Rules, Rituals, Foods, & More

Watch Articles

Fold Boxer Briefs

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

Get all the best how-tos!

Sign up for wikiHow's weekly email newsletter

The Ultimate List of Math Hacks, Tricks, and Tips

By Hugo Pegley, 26 May 2022

No matter your age or grade level, math can be tough at times. Whether you’re learning geometry, division, or fractions, or a parent teaching your kid their times tables, math always seems to find a way to trip students up. Have no fear however, because we have compiled the largest list of math hacks on the Internet. We’ve scoured all the blogs, YouTube videos, textbooks, and more to deliver the 20 most useful math hacks and tricks to help you tackle even the toughest problems and help save you time in math class.

MULTIPLICATION TRICKS

Multiplication by 4 made easy.

Multiplying by 4 is easy when you know this simple trick!

All you have to do is take the number you are multiplying by 4, and multiply by 2. Then, multiply it by 2 again. That’s it, that’s the math hack!

Multiplying 5 times any even number

Multiplying an even number by 5 is a breeze with this hack!

Multiplying by 6

Want to multiply 6 by an even number? Check out an easy hack to make it simple!

Multiply numbers by eleven

Eleven can be a tricky number to multiply, but with this math hack you'll be there in no time and will enjoy math class!

Multiplication From 10-19

Wondering how to simplify multiplication of two numbers both between 10 and 19? Check this out:

This is how Japanese children learn to multiply!

The Japanese teach their kids to multiply with this math trick in math class!

Multiplying numbers that end in zero

Learn how to multiply numbers that end in zero

FRACTIONS TRICKS

Butterfly method to add and subtract fractions.

The butterfly method can simplify tough fraction problems for you. It also looks cool!

Find fractions of whole numbers with reverse Zorro.

The Reverse Zorro is a unique trick to find whole number fractions quickly. Check it out!

SQUARING AND CUBING TRICKS

Quickly square a two-digit number that ends in 5.

If you have a two-digit number that ends in 5, you can easily square it with this simple math trick!

Find the cube root without a calculator

Learn this math trick which helps you find the cube root without a calculator!

DIVISION TRICKS

These division math hacks will save you time and help you with those tricky division math problems!

Divisbility Rules for 2

Divisbility rules for 3, divisbility rules for 4, divisbility rules for 5, divisbility rules for 6, divisbility rules for 7, divisbility rules for 9, divisbility rules for 12, assorted math tricks, how to remember pi, the 6, 7, 8, and 9 times tables are in your hands..

Use your hands to do your times tables!

problem solving tips maths

How to Convert Fahrenheit to Celsius.

Quickly and easily calculate percentages.

Want to find a percentage quickly? Try this quick math hack!

Figuring Out An Hourly Rate

Converting from an annual salary to an hourly rate is easy with this simple math hack!

How to Add Large Numbers Easily!

Sometimes you need to use made up numbers on the SAT or ACT or other tests. Learn how to do this effectively!

We hope you enjoyed this list of ALL the best math hacks and math tricks to help you get through your schoolwork. Be sure to bookmark this page to come back when you need to find a quicker way to answer the problems!

Be the first to comment below.

Related posts:

  • Ways to Train Your Brain To Calculate Large Equations Mathematics has helped humans perform basic tasks since its inception. It helps us with finances,...
  • Multiplying and Dividing Integers Examples Integers are perhaps one of the easiest things to work with in mathematics. We start...
  • Tips for simplifying Algebraic Fractions An algebraic fraction is any fraction that uses a variable in the numerator or denominator....
  • Multiplying matrices This article points to 2 interactives that show how to multiply matrices....
  • Friday Math Movie - Google Tricks, Hacks and Easter Eggs This week's movie contains stuff you never knew you could do on Google - and...

Posted in Learning mathematics category - 26 May 2022 [ Permalink ]

Leave a comment

* Name (required)

* E-Mail (required - will not be published)

Your blog URL (can be left blank)

Notify me of followup comments via e-mail

Your comment:

Preview comment

Comment Preview

HTML: You can use simple tags like <b>, <a href="...">, etc.

To enter math , you can can either:

  • Use simple calculator-like input in the following format (surround your math in backticks, or qq on tablet or phone): `a^2 = sqrt(b^2 + c^2)` (See more on ASCIIMath syntax ); or
  • Use simple LaTeX in the following format. Surround your math with \( and \) . \( \int g dx = \sqrt{\frac{a}{b}} \) (This is standard simple LaTeX.)

NOTE: You can mix both types of math entry in your comment.

  • Ten Ways to Survive the Math Blues
  • How to understand math formulas
  • How to learn math formulas
  • How to make math class interesting?
  • SquareCirclez Sitemap
  • Mathematics (370)
  • Intmath Newsletters (180)
  • Learning mathematics (164)
  • Math movies (162)
  • Learning (general) (119)
  • Environmental math (66)
  • General (54)
  • Computers & Internet (40)
  • Math Supplies (23)
  • Contact (1)
  • Exam Guides (1)

Most Commented

  • Is 0 a Natural Number? (162)
  • How do you find exact values for the sine of all angles? (102)
  • How to understand math formulas (84)
  • How to find the equation of a quadratic function from its graph (82)
  • New measure of obesity - body adiposity index (BAI) (73)

Recent Trackbacks

(External blogs linking to IntMath)

SquareCirclez is a "Top 100" Math Blog

SquareCirclez in Top 100 Math Blogs collection

Want Better Math Grades?

✅ Unlimited Solutions

✅ Step-by-Step Answers

✅ Available 24/7

➕ Free Bonuses ($1085 value!)

Blog ⊗

  • blog sitemap
  • Mathematics
  • Intmath Newsletters
  • Learning mathematics
  • Math movies
  • Learning (general)
  • Environmental math
  • Computers & Internet
  • Math Supplies
  • Exam Guides
  • IntMath home
  • IntMath forum

Tips, tricks, lessons, and tutoring to help reduce test anxiety and move to the top of the class.

Email Address Sign Up

  • 1st Grade Math
  • 2nd Grade Math
  • 3rd Grade Math
  • 4th Grade Math
  • 5th Grade Math
  • 6th Grade Math
  • 7th Grade Math
  • 8th Grade Math
  • Knowledge Base
  • Math for kids

10 Strategies for Problem Solving in Math

May 19, 2022

8 minutes read

strategies for problem solving in math

When faced with problem-solving, children often get stuck. Word puzzles and math questions with an unknown variable, like x, usually confuse them. Therefore, this article discusses math strategies and how your students may use them since instructors often have to lead students through this problem-solving maze.

What Are Problem Solving Strategies in Math?

If you want to fix a problem, you need a solid plan. Math strategies for problem solving are ways of tackling math in a way that guarantees better outcomes. These strategies simplify math for kids so that less time is spent figuring out the problem. Both those new to mathematics and those more knowledgeable about the subject may benefit from these methods.

There are several methods to apply problem-solving procedures in math, and each strategy is different. While none of these methods failsafe, they may help your student become a better problem solver, particularly when paired with practice and examples. The more math problems kids tackle, the more math problem solving skills they acquire, and practice is the key.

Strategies for Problem-solving in Math

Even if a student is not a math wiz, a suitable solution to mathematical problems in math may help them discover answers. There is no one best method for helping students solve arithmetic problems, but the following ten approaches have shown to be very effective.

Understand the Problem

Understanding the nature of math problems is a prerequisite to solving them. They need to specify what kind of issue it is ( fraction problem , word problem, quadratic equation, etc.). Searching for keywords in the math problem, revisiting similar questions, or consulting the internet are all great ways to strengthen their grasp of the material. This step keeps the pupil on track.

1:1 Math Lessons

Want to raise a genius? Start learning Math with Brighterly

Guess and check.

One of the time-intensive strategies for resolving mathematical problems is the guess and check method. In this approach, students keep guessing until they get the answer right.

After assuming how to solve a math issue, students should reintroduce that assumption to check for correctness. While the approach may appear cumbersome, it is typically successful in revealing patterns in a child’s thought process.

Work It Out

Encourage pupils to record their thinking process as they go through a math problem. Since this technique requires an initial comprehension of the topic, it serves as a self-monitoring method for mathematics students. If they immediately start solving the problem, they risk making mistakes.

Students may keep track of their ideas and fix their math problems as they go along using this method. A youngster may still need you to explain their methods of solving the arithmetic questions on the extra page. This confirmation stage etches the steps they took to solve the problem in their minds.

Work Backwards

In mathematics, a fresh perspective is sometimes the key to a successful solution. Young people need to know that the ability to recreate math problems is valuable in many professional fields, including project management and engineering.

Students may better prepare for difficulties in real-world circumstances by using the “Work Backwards” technique. The end product may be used as a start-off point to identify the underlying issue.

In most cases, a visual representation of a math problem may help youngsters understand it better. Some of the most helpful math tactics for kids include having them play out the issue and picture how to solve it.

One way to visualize a workout is to use a blank piece of paper to draw a picture or make tally marks. Students might also use a marker and a whiteboard to draw as they demonstrate the technique before writing it down.

Find a Pattern

Kids who use pattern recognition techniques can better grasp math concepts and retain formulae. The most remarkable technique for problem solving in mathematics is to help students see patterns in math problems by instructing them how to extract and list relevant details. This method may be used by students when learning shapes and other topics that need repetition.

Students may use this strategy to spot patterns and fill in the blanks. Over time, this strategy will help kids answer math problems quickly.

When faced with a math word problem, it might be helpful to ask, “What are some possible solutions to this issue?” It encourages you to give the problem more thought, develop creative solutions, and prevent you from being stuck in a rut. So, tell the pupils to think about the math problems and not just go with the first solution that comes to mind.

Draw a Picture or Diagram

Drawing a picture of a math problem can help kids understand how to solve it, just like picturing it can help them see it. Shapes or numbers could be used to show the forms to keep things easy. Kids might learn how to use dots or letters to show the parts of a pattern or graph if you teach them.

Charts and graphs can be useful even when math isn’t involved. Kids can draw pictures of the ideas they read about to help them remember them after they’ve learned them. The plan for how to solve the mathematical problem will help kids understand what the problem is and how to solve it.

Trial and Error Method

The trial and error method may be one of the most common problem solving strategies for kids to figure out how to solve problems. But how well this strategy is used will determine how well it works. Students have a hard time figuring out math questions if they don’t have clear formulas or instructions.

They have a better chance of getting the correct answer, though, if they first make a list of possible answers based on rules they already know and then try each one. Don’t be too quick to tell kids they shouldn’t learn by making mistakes.

Review Answers with Peers

It’s fun to work on your math skills with friends by reviewing the answers to math questions together. If different students have different ideas about how to solve the same problem, get them to share their thoughts with the class.

During class time, kids’ ways of working might be compared. Then, students can make their points stronger by fixing these problems.

Check out the Printable Math Worksheets for Your Kids!

There are different ways to solve problems that can affect how fast and well students do on math tests. That’s why they need to learn the best ways to do things. If students follow the steps in this piece, they will have better experiences with solving math questions.

Author Jessica Kaminski

Jessica is a a seasoned math tutor with over a decade of experience in the field. With a BSc and Master’s degree in Mathematics, she enjoys nurturing math geniuses, regardless of their age, grade, and skills. Apart from tutoring, Jessica blogs at Brighterly. She also has experience in child psychology, homeschooling and curriculum consultation for schools and EdTech websites.

Previous Article Image

As adults, we take numbers for granted, but preschoolers and kindergartners have no idea what these symbols mean. Yet, we often demand instant understanding and flawless performance when we start teaching numbers to our children. If you don’t have a clue about how to teach numbers for kids, browse no more. You will get four […]

Previous Article Image

Teaching children is a complex process because they require more attention than an adult person. You may need to employ different teaching strategies when teaching kids. But what are teaching strategies? Teaching strategies are the methods to ensure your kids or students learn efficiently. But not all strategies yield similarly, and if the one you […]

Book 1 to 1 Math Lesson

Image -Book 1 to 1 Math Lesson

Kid’s grade

After-School Math Program Boost Your Child's Math Abilities! Ideal for 1st-8th Graders, Perfectly Synced with School Curriculum!

After-School Math Program

After-School Math Program

Related posts.

How to Teach Addition to Kindergarten

How to Teach Addition to Kindergarten Students

Teachers and parents often start learning math with children with the addition definition for kids and its different concepts since it provides the foundation for later mathematical literacy and reasoning. If you’re a kindergarten teacher looking for an addition definition for kindergarten or how to introduce addition to your pupils, this post has you covered. […]

Apr 05, 2022

teaching kids about money

How To Teach Kids About Money?

As we venture deeper into the age of digital finance management, you need to start teaching children about money early. The earlier you start teaching kids about money, the more poised they would be to plan their finances as adults. They do not only need to learn to count money; they also need to understand […]

Feb 22, 2022

math intervention programs

The Importance of Math Intervention Programs

Math intervention programs for elementary can make a big difference for a child who cannot grasp math topics quickly and needs additional support. Some schools implement free math intervention programs to help students who experience trouble with math. But what are these intervention programs, and is it for your child? This article will focus on […]

May 20, 2022

We use cookies to help give you the best service possible. If you continue to use the website we will understand that you consent to the Terms and Conditions. These cookies are safe and secure. We will not share your history logs with third parties. Learn More

  • Math for Kids
  • Parenting Resources
  • ELA for Kids
  • Teaching Resources

SplashLearn Blog

How to Teach Number Formation in 5 Easy Steps

13 Best Resources for Math Videos for Kids: Math Made Fun

How to Teach Skip Counting to Kids in 9 Easy Steps

10 Best Math Intervention Strategies for Struggling Students

How to Teach Division to Kids in 11 Easy Steps

How to Cope With Test Anxiety in 12 Easy Ways

Developmental Milestones for 4 Year Olds: The Ultimate Guide

Simple & Stress-Free After School Schedule for Kids of All Ages

When Do Kids Start Preschool: Age & Readiness Skills

Kindergarten Readiness Checklist: A Guide for Parents

How to Teach Letter Formtaion to Kids in 9 Easy Steps

15 Best Literacy Activities for Preschoolers in 2024

12 Best Poems About Teachers Who Change Lives

6 Effective Ways to Improve Writing Skills

40 Four Letter Words That Start With A

13 Best Online Teaching Tips for Teachers

How to Teach Kids to Write in 9 Easy Steps

13 Challenges for Teachers and How to Address Them

12 Best Qualities of a Good Teacher

15 Best Innovative Tech Tools for Teachers

10 Best Strategies for Solving Math Word Problems

Solving word problem chart

1. Understand the Problem by Paraphrasing

2. identify key information and variables, 3. translate words into mathematical symbols, 4. break down the problem into manageable parts, 5. draw diagrams or visual representations, 6. use estimation to predict answers, 7. apply logical reasoning for unknown variables, 8. leverage similar problems as templates, 9. check answers in the context of the problem, 10. reflect and learn from mistakes.

Have you ever observed the look of confusion on a student’s face when they encounter a math word problem ? It’s a common sight in classrooms worldwide, underscoring the need for effective strategies for solving math word problems . The main hurdle in solving math word problems is not just the math itself but understanding how to translate the words into mathematical equations that can be solved.

SplashLearn: Most Comprehensive Learning Program for PreK-5

Product logo

SplashLearn inspires lifelong curiosity with its game-based PreK-5 learning program loved by over 40 million children. With over 4,000 fun games and activities, it’s the perfect balance of learning and play for your little one.

Generic advice like “read the problem carefully” or “practice more” often falls short in addressing students’ specific difficulties with word problems. Students need targeted math word problem strategies that address the root of their struggles head-on. 

A Guide on Steps to Solving Word Problems: 10 Strategies 

One of the first steps in tackling a math word problem is to make sure your students understand what the problem is asking. Encourage them to paraphrase the problem in their own words. This means they rewrite the problem using simpler language or break it down into more digestible parts. Paraphrasing helps students grasp the concept and focus on the problem’s core elements without getting lost in the complex wording.

Original Problem: “If a farmer has 15 apples and gives away 8, how many does he have left?”

Paraphrased: “A farmer had some apples. He gave some away. Now, how many apples does he have?”

This paraphrasing helps students identify the main action (giving away apples) and what they need to find out (how many apples are left).

Play these subtraction word problem games in the classroom for free:

Card Image

Students often get overwhelmed by the details in word problems. Teach them to identify key information and variables essential for solving the problem. This includes numbers , operations ( addition , subtraction , multiplication , division ), and what the question is asking them to find. Highlighting or underlining can be very effective here. This visual differentiation can help students focus on what’s important, ignoring irrelevant details.

  • Encourage students to underline numbers and circle keywords that indicate operations (like ‘total’ for addition and ‘left’ for subtraction).
  • Teach them to write down what they’re solving for, such as “Find: Total apples left.”

Problem: “A classroom has 24 students. If 6 more students joined the class, how many students are there in total?”

Key Information:

  • Original number of students (24)
  • Students joined (6)
  • Looking for the total number of students

Here are some fun addition word problems that your students can play for free:

Card Image

The transition from the language of word problems to the language of mathematics is a critical skill. Teach your students to convert words into mathematical symbols and equations. This step is about recognizing keywords and phrases corresponding to mathematical operations and expressions .

Common Translations:

  • “Total,” “sum,” “combined” → Addition (+)
  • “Difference,” “less than,” “remain” → Subtraction (−)
  • “Times,” “product of” → Multiplication (×)
  • “Divided by,” “quotient of” → Division (÷)
  • “Equals” → Equals sign (=)

Problem: “If one book costs $5, how much would 4 books cost?”

Translation: The word “costs” indicates a multiplication operation because we find the total cost of multiple items. Therefore, the equation is 4 × 5 = $20

Complex math word problems can often overwhelm students. Incorporating math strategies for problem solving, such as teaching them to break down the problem into smaller, more manageable parts, is a powerful approach to overcome this challenge. This means looking at the problem step by step rather than simultaneously trying to solve it. Breaking it down helps students focus on one aspect of the problem at a time, making finding the solution more straightforward.

Problem: “John has twice as many apples as Sarah. If Sarah has 5 apples, how many apples do they have together?”

Steps to Break Down the Problem:

Find out how many apples John has: Since John has twice as many apples as Sarah, and Sarah has 5, John has 5 × 2 = 10

Calculate the total number of apples: Add Sarah’s apples to John’s to find the total,  5 + 10 = 15

By splitting the problem into two parts, students can solve it without getting confused by all the details at once.

Explore these fun multiplication word problem games:

Card Image

Diagrams and visual representations can be incredibly helpful for students, especially when dealing with spatial or quantity relationships in word problems. Encourage students to draw simple sketches or diagrams to represent the problem visually. This can include drawing bars for comparison, shapes for geometry problems, or even a simple distribution to better understand division or multiplication problems .

Problem: “A garden is 3 times as long as it is wide. If the width is 4 meters, how long is the garden?”

Visual Representation: Draw a rectangle and label the width as 4 meters. Then, sketch the length to represent it as three times the width visually, helping students see that the length is 4 × 3 = 12

Estimation is a valuable skill in solving math word problems, as it allows students to predict the answer’s ballpark figure before solving it precisely. Teaching students to use estimation can help them check their answers for reasonableness and avoid common mistakes.

Problem: “If a book costs $4.95 and you buy 3 books, approximately how much will you spend?”

Estimation Strategy: Round $4.95 to the nearest dollar ($5) and multiply by the number of books (3), so 5 × 3 = 15. Hence, the estimated total cost is about $15.

Estimation helps students understand whether their final answer is plausible, providing a quick way to check their work against a rough calculation.

Check out these fun estimation and prediction word problem worksheets that can be of great help:

Card Image

When students encounter problems with unknown variables, it’s crucial to introduce them to logical reasoning. This strategy involves using the information in the problem to deduce the value of unknown variables logically. One of the most effective strategies for solving math word problems is working backward from the desired outcome. This means starting with the result and thinking about the steps leading to that result, which can be particularly useful in algebraic problems.

Problem: “A number added to three times itself equals 32. What is the number?”

Working Backward:

Let the unknown number be x.

The equation based on the problem is  x + 3x = 32

Solve for x by simplifying the equation to 4x=32, then dividing by 4 to find x=8.

By working backward, students can more easily connect the dots between the unknown variable and the information provided.

Practicing problems of similar structure can help students recognize patterns and apply known strategies to new situations. Encourage them to leverage similar problems as templates, analyzing how a solved problem’s strategy can apply to a new one. Creating a personal “problem bank”—a collection of solved problems—can be a valuable reference tool, helping students see the commonalities between different problems and reinforcing the strategies that work.

Suppose students have solved a problem about dividing a set of items among a group of people. In that case, they can use that strategy when encountering a similar problem, even if it’s about dividing money or sharing work equally.

It’s essential for students to learn the habit of checking their answers within the context of the problem to ensure their solutions make sense. This step involves going back to the original problem statement after solving it to verify that the answer fits logically with the given information. Providing a checklist for this process can help students systematically review their answers.

Checklist for Reviewing Answers:

  • Re-read the problem: Ensure the question was understood correctly.
  • Compare with the original problem: Does the answer make sense given the scenario?
  • Use estimation: Does the precise answer align with an earlier estimation?
  • Substitute back: If applicable, plug the answer into the problem to see if it works.

Problem: “If you divide 24 apples among 4 children, how many apples does each child get?”

After solving, students should check that they understood the problem (dividing apples equally).

Their answer (6 apples per child) fits logically with the number of apples and children.

Their estimation aligns with the actual calculation.

Substituting back 4×6=24 confirms the answer is correct.

Teaching students to apply logical reasoning, leverage solved problems as templates, and check their answers in context equips them with a robust toolkit for tackling math word problems efficiently and effectively.

One of the most effective ways for students to improve their problem-solving skills is by reflecting on their errors, especially with math word problems. Using word problem worksheets is one of the most effective strategies for solving word problems, and practicing word problems as it fosters a more thoughtful and reflective approach to problem-solving

These worksheets can provide a variety of problems that challenge students in different ways, allowing them to encounter and work through common pitfalls in a controlled setting. After completing a worksheet, students can review their answers, identify any mistakes, and then reflect on them in their mistake journal. This practice reinforces mathematical concepts and improves their math problem solving strategies over time.

3 Additional Tips for Enhancing Word Problem-Solving Skills

Before we dive into the importance of reflecting on mistakes, here are a few impactful tips to enhance students’ word problem-solving skills further:

1. Utilize Online Word Problem Games

A word problem game

Incorporate online games that focus on math word problems into your teaching. These interactive platforms make learning fun and engaging, allowing students to practice in a dynamic environment. Games can offer instant feedback and adaptive challenges, catering to individual learning speeds and styles.

Here are some word problem games that you can use for free:

Card Image

2. Practice Regularly with Diverse Problems

Word problem worksheet

Consistent practice with a wide range of word problems helps students become familiar with different questions and mathematical concepts. This exposure is crucial for building confidence and proficiency.

Start Practicing Word Problems with these Printable Word Problem Worksheets:

Card Image

3. Encourage Group Work

Solving word problems in groups allows students to share strategies and learn from each other. A collaborative approach is one of the best strategies for solving math word problems that can unveil multiple methods for tackling the same problem, enriching students’ problem-solving toolkit.

Conclusion 

Mastering math word problems is a journey of small steps. Encourage your students to practice regularly, stay curious, and learn from their mistakes. These strategies for solving math word problems are stepping stones to turning challenges into achievements. Keep it simple, and watch your students grow their confidence and skills, one problem at a time.

Frequently Asked Questions (FAQs)

How can i help my students stay motivated when solving math word problems.

Encourage small victories and use engaging tools like online games to make practice fun and rewarding.

What's the best way to teach beginners word problems?

Begin with simple problems that integrate everyday scenarios to make the connection between math and real-life clear and relatable.

How often should students practice math word problems?

Regular, daily practice with various problems helps build confidence and problem-solving skills over time.

problem solving tips maths

Most Popular

problem solving tips maths

15 Best Report Card Comments Samples

A working mom and her daughter in the bedroom, Mom is working while daughter is playing with her toys.

101 Best Riddles for Kids (With Explanation)

Good vibes quotes by SplashLearn

40 Best Good Vibes Quotes to Brighten Your Day

Recent posts.

Classical homeschooling wallpaper

What is Classical Homeschooling: A Comprehensive Guide

Someone writing letters

Math & ELA | PreK To Grade 5

Kids see fun., you see real learning outcomes..

Watch your kids fall in love with math & reading through our scientifically designed curriculum.

Parents, try for free Teachers, use for free

Banner Image

  • Games for Kids
  • Worksheets for Kids
  • Math Worksheets
  • ELA Worksheets
  • Math Vocabulary
  • Number Games
  • Addition Games
  • Subtraction Games
  • Multiplication Games
  • Division Games
  • Addition Worksheets
  • Subtraction Worksheets
  • Multiplication Worksheets
  • Division Worksheets
  • Times Tables Worksheets
  • Reading Games
  • Writing Games
  • Phonics Games
  • Sight Words Games
  • Letter Tracing Games
  • Reading Worksheets
  • Writing Worksheets
  • Phonics Worksheets
  • Sight Words Worksheets
  • Letter Tracing Worksheets
  • Prime Number
  • Order of Operations
  • Long multiplication
  • Place value
  • Parallelogram
  • SplashLearn Success Stories
  • SplashLearn Apps
  • [email protected]

© Copyright - SplashLearn

Banner Image

Make study-time fun with 14,000+ games & activities, 450+ lesson plans, and more—free forever.

Parents, Try for Free Teachers, Use for Free

  • Grades 6-12
  • School Leaders

Learn How to Support Stressed and Anxious Students.

14 Effective Ways to Help Your Students Conquer Math Word Problems

If a train leaving Minneapolis is traveling at 87 miles an hour…

Word Problems WeAreTeachers

Word problems can be tricky for a lot of students, but they’re incredibly important to master. After all, in the real world, most math is in the form of word problems. “If one gallon of paint covers 400 square feet, and my wall measures 34 feet by 8 feet, how many gallons do I need?” “This sweater costs $135, but it’s on sale for 35% off. So how much is that?” Here are the best teacher-tested ideas for helping kids get a handle on these problems.

1. Solve word problems regularly

problem solving tips maths

This might be the most important tip of all. Word problems should be part of everyday math practice, especially for older kids. Whenever possible, use word problems every time you teach a new math skill. Even better: give students a daily word problem to solve so they’ll get comfortable with the process.

Learn more: Teaching With Jennifer Findlay

2. Teach problem-solving routines

Word Problems Teacher Trap

There are a LOT of strategies out there for teaching kids how to solve word problems (keep reading to see some terrific examples). The important thing to remember is that what works for one student may not work for another. So introduce a basic routine like Plan-Solve-Check that every kid can use every time. You can expand on the Plan and Solve steps in a variety of ways, but this basic 3-step process ensures kids slow down and take their time.

Learn more: Word Problems Made Easy

[contextly_auto_sidebar]

3. Visualize or model the problem

problem solving tips maths

Encourage students to think of word problems as an actual story or scenario. Try acting the problem out if possible, and draw pictures, diagrams, or models. Learn more about this method and get free printable templates at the link.

Learn more: Math Geek Mama

4. Make sure they identify the actual question

problem solving tips maths

Educator Robert Kaplinsky asked 32 eighth grade students to answer this nonsensical word problem. Only 25% of them realized they didn’t have the right information to answer the actual question; the other 75% gave a variety of numerical answers that involved adding, subtracting, or dividing the two numbers. That tells us kids really need to be trained to identify the actual question being asked before they proceed. 

Learn more: Robert Kaplinsky

5. Remove the numbers

problem solving tips maths

It seems counterintuitive … math without numbers? But this word problem strategy really forces kids to slow down and examine the problem itself, without focusing on numbers at first. If the numbers were removed from the sheep/shepherd problem above, students would have no choice but to slow down and read more carefully, rather than plowing ahead without thinking. 

Learn more: Where the Magic Happens Teaching

6. Try the CUBES method

problem solving tips maths

This is a tried-and-true method for teaching word problems, and it’s really effective for kids who are prone to working too fast and missing details. By taking the time to circle, box, and underline important information, students are more likely to find the correct answer to the question actually being asked.

Learn more: Teaching With a Mountain View

7. Show word problems the LOVE

Word Problems Jennifer Findlay

Here’s another fun acronym for tackling word problems: LOVE. Using this method, kids Label numbers and other key info, then explain Our thinking by writing the equation as a sentence. They use Visuals or models to help plan and list any and all Equations they’ll use. 

8. Consider teaching word problem key words

problem solving tips maths

This is one of those methods that some teachers love and others hate. Those who like it feel it offers kids a simple tool for making sense of words and how they relate to math. Others feel it’s outdated, and prefer to teach word problems using context and situations instead (see below). You might just consider this one more trick to keep in your toolbox for students who need it.

Learn more: Book Units Teacher

9. Determine the operation for the situation

problem solving tips maths

Instead of (or in addition to) key words, have kids really analyze the situation presented to determine the right operation(s) to use. Some key words, like “total,” can be pretty vague. It’s worth taking the time to dig deeper into what the problem is really asking. Get a free printable chart and learn how to use this method at the link.

Learn more: Solving Word Problems With Jennifer Findlay

10. Differentiate word problems to build skills

problem solving tips maths

Sometimes students get so distracted by numbers that look big or scary that they give up right off the bat. For those cases, try working your way up to the skill at hand. For instance, instead of jumping right to subtracting 4 digit numbers, make the numbers smaller to start. Each successive problem can be a little more difficult, but kids will see they can use the same method regardless of the numbers themselves.

Learn more: Differentiating Math 

11. Ensure they can justify their answers

problem solving tips maths

One of the quickest ways to find mistakes is to look closely at your answer and ensure it makes sense. If students can explain how they came to their conclusion, they’re much more likely to get the answer right. That’s why teachers have been asking students to “show their work” for decades now.

Learn more: Madly Learning

12. Write the answer in a sentence

problem solving tips maths

When you think about it, this one makes so much sense. Word problems are presented in complete sentences, so the answers should be too. This helps students make certain they’re actually answering the question being asked… part of justifying their answer.

Learn more: Multi-Step Word Problems

13. Add rigor to your word problems

problem solving tips maths

A smart way to help kids conquer word problems is to, well… give them better problems to conquer. A rich math word problem is accessible and feels real to students, like something that matters. It should allow for different ways to solve it and be open for discussion. A series of problems should be varied, using different operations and situations when possible, and even include multiple steps. Visit both of the links below for excellent tips on adding rigor to your math word problems.

Learn more: The Routty Math Teacher and Alyssa Teaches

14. Use a problem-solving rounds activity.

Word Problems Teacher Trap 3

Put all those word problem strategies and skills together with this whole-class activity. Start by reading the problem as a group and sharing important information. Then, have students work with a partner to plan how they’ll solve it. In round three, kids use those plans to solve the problem individually. Finally, they share their answer and methods with their partner and the class. Be sure to recognize and respect all problem-solving strategies that lead to the correct answer.

Learn more: Teacher Trap

Like these word problem tips and tricks? Learn more about Why It’s Important to Honor All Math Strategies .

Plus, 60+ Awesome Websites For Teaching and Learning Math .

Copyright © 2024. All rights reserved. 5335 Gate Parkway, Jacksonville, FL 32256

Differentiated Teaching

5 Ways to Build Math Problem Solving Skills (based on brain research)

Whether talking about state tests or meeting with your team to plan the next math unit, the conversation inevitably turns to word problems. But knowing how to build math problem-solving skills without resorting to pages of boring story problem practice can be hard.

These days word problems aren’t the basic one-step wonders that many of us dealt with as students. Instead, multi-step story problems that require students to apply multiple concepts and skills are incorporated into instruction and state assessments.

Understanding brain research can help simply the process of teaching this challenging format of math problem-solving to students, including those who struggle.

step-by-step math problem-solving for word problems

What research says about building master problem solvers in math

Have you seen how many math skills we must teach these days? No teacher has enough time to build critical math skills AND effectively teach problem-solving…or do they?

Research would argue we are going about these tasks all wrong. They say there are many reasons students struggle with math word problems , but one big one is that we aren’t doing what’s best for the brain. Instead, here’s what the brain research says about the must-have elements for building step-by-step math problem-solving mastery.

Finding #1: Becoming a master problem solver requires repetition.

Duh, right? Any good teacher knows this…but what’s the best recipe for repetition if you want students to master math word problems? How much practice? How often?

Let’s start with the concept of mastery.

How do you develop math problem solving skills?

In the 1990’s, Anders Ericsson studied experts to explore what made some people excel. Findings showed a positive correlation between the amount of deliberate practice (activities that require a high level of concentration and aren’t necessarily inherently fun) and skill level.

In other words, the more practice someone gets, the more they improve. This became the basis of Malcolm Gladwell’s 10,000-hour rule, which stated that it takes 10,000 hours to make you an expert in a field.

But what should that practice look like for students who struggle with word problems? Is it better to have a deep dive into story problems, or do short bursts of practice do more for long-term understanding?

Designing Better Word Problem Activities: Building Step-by-step Math Problem-Solving Practice

We can look at Ebbinghaus’ work on memory & retention to answer that.  He found spacing practice over time decreased the number of exposures needed. In other words, small amounts of practice over several days, weeks, or even months actually means you need LESS practice than if you try to cram it all in at once.

For over 80 years, this finding has stood the test of time. While research has shown that students who engage in mass practice (lots of practice all at once) might do better on an assessment that takes place tomorrow, students who engage in repeated practice over a period of time retain more skills long-term (Bloom & Shuell, 1981; Rea & Modigliani, 1985).

And how long does the research say you should spend reviewing?

How long should should students be practicing with story problems to build math problem solving skills ?

How long should problem-solving practice really be?

Shorter is better. As discussed earlier, peak attention required for deliberate practice can only be maintained for so long. And the majority of research supports 8-10 minutes as the ideal lesson length (Robertson, 2010).

This means practice needs to be focused so that during those minutes of discussion, you can dive deep – breaking down the word problem and discussing methods to solve it.

Teacher Tip: Applying this finding to your classroom

Less is actually more as long as you plan to practice regularly. While students who struggle with word problems may need a great deal of practice to master word problems, ideally, this practice should be provided in short, regular intervals with no more than 8-10 minutes spent in whole group discussion.

Here are a few simple steps to apply these findings to your math classroom:

  • Find 8-12 minutes in your daily schedule to focus on problem-solving – consider this time sacred & only for problem-solving.
  • Select only 1-2 word problems per day. Target step-by-step math problem-solving to build math problem-solving skills through a less-is-more approach using Problem of the Day .

Finding #2: Students who are challenged & supported have better outcomes.

Productive struggle, as it is called in the research, focuses on the effortful practice that builds long-term understanding.

Important to this process are opportunities for choice, collaboration, and the use of materials or topics of interest (which will be discussed later).

This productive struggle also helps students build flexible thinking so that they can apply previously learned skills to new or unfamiliar tasks (Bransford, Brown, & Cocking, 2000).

“Meaningful learning tasks need to challenge ever student in some way. It is crucial that no student be able to coast to success time after time; this experience can create the belief that you are smart only if you can succeed without effort.” -Carol Dweck

It is also critical to provide support and feedback during the challenging task (Cimpian, Arce, Markman, & Dweck, 2007). This prevents frustration and fear of failure when the goal seems out of reach or when a particularly challenging task arises.

Simple ways to build productive struggle into your math classroom

Giving students who struggle with word problems a chance to struggle with challenging word problems is critical to building confidence and skills. However, this challenge must be reasonable, or the learner’s self-esteem will falter, and students need support and regular feedback to achieve their potential.

Here are a few simple things to try:

  • Select problems that are just at the edge of students’ Zone of Proximal Development.
  • Scaffold or model with more challenging problems to support risk-taking.
  • Give regular feedback & support – go over the work and discuss daily.

Finding #3: Novelty & variation are keys to engagement.

When it comes to standardized testing (and life in general), problems that arise aren’t labeled with the skills and strategies required to solve them.

This makes it important to provide mixed practice opportunities so students are focused on asking themselves questions about what the problem is asking and what they are trying to find.

This type of variation not only supports a deeper level of engagement, it also supports the metacognitive strategies needed to analyze and develop a strategy to solve (Rohrer & Taylor, 2014).

The benefits of novelty in learning

A 2013 study also supports the importance of novelty in supporting reinforcement learning (aka review). The findings suggested that when task variation was provided for an already familiar skill, it offered the following benefits:

  • reduced errors due to lack of focus
  • helped learners maintain attention to task
  • motivated and engaged student

Using variety to build connections & deepen understanding

In addition, by providing variations in practice, we can also help learners understand the skills and strategies they are using on a deeper level.  

When students who struggle with word problems are forced to apply their toolbox of strategies to novel problem formats, they begin to analyze and observe patterns in how problems are structured and the meaning they bring.

This requires much more engagement than being handed a sheet full of multiplication story problems, where students can pull the numbers and compute with little focus on understanding.

Designing word problems that incorporate variety & novelty

Don’t be afraid to shake things up!

Giving students practice opportunities with different skills or problem formats mixed in is a great way to boost engagement and develop meta-cognitive skills.

Here are a few tips for trying it out in the classroom:

  • Change it up! Word problem practice doesn’t have to match the day’s math lesson.
  • Give opportunities to practice the same skill or strategy in via different formats.
  • Adjust the wording and/or topic in word problems to help students generalize skills.

Finding #4: Interest and emotion increase retention and skill development.

Attention and emotion are huge for learning. We’ve all seen it in our classroom.

Those magical lessons that hook learners are the ones that stick with them for years to come, but what does the research say?

build problem solving for students who struggle with word problems

The Science Behind Emotion & Learning

Neuroscientists have shown that emotions create connections among different sections of the brain (Immordino-Yang, 2016) . This supports long-term retrieval of the skills taught and a deeper connection to the learning.

This means if you can connect problem-solving with a scenario or a feeling, your students will be more likely to internalize the skills being practiced. Whether this is by “wowing” them with a little-known fact or solving real-world problems, the emotional trigger can be huge for learning.

What about incorporating student interests?

As for student interests, a long line of research supports the benefits of using these to increase educational outcomes and student motivation, including for students who struggle with word problems (Chen, 2001; Chen & Ennis, 2004; Solomon, 1996).

Connecting classwork with student interests has increased students’ intentions to participate in future learning endeavors (Chen, 2001).

And interests don’t just mean that love of Pokemon!

It means allowing social butterflies to work collaboratively. Providing students with opportunities to manipulate real objects or create models. Allowing kids to be authentic while digging in and developing the skills they need to master their learning objectives.

What this looks like in a math class

Evoke emotion and use student interests to engage the brain in deep, long-lasting learning whenever possible.

This will help with today’s learning and promote long-term engagement, even when later practice might not be as interesting for students who struggle with word problems.

Here’s how to start applying this research today:

  • Find word problems that match student interests.
  • Connect real-life situations and emotions to story problem practice.
  • Consider a weekly theme to connect practice throughout the week.

Finding #5: Student autonomy builds confidence & independence.

Autonomy is a student’s ability to be in control of their learning. In other words, it is their ability to take ownership over the learning process and how they demonstrate mastery.

Why students need to control their learning

Research shows that providing students a sense of control and supporting their choices is way to help engage learners and build independent thinking. It also increased intrinsic motivation (Reeve, Nix, & Hamm, 2003).

However, this doesn’t mean we just let kids learn independently. Clearly, some things require repeated guidance and modeling. Finding small ways that students can take control of the learning process is much better in these instances.

We know that giving at least partial autonomy has been linked to numerous positive student learning outcomes (Wielenga-Meijer, Taris, Widboldus, & Kompier, 2011).

But how can we foster this independence and autonomy, especially with those students who struggle to self-regulate behavior?

Fostering independence in students who struggle to stay on task

Well, the research says several conditions support building toward independence.

The first (and often neglected) is to explain unappealing choices and why they are one of the options.

When it comes to word problems, this might include explaining the rationale behind one of the strategies that appears to be a lot more work than the others.

It is also important to acknowledge students’ negative feelings about a task or their ability to complete it. While we want them to be able to build independence, we don’t want them to drown in overwhelm.

By providing emotional support, we can help determine whether a student is stuck with the learning or with the emotions from the cognitive challenge.

Finally, giving choices is recommended. Identifying choices you and your students who struggle with word problems can live with is an important step.

Whether this is working in partners, trying an alternative method, or skipping a problem and coming back, students need to feel like they have some ownership over the challenge they are working through.

By building in opportunities for autonomy, and choice, teachers help students build a sense of self-efficacy and confidence in their ability to be successful learners across various contexts (McCombs, 2002,2006).

We know this leads to numerous positive outcomes and has even been linked to drop-out prevention (Christenson & Thurlow, 2004).

Fostering autonomy in your classroom

You’re not going to be able to hold their hands forever.

Giving opportunities to work through challenges independently and to feel ownership for their choices will help build both confidence and skills.

Here’s how to get started letting go:

  • Give students time to tackle the problem independently (or in partners).
  • Don’t get hyper-focused on a single method to solve – give opportunities to share & learn together.
  • Provide appropriate support (where needed) to build autonomy for all learners – like reading the problem orally.

Finding #6: Students need to be taught how to fail & recover from it.

Despite Ericsson’s findings discussed early on in this post, talent does matter, and it is important to teach students to recover from failure because those are the moments when they learn the most.

A 2014 study by Brooke Macnamara analyzed 88 studies to determine how talent factored into deliberate practice.

Her findings show what we (as teachers) already know, students may require different amounts of practice to reach the same skill level…but how do we keep those struggling students from keeping up?

Failure Quote 1 build math problem solving skills

Growth mindset research gives us insight into ways to support students who struggle with word problems, encourage all students in math problem-solving, and harness the power of failure through “yet.”

You might not be able to do something yet, but if you keep trying, you will. This opens the door for multiple practice opportunities where students learn from each other.

importance of failure

And what about the advanced students?

Many of these students have not experienced failure, but they may have met their match when it comes to complex word problems.

To support these students, who may be experiencing their first true challenge, we need to have high standards and provide constructive, supportive feedback on how to grow.

Then we need to give them space to try again.

There is great power in allowing students to revise and try again, but our grading system often discourages being comfortable with failure.

Building the confidence to fail in your classroom

Many students feel the pressure always to have the right answer. Allowing students to fail safely means you can help them learn from these failures so they don’t make the same mistake twice.

Here’s how you can safely foster growth and build math problem solving skills through failure in your classroom:

  • Build in time to analyze errors & reflect.
  • Reward effort & growth as much as, if not more than, accuracy.
  • ​At least initially, skip the grading so students aren’t afraid to be wrong.

Getting started with brain-based problem solving

The brain research is clear.

Spending 45 minutes focused on a sheet of word problems following the same format isn’t the answer.

By implementing this research, you can save yourself time and the frustration from a disengaged class.

Daily Problem Solving - 6th Grade

Based on this research, I’ve created Daily Problem Solving bundles to save you time and build math problem-solving skills. You can get each month separately or buy the full-year bundle at a major discount.

Currently, I offer these bundles for several grade levels, including:

Try Daily Problem Solving with your Learners

Of course, you do! Start working to build step-by-step math problem-solving skills today by clicking the button below to sign up for a free set of Daily Problem Solving.

Leave a comment Cancel reply

You must be logged in to post a comment.

problem solving tips maths

problem solving tips maths

Teaching Problem Solving in Math

  • Freebies , Math , Planning

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

Every year my students can be fantastic at math…until they start to see math with words. For some reason, once math gets translated into reading, even my best readers start to panic. There is just something about word problems, or problem-solving, that causes children to think they don’t know how to complete them.

Every year in math, I start off by teaching my students problem-solving skills and strategies. Every year they moan and groan that they know them. Every year – paragraph one above. It was a vicious cycle. I needed something new.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

I put together a problem-solving unit that would focus a bit more on strategies and steps in hopes that that would create problem-solving stars.

The Problem Solving Strategies

First, I wanted to make sure my students all learned the different strategies to solve problems, such as guess-and-check, using visuals (draw a picture, act it out, and modeling it), working backward, and organizational methods (tables, charts, and lists). In the past, I had used worksheet pages that would introduce one and provide the students with plenty of problems practicing that one strategy. I did like that because students could focus more on practicing the strategy itself, but I also wanted students to know when to use it, too, so I made sure they had both to practice.

I provided students with plenty of practice of the strategies, such as in this guess-and-check game.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

There’s also this visuals strategy wheel practice.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

I also provided them with paper dolls and a variety of clothing to create an organized list to determine just how many outfits their “friend” would have.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

Then, as I said above, we practiced in a variety of ways to make sure we knew exactly when to use them. I really wanted to make sure they had this down!

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

Anyway, after I knew they had down the various strategies and when to use them, then we went into the actual problem-solving steps.

The Problem Solving Steps

I wanted students to understand that when they see a story problem, it isn’t scary. Really, it’s just the equation written out in words in a real-life situation. Then, I provided them with the “keys to success.”

S tep 1 – Understand the Problem.   To help students understand the problem, I provided them with sample problems, and together we did five important things:

  • read the problem carefully
  • restated the problem in our own words
  • crossed out unimportant information
  • circled any important information
  • stated the goal or question to be solved

We did this over and over with example problems.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

Once I felt the students had it down, we practiced it in a game of problem-solving relay. Students raced one another to see how quickly they could get down to the nitty-gritty of the word problems. We weren’t solving the problems – yet.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

Then, we were on to Step 2 – Make a Plan . We talked about how this was where we were going to choose which strategy we were going to use. We also discussed how this was where we were going to figure out what operation to use. I taught the students Sheila Melton’s operation concept map.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

We talked about how if you know the total and know if it is equal or not, that will determine what operation you are doing. So, we took an example problem, such as:

Sheldon wants to make a cupcake for each of his 28 classmates. He can make 7 cupcakes with one box of cupcake mix. How many boxes will he need to buy?

We started off by asking ourselves, “Do we know the total?” We know there are a total of 28 classmates. So, yes, we are separating. Then, we ask, “Is it equal?” Yes, he wants to make a cupcake for EACH of his classmates. So, we are dividing: 28 divided by 7 = 4. He will need to buy 4 boxes. (I actually went ahead and solved it here – which is the next step, too.)

Step 3 – Solving the problem . We talked about how solving the problem involves the following:

  • taking our time
  • working the problem out
  • showing all our work
  • estimating the answer
  • using thinking strategies

We talked specifically about thinking strategies. Just like in reading, there are thinking strategies in math. I wanted students to be aware that sometimes when we are working on a problem, a particular strategy may not be working, and we may need to switch strategies. We also discussed that sometimes we may need to rethink the problem, to think of related content, or to even start over. We discussed these thinking strategies:

  • switch strategies or try a different one
  • rethink the problem
  • think of related content
  • decide if you need to make changes
  • check your work
  • but most important…don’t give up!

To make sure they were getting in practice utilizing these thinking strategies, I gave each group chart paper with a letter from a fellow “student” (not a real student), and they had to give advice on how to help them solve their problem using the thinking strategies above.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

Finally, Step 4 – Check It.   This is the step that students often miss. I wanted to emphasize just how important it is! I went over it with them, discussing that when they check their problems, they should always look for these things:

  • compare your answer to your estimate
  • check for reasonableness
  • check your calculations
  • add the units
  • restate the question in the answer
  • explain how you solved the problem

Then, I gave students practice cards. I provided them with example cards of “students” who had completed their assignments already, and I wanted them to be the teacher. They needed to check the work and make sure it was completed correctly. If it wasn’t, then they needed to tell what they missed and correct it.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

To demonstrate their understanding of the entire unit, we completed an adorable lap book (my first time ever putting together one or even creating one – I was surprised how well it turned out, actually). It was a great way to put everything we discussed in there.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

Once we were all done, students were officially Problem Solving S.T.A.R.S. I just reminded students frequently of this acronym.

Stop – Don’t rush with any solution; just take your time and look everything over.

Think – Take your time to think about the problem and solution.

Act  – Act on a strategy and try it out.

Review – Look it over and see if you got all the parts.

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

Wow, you are a true trooper sticking it out in this lengthy post! To sum up the majority of what I have written here, I have some problem-solving bookmarks FREE to help you remember and to help your students!

Problem solving tends to REALLY throw students for a loop when they're first introduced to it. Up until this point, math has been numbers, but now, math is numbers and words. I discuss four important steps I take in teaching problem solving, and I provide you with examples as I go. You can also check out my math workshop problem solving unit for third grade!

You can grab these problem-solving bookmarks for FREE by clicking here .

You can do any of these ideas without having to purchase anything. However, if you are looking to save some time and energy, then they are all found in my Math Workshop Problem Solving Unit . The unit is for grade three, but it  may work for other grade levels. The practice problems are all for the early third-grade level.

problem solving tips maths

  • freebie , Math Workshop , Problem Solving

problem solving tips maths

FIND IT NOW!

Check me out on tpt.

problem solving tips maths

CHECK THESE OUT

problem solving tips maths

Three Types of Rocks and Minerals with Rock Cycle Circle Book

problem solving tips maths

Partitioning Shapes Equal Share Fractions Halves, Thirds, Fourths Math Puzzles

Want to save time?

COPYRIGHT © 2016-2024. The Owl Teacher | Privacy page | Disclosure Page | Shipping | Returns/Refunds

BOGO on EVERYTHING!

Cambridge University Faculty of Mathematics

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Mathematical mindsets
  • Cross-curricular contexts
  • Physical and digital manipulatives

For younger learners

  • Early Years Foundation Stage

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics

Problem Solving

problem solving tips maths

Problem Solving and the New Curriculum   Age 5 to 11

problem solving tips maths

Developing a Classroom Culture That Supports a Problem-solving Approach to Mathematics   Age 5 to 11

problem solving tips maths

Developing Excellence in Problem Solving with Young Learners   Age 5 to 11

problem solving tips maths

Using NRICH Tasks to Develop Key Problem-solving Skills   Age 5 to 11

problem solving tips maths

Trial and Improvement at KS1   Age 5 to 7

problem solving tips maths

Trial and Improvement at KS2   Age 7 to 11

problem solving tips maths

Working Systematically - Primary Teachers   Age 5 to 11

problem solving tips maths

Number Patterns   Age 5 to 11

problem solving tips maths

Working Backwards at KS1   Age 5 to 7

problem solving tips maths

Working Backwards at KS2   Age 7 to 11

problem solving tips maths

Reasoning   Age 5 to 11

problem solving tips maths

Visualising at KS1 - Primary Teachers   Age 5 to 7

problem solving tips maths

Visualising at KS2 - Primary Teachers   Age 7 to 11

problem solving tips maths

Conjecturing and Generalising at KS1 - Primary Teachers   Age 5 to 7

problem solving tips maths

Conjecturing and Generalising at KS2 - Primary Teachers   Age 7 to 11

  • Mathematical Problem Solving in the Early Years
  • Low Threshold High Ceiling - an Introduction
  • What's All the Talking About?
  • Group-worthy Tasks and Their Potential to Support Children to Develop Independent Problem-solving Skills
  • Developing the Classroom Culture: Using the Dotty Six Activity as a Springboard for Investigation

Please ensure that your password is at least 8 characters and contains each of the following:

  • a special character: @$#!%*?&

3 Ways to Strengthen Math Instruction

problem solving tips maths

  • Share article

Students’ math scores have plummeted, national assessments show , and educators are working hard to turn math outcomes around.

But it’s a challenge, made harder by factors like math anxiety , students’ feelings of deep ambivalence about how math is taught, and learning gaps that were exacerbated by the pandemic’s disruption of schools.

This week, three educators offered solutions on how districts can turn around poor math scores in a conversation moderated by Peter DeWitt, an opinion blogger for Education Week.

Here are three takeaways from the discussion. For more, watch the recording on demand .

1. Intervention is key

Research shows that early math skills are a key predictor of later academic success.

“Children who know more do better, and math is cumulative—so if you don’t grasp some of the earlier concepts, math gets increasingly harder,” said Nancy Jordan, a professor of education at the University of Delaware.

For example, many students struggle with the concept of fractions, she said. Her research has found that by 6th grade, some students still don’t really understand what a fraction is, which makes it harder for them to master more advanced concepts, like adding or subtracting fractions with unlike denominators.

At that point, though, teachers don’t always have the time in class to re-teach those basic or fundamental concepts, she said, which is why targeted intervention is so important.

 Conceptual photo of of a young boy studying mathematics using fingers in primary school.

Still, Jordan’s research revealed that in some middle schools, intervention time is not a priority: “If there’s an assembly, or if there is a special event or whatever, it takes place during intervention time,” she said. “Or ... the children might sit on computers, and they’re not getting any really explicit instruction.”

2. ‘Gamify’ math class

Students today need new modes of instruction that meet them where they are, said Gerilyn Williams, a math teacher at Pinelands Regional Junior High School in Little Egg Harbor Township, N.J.

“Most of them learn through things like TikTok or YouTube videos,” she said. “They like to play games, they like to interact. So how can I bring those same attributes into my lesson?”

Part of her solution is gamifying instruction. Williams avoids worksheets. Instead, she provides opportunities for students to practice skills that incorporate elements of game design.

That includes digital tools, which provide students with the instant feedback they crave, she said.

But not all the games are digital. Williams’ students sometimes play “trashketball,” a game in which they work in teams to answer math questions. If they get the question right, they can crumble the piece of paper and throw it into a trash can from across the room.

“The kids love this,” she said.

Gerilyn Williams, a middle school math teacher in New Jersey, stands in her classroom.

Williams also incorporates game-based vocabulary into her instruction, drawing on terms from video games.

For example, “instead of calling them quizzes and tests, I call them boss battles,” she said. “It’s less frightening. It reduces that math anxiety, and it makes them more engaging.

“We normalize things like failure, because when they play video games, think about what they’re doing,” Williams continued. “They fail—they try again and again and again and again until they achieve success.”

3. Strengthen teacher expertise

To turn around math outcomes, districts need to invest in teacher professional development and curriculum support, said Chaunté Garrett, the CEO of ELLE Education, which partners with schools and districts to support student learning.

“You’re not going to be able to replace the value of a well-supported and well-equipped mathematics teacher,” she said. “We also want to make sure that that teacher has a math curriculum that’s grounded in the standards and conceptually based.”

Students will develop more critical thinking skills and better understand math concepts if teachers are able to relate instruction to real life, Garrett said—so that “kids have relationships that they can pull on, and math has some type of meaning and context to them outside of just numbers and procedures.”

Tonya Clarke, coordinator of K–12 mathematics in the division of school leadership and improvement for Clayton County Public Schools in Jonesboro, Ga., in the hallway at Adamson Middle School.

It’s important for math curriculum to be both culturally responsive and relevant, she added. And teachers might need training on how to offer opportunities for students to analyze and solve real-world problems.

“So often, [in math problems], we want to go back to soccer and basketball and all of those things that we lived through, and it’s not that [current students] don’t enjoy those, but our students live social media—they literally live it,” Garrett said. “Those are the things that have to live out in classrooms right now, and if we’re not doing those things, we are doing a disservice.”

Sign Up for EdWeek Update

Edweek top school jobs.

Illustration of city buildings with financial, job, data, technology, and statistics iconography.

Sign Up & Sign In

module image 9

  • Share full article

For more audio journalism and storytelling, download New York Times Audio , a new iOS app available for news subscribers.

The Crackdown on Student Protesters

Columbia university is at the center of a growing showdown over the war in gaza and the limits of free speech..

This transcript was created using speech recognition software. While it has been reviewed by human transcribers, it may contain errors. Please review the episode audio before quoting from this transcript and email [email protected] with any questions.

[TRAIN SCREECHING]

Well, you can hear the helicopter circling. This is Asthaa Chaturvedi. I’m a producer with “The Daily.” Just walked out of the 116 Street Station. It’s the main station for Columbia’s Morningside Heights campus. And it’s day seven of the Gaza solidarity encampment, where a hundred students were arrested last Thursday.

So on one side of Broadway, you see camera crews. You see NYPD officers all lined up. There’s barricades, steel barricades, caution tape. This is normally a completely open campus. And I’m able to — all members of the public, you’re able to walk through.

[NON-ENGLISH SPEECH]

Looks like international media is here.

Have your IDs out. Have your IDs out.

Students lining up to swipe in to get access to the University. ID required for entry.

Swipe your ID, please.

Hi, how are you, officer? We’re journalists with “The New York Times.”

You’re not going to get in, all right? I’m sorry.

Hi. Can I help please?

Yeah, it’s total lockdown here at Columbia.

Please have your IDs out ready to swipe.

From “The New York Times,” I’m Michael Barbaro. This is “The Daily.” Today, the story of how Columbia University has become the epicenter of a growing showdown between student protesters, college administrators, and Congress over the war in Gaza and the limits of free speech. I spoke with my colleague, Nick Fandos.

[UPBEAT MUSIC]

It’s Thursday, April 25.

Nick, if we rewind the clock a few months, we end up at a moment where students at several of the country’s best known universities are protesting Israel’s response to the October 7 attacks, its approach to a war in Gaza. At times, those protests are happening peacefully, at times with rhetoric that is inflammatory. And the result is that the leaders of those universities land before Congress. But the president of Columbia University, which is the subject we’re going to be talking about today, is not one of the leaders who shows up for that testimony.

That’s right. So the House Education Committee has been watching all these protests on campus. And the Republican Chairwoman decides, I’m going to open an investigation, look at how these administrations are handling it, because it doesn’t look good from where I sit. And the House last winter invites the leaders of several of these elite schools, Harvard, Penn, MIT, and Columbia, to come and testify in Washington on Capitol Hill before Congress.

Now, the President of Columbia has what turns out to be a very well-timed, pre-planned trip to go overseas and speak at an international climate conference. So Minouche Shafik isn’t going to be there. So instead, the presidents of Harvard, and Penn, and MIT show up. And it turned out to be a disaster for these universities.

They were asked very pointed questions about the kind of speech taking place on their campuses, and they gave really convoluted academic answers back that just baffled the committee. But there was one question that really embodied the kind of disconnect between the Committee — And it wasn’t just Republicans, Republicans and Democrats on the Committee — and these college presidents. And that’s when they were asked a hypothetical.

Does calling for the genocide of Jews violate Penn’s rules or code of conduct? Yes or no?

If the speech turns into conduct, it can be harassment.

And two of the presidents, Claudine Gay of Harvard and Elizabeth Magill of the University of Pennsylvania, they’re unwilling to say in this really kind of intense back and forth that this speech would constitute a violation of their rules.

It can be, depending on the context.

What’s the context?

Targeted at an individual. Is it pervasive?

It’s targeted at Jewish students, Jewish individuals. Do you understand your testimony is dehumanizing them?

And it sets off a firestorm.

It does not depend on the context. The answer is yes. And this is why you should resign. These are unacceptable answers across the board.

Members of Congress start calling for their resignations. Alumni are really, really ticked off. Trustees of the University start to wonder, I don’t know that these leaders really have got this under control. And eventually, both of them lose their jobs in a really high profile way.

Right. And as you’ve hinted at, for somewhat peculiar scheduling reasons, Columbia’s President escapes this disaster of a hearing in what has to be regarded as the best timing in the history of the American Academy.

Yeah, exactly. And Columbia is watching all this play out. And I think their first response was relief that she was not in that chair, but also a recognition that, sooner or later, their turn was going to come back around and they were going to have to sit before Congress.

Why were they so certain that they would probably end up before Congress and that this wasn’t a case of completely dodging a bullet?

Well, they remain under investigation by the committee. But also, as the winter wears on, all the same intense protests just continue unabated. So in many ways, Columbia’s like these other campuses. But in some ways, it’s even more intense. This is a university that has both one of the largest Jewish student populations of any of its peers. But it also has a large Arab and Muslim student population, a big Middle Eastern studies program. It has a dual degree program in Tel Aviv.

And it’s a university on top of all that that has a real history of activism dating back to the 1960s. So when students are recruited or choose to come to Columbia, they’re actively opting into a campus that prides itself on being an activist community. It’s in the middle of New York City. It’s a global place. They consider the city and the world, really, like a classroom to Columbia.

In other words, if any campus was going to be a hotbed of protest and debate over this conflict, it was going to be Columbia University.

Exactly. And when this spring rolls around, the stars finally align. And the same congressional committee issues another invitation to Minouche Shafik, Columbia’s President, to come and testify. And this time, she has no excuse to say no.

But presumably, she is well aware of exactly what testifying before this committee entails and is highly prepared.

Columbia knew this moment was coming. They spent months preparing for this hearing. They brought in outside consultants, crisis communicators, experts on anti-Semitism. The weekend before the hearing, she actually travels down to Washington to hole up in a war room, where she starts preparing her testimony with mock questioners and testy exchanges to prep her for this. And she’s very clear on what she wants to try to do.

Where her counterparts had gone before the committee a few months before and looked aloof, she wanted to project humility and competence, to say, I know that there’s an issue on my campus right now with some of these protests veering off into anti-Semitic incidents. But I’m getting that under control. I’m taking steps in good faith to make sure that we restore order to this campus, while allowing people to express themselves freely as well.

So then the day of her actual testimony arrives. And just walk us through how it goes.

The Committee on Education and Workforce will come to order. I note that —

So Wednesday morning rolls around. And President Shafik sits at the witness stand with two of her trustees and the head of Columbia’s new anti-Semitism task force.

Columbia stands guilty of gross negligence at best and at worst has become a platform for those supporting terrorism and violence against the Jewish people.

And right off the bat, they’re put through a pretty humbling litany of some of the worst hits of what’s been happening on campus.

For example, just four days after the harrowing October 7 attack, a former Columbia undergraduate beat an Israeli student with a stick.

The Republican Chairwoman of the Committee, Virginia Foxx, starts reminding her that there was a student who was actually hit with a stick on campus. There was another gathering more recently glorifying Hamas and other terrorist organizations, and the kind of chants that have become an everyday chorus on campus, which many Jewish students see as threatening. But when the questioning starts, President Shafik is ready. One of the first ones she gets is the one that tripped up her colleagues.

Does calling for the genocide of Jews violate Columbia’s code of conduct, Mr. Greenwald?

And she answers unequivocally.

Dr. Shafik?

Yes, it does.

And, Professor —

That would be a violation of Columbia’s rules. They would be punished.

As President of Columbia, what is it like when you hear chants like, by any means necessary or Intifada Revolution?

I find those chants incredibly distressing. And I wish profoundly that people would not use them on our campus.

And in some of the most interesting exchanges of the hearing, President Shafik actually opens Columbia’s disciplinary books.

We have already suspended 15 students from Columbia. We have six on disciplinary probation. These are more disciplinary actions that have been taken probably in the last decade at Columbia. And —

She talks about the number of students that have been suspended, but also the number of faculty that she’s had removed from the classroom that are being investigated for comments that either violate some of Columbia’s rules or make students uncomfortable. One case in particular really underscores this.

And that’s of a Middle Eastern studies professor named Joseph Massad. He wrote an essay not long after Hamas invaded Israel and killed 1,200 people, according to the Israeli government, where he described that attack with adjectives like awesome. Now, he said they’ve been misinterpreted, but a lot of people have taken offense to those comments.

Ms. Stefanik, you’re recognized for five minutes.

Thank you, Chairwoman. I want to follow up on my colleague, Rep Walberg’s question regarding Professor Joseph Massad. So let me be clear, President —

And so Representative Elise Stefanik, the same Republican who had tripped up Claudine Gay of Harvard and others in the last hearing, really starts digging in to President Shafik about these things at Columbia.

He is still Chair on the website. So has he been terminated as Chair?

Congresswoman, I —

And Shafik’s answers are maybe a little surprising.

— before getting back to you. I can confirm —

I know you confirmed that he was under investigation.

Yes, I can confirm that. But I —

Did you confirm he was still the Chair?

He says that Columbia is taking his case seriously. In fact, he’s under investigation right now.

Well, let me ask you this.

I need to check.

Will you make the commitment to remove him as Chair?

And when Stefanik presses her to commit to removing him from a campus leadership position —

I think that would be — I think — I would — yes. Let me come back with yes. But I think I — I just want to confirm his current status before I write —

We’ll take that as a yes, that you will confirm that he will no longer be chair.

Shafik seems to pause and think and then agree to it on the spot, almost like she is making administrative decisions with or in front of Congress.

Now, we did some reporting after the fact. And it turns out the Professor didn’t even realize he was under investigation. So he’s learning about this from the hearing too. So what this all adds up to, I think, is a performance so in line with what the lawmakers themselves wanted to hear, that at certain points, these Republicans didn’t quite know what to do with it. They were like the dog that caught the car.

Columbia beats Harvard and UPenn.

One of them, a Republican from Florida, I think at one point even marvelled, well, you beat Harvard and Penn.

Y’all all have done something that they weren’t able to do. You’ve been able to condemn anti-Semitism without using the phrase, it depends on the context. But the —

So Columbia’s president has passed this test before this committee.

Yeah, this big moment that tripped up her predecessors and cost them their jobs, it seems like she has cleared that hurdle and dispatched with the Congressional committee that could have been one of the biggest threats to her presidency.

Without objection, there being no further business, the committee stands adjourned. [BANGS GAVEL]

But back on campus, some of the students and faculty who had been watching the hearing came away with a very different set of conclusions. They saw a president who was so eager to please Republicans in Congress that she was willing to sell out some of the University’s students and faculty and trample on cherished ideas like academic freedom and freedom of expression that have been a bedrock of American higher education for a really long time.

And there was no clearer embodiment of that than what had happened that morning just as President Shafik was going to testify before Congress. A group of students before dawn set up tents in the middle of Columbia’s campus and declared themselves a pro-Palestinian encampment in open defiance of the very rules that Dr. Shafik had put in place to try and get these protests under control.

So these students in real-time are beginning to test some of the things that Columbia’s president has just said before Congress.

Exactly. And so instead of going to celebrate her successful appearance before Congress, Shafik walks out of the hearing room and gets in a black SUV to go right back to that war room, where she’s immediately confronted with a major dilemma. It basically boils down to this, she had just gone before Congress and told them, I’m going to get tough on these protests. And here they were. So either she gets tough and risks inflaming tension on campus or she holds back and does nothing and her words before Congress immediately look hollow.

And what does she decide?

So for the next 24 hours, she tries to negotiate off ramps. She consults with her Deans and the New York Police Department. And it all builds towards an incredibly consequential decision. And that is, for the first time in decades, to call the New York City Police Department onto campus in riot gear and break this thing up, suspend the students involved, and then arrest them.

To essentially eliminate this encampment.

Eliminate the encampment and send a message, this is not going to be tolerated. But in trying to quell the unrest, Shafik actually feeds it. She ends up leaving student protesters and the faculty who support them feeling betrayed and pushes a campus that was already on edge into a full blown crisis.

[SLOW TEMPO MUSIC]

After the break, what all of this has looked like to a student on Columbia’s campus. We’ll be right back.

[PHONE RINGS]

Is this Isabella?

Yes, this is she.

Hi, Isabella. It’s Michael Barbaro from “The Daily.”

Hi. Nice to meet you.

Earlier this week, we called Isabella Ramírez, the Editor in Chief of Columbia’s undergraduate newspaper, “The Columbia Daily Spectator,” which has been closely tracking both the protests and the University’s response to them since October 7.

So, I mean, in your mind, how do we get to this point? I wonder if you can just briefly describe the key moments that bring us to where we are right now.

Sure. Since October 7, there has certainly been constant escalation in terms of tension on campus. And there have been a variety of moves that I believe have distanced the student body, the faculty, from the University and its administration, specifically the suspension of Columbia’s chapters of Students for Justice in Palestine and Jewish Voice for Peace. And that became a huge moment in what was characterized as suppression of pro-Palestinian activism on campus, effectively rendering those groups, quote, unquote, unauthorized.

What was the college’s explanation for that?

They had cited in that suspension a policy which states that a demonstration must be approved within a certain window, and that there must be an advance notice, and that there’s a process for getting an authorized demonstration. But the primary point was this policy that they were referring to, which we later reported, was changed before the suspension.

So it felt a little ad hoc to people?

Yes, it certainly came as a surprise, especially at “Spectator.” We’re nerds of the University in the sense that we are familiar with faculty and University governance. But even to us, we had no idea where this policy was coming from. And this suspension was really the first time that it entered most students’ sphere.

Columbia’s campus is so known for its activism. And so in my time of being a reporter, of being an editor, I’ve overseen several protests. And I’ve never seen Columbia penalize a group for, quote, unquote, not authorizing a protest. So that was certainly, in our minds, unprecedented.

And I believe part of the justification there was, well, this is a different time. And I think that is a reasonable thing to say. But I think a lot of students, they felt it was particularly one-sided, that it was targeting a specific type of speech or a specific type of viewpoint. Although, the University, of course, in its explicit policies, did not outline, and was actually very explicit about not targeting specific viewpoints —

So just to be super clear, it felt to students — and it sounds like, journalistically, it felt to you — that the University was coming down in a uniquely one-sided way against students who were supporting Palestinian rights and may have expressed some frustrations with Israel in that moment.

Yes. Certainly —

Isabella says that this was just the beginning of a really tense period between student protesters and the University. After those two student groups were suspended, campus protests continued. Students made a variety of demands. They asked that the University divest from businesses that profit from Israel’s military operations in Gaza. But instead of making any progress, the protests are met with further crackdown by the University.

And so as Isabella and her colleagues at the college newspaper see it, there’s this overall chilling effect that occurs. Some students become fearful that if they participate in any demonstrations, they’re going to face disciplinary action. So fast forward now to April, when these student protesters learned that President Shafik is headed to Washington for her congressional testimony. It’s at this moment that they set out to build their encampment.

I think there was obviously a lot of intention in timing those two things. I think it’s inherently a critique on a political pressure and this congressional pressure that we saw build up against, of course, Claudine Gay at Harvard and Magill at UPenn. So I think a lot of students and faculty have been frustrated at this idea that there are not only powers at the University that are dictating what’s happening, but there are perhaps external powers that are also guiding the way here in terms of what the University feels like it must do or has to do.

And I think that timing was super crucial. Having the encampment happen on the Wednesday morning of the hearing was an incredible, in some senses, interesting strategy to direct eyes to different places.

All eyes were going to be on Shafik in DC. But now a lot of eyes are on New York. The encampment is set up in the middle of the night slash morning, prior to the hearing. And so what effectively happens is they caught Shafik when she wasn’t on campus, when a lot of senior administration had their resources dedicated to supporting Shafik in DC.

And you have all of those people not necessarily out of commission, but with their focus elsewhere. So the encampment is met with very little resistance at the beginning. There were public safety officers floating around and watching. But at the very beginning hours, I think there was a sense of, we did it.

[CHANTING]: Disclose! Divest! We will not stop! We will not rest. Disclose! Divest! We will not stop!

It would be quite surprising to anybody and an administrator to now suddenly see dozens of tents on this lawn in a way that I think very purposely puts an imagery of, we’re here to stay. As the morning evolved and congressional hearings continued —

Minouche Shafik, open your eyes! Use of force, genocide!

Then we started seeing University delegates that were coming to the encampment saying, you may face disciplinary action for continuing to be here. I think that started around almost — like 9:00 or 10:00 AM, they started handing out these code of conduct violation notices.

Hell no! Hell no! Hell no!

Then there started to be more public safety action and presence. So they started barricading the entrances. The day progressed, there was more threat of discipline. The students became informed that if they continue to stay, they will face potential academic sanctions, potential suspension.

The more they try to silence us, the louder we will be! The more they —

I think a lot of people were like, OK, you’re threatening us with suspension. But so what?

This is about these systems that Minouche Shafik, that the Board of Trustees, that Columbia University is complicit in.

What are you going to do to try to get us out of here? And that was, obviously, promptly answered.

This is the New York State Police Department.

We will not stop!

You are attempting participate in an unauthorized encampment. You will be arrested and charged with trespassing.

My phone blew up, obviously, from the reporters, from the editors, of saying, oh my god, the NYPD is on our campus. And as soon as I saw that, I came out. And I saw a huge crowd of students and affiliates on campus watching the lawns. And as I circled around that crowd, I saw the last end of the New York Police Department pulling away protesters and clearing out the last of the encampment.

[CHANTING]: We love you! We will get justice for you! We see you! We love you! We will get justice for you! We see you! We love you! We will get justice for you! We see you! We love you! We will get justice for you!

It was something truly unimaginable, over 100 students slash other individuals are arrested from our campus, forcefully removed. And although they were suspended, there was a feeling of traumatic event that has just happened to these students, but also this sense of like, OK, the worst of the worst that could have happened to us just happened.

And for those students who maybe couldn’t go back to — into campus, now all of their peers, who were supporters or are in solidarity, are — in some sense, it’s further emboldened. They’re now not just sitting on the lawns for a pro-Palestinian cause, but also for the students, who have endured quite a lot.

So the crackdown, sought by the president and enforced by the NYPD, ends up, you’re saying, becoming a galvanizing force for a broader group of Columbia students than were originally drawn to the idea of ever showing up on the center of campus and protesting?

Yeah, I can certainly speak to the fact that I’ve seen my own peers, friends, or even acquaintances, who weren’t necessarily previously very involved in activism and organizing efforts, suddenly finding themselves involved.

Can I — I just have a question for you, which is all journalism, student journalism or not student journalism, is a first draft of history. And I wonder if we think of this as a historic moment for Columbia, how you imagine it’s going to be remembered.

Yeah, there is no doubt in my mind that this will be a historic moment for Colombia.

I think that this will be remembered as a moment in which the fractures were laid bare. Really, we got to see some of the disunity of the community in ways that I have never really seen it before. And what we’ll be looking to is, where do we go from here? How does Colombia repair? How do we heal from all of this? so That is the big question in terms of what will happen.

Nick, Isabella Ramírez just walked us through what this has all looked like from the perspective of a Columbia student. And from what she could tell, the crackdown ordered by President Shafik did not quell much of anything. It seemed, instead, to really intensify everything on campus. I’m curious what this has looked like for Shafik.

It’s not just the students who are upset. You have faculty, including professors, who are not necessarily sympathetic to the protesters’ view of the war, who are really outraged about what Shafik has done here. They feel that she’s crossed a boundary that hasn’t been crossed on Columbia’s campus in a really long time.

And so you start to hear things by the end of last week like censure, no confidence votes, questions from her own professors about whether or not she can stay in power. So this creates a whole new front for her. And on top of it all, as this is going on, the encampment itself starts to reform tent-by-tent —

— almost in the same place that it was. And Shafik decides that the most important thing she could do is to try and take the temperature down, which means letting the encampment stand. Or in other words, leaning in the other direction. This time, we’re going to let the protesters have their say for a little while longer.

The problem with that is that, over the weekend, a series of images start to emerge from on campus and just off of it of some really troubling anti-Semitic episodes. In one case, a guy holds up a poster in the middle of campus and points it towards a group of Jewish students who are counter protesting. And it says, I’m paraphrasing here, Hamas’ next targets.

I saw an image of that. What it seemed to evoke was the message that Hamas should murder those Jewish students. That’s the way the Jewish students interpreted it.

It’s a pretty straightforward and jarring statement. At the same time, just outside of Columbia’s closed gates —

Stop killing children!

— protestors are showing up from across New York City. It’s hard to tell who’s affiliated with Columbia, who’s not.

Go back to Poland! Go back to Poland!

There’s a video that goes viral of one of them shouting at Jewish students, go back to Poland, go back to Europe.

In other words, a clear message, you’re not welcome here.

Right. In fact, go back to the places where the Holocaust was committed.

Exactly. And this is not representative of the vast majority of the protesters in the encampment, who mostly had been peaceful. They would later hold a Seder, actually, with some of the pro-Palestinian Jewish protesters in their ranks. But those videos are reaching members of Congress, the very same Republicans that Shafik had testified in front of just a few days before. And now they’re looking and saying, you have lost control of your campus, you’ve turned back on your word to us, and you need to resign.

They call for her outright resignation over this.

That’s right. Republicans in New York and across the country began to call for her to step down from her position as president of Columbia.

So Shafik’s dilemma here is pretty extraordinary. She has set up this dynamic where pleasing these members of Congress would probably mean calling in the NYPD all over again to sweep out this encampment, which would mean further alienating and inflaming students and faculty, who are still very upset over the first crackdown. And now both ends of this spectrum, lawmakers in Washington, folks on the Columbia campus, are saying she can’t lead the University over this situation before she’s even made any fateful decision about what to do with this second encampment. Not a good situation.

No. She’s besieged on all sides. For a while, the only thing that she can come up with to offer is for classes to go hybrid for the remainder of the semester.

So students who aren’t feeling safe in this protest environment don’t necessarily have to go to class.

Right. And I think if we zoom out for a second, it’s worth bearing in mind that she tried to choose a different path here than her counterparts at Harvard or Penn. And after all of this, she’s kind of ended up in the exact same thicket, with people calling for her job with the White House, the Mayor of New York City, and others. These are Democrats. Maybe not calling on her to resign quite yet, but saying, I don’t know what’s going on your campus. This does not look good.

That reality, that taking a different tack that was supposed to be full of learnings and lessons from the stumbles of her peers, the fact that didn’t really work suggests that there’s something really intractable going on here. And I wonder how you’re thinking about this intractable situation that’s now arrived on these college campuses.

Well, I don’t think it’s just limited to college campuses. We have seen intense feelings about this conflict play out in Hollywood. We’ve seen them in our politics in all kinds of interesting ways.

In our media.

We’ve seen it in the media. But college campuses, at least in their most idealized form, are something special. They’re a place where students get to go for four years to think in big ways about moral questions, and political questions, and ideas that help shape the world they’re going to spend the rest of their lives in.

And so when you have a question that feels as urgent as this war does for a lot of people, I think it reverberates in an incredibly intense way on those campuses. And there’s something like — I don’t know if it’s quite a contradiction of terms, but there’s a collision of different values at stake. So universities thrive on the ability of students to follow their minds and their voices where they go, to maybe even experiment a little bit and find those things.

But there are also communities that rely on people being able to trust each other and being able to carry out their classes and their academic endeavors as a collective so they can learn from one another. So in this case, that’s all getting scrambled. Students who feel strongly about the Palestinian cause feel like the point is disruption, that something so big, and immediate, and urgent is happening that they need to get in the faces of their professors, and their administrators, and their fellow students.

Right. And set up an encampment in the middle of campus, no matter what the rules say.

Right. And from the administration’s perspective, they say, well, yeah, you can say that and you can think that. And that’s an important process. But maybe there’s some bad apples in your ranks. Or though you may have good intentions, you’re saying things that you don’t realize the implications of. And they’re making this environment unsafe for others. Or they’re grinding our classes to a halt and we’re not able to function as a University.

So the only way we’re going to be able to move forward is if you will respect our rules and we’ll respect your point of view. The problem is that’s just not happening. Something is not connecting with those two points of view. And as if that’s not hard enough, you then have Congress and the political system with its own agenda coming in and putting its thumb on a scale of an already very difficult situation.

Right. And at this very moment, what we know is that the forces that you just outlined have created a dilemma, an uncertainty of how to proceed, not just for President Shafik and the students and faculty at Columbia, but for a growing number of colleges and universities across the country. And by that, I mean, this thing that seemed to start at Columbia is literally spreading.

Absolutely. We’re talking on a Wednesday afternoon. And these encampments have now started cropping up at universities from coast-to-coast, at Harvard and Yale, but also at University of California, at the University of Texas, at smaller campuses in between. And at each of these institutions, there’s presidents and deans, just like President Shafik at Columbia, who are facing a really difficult set of choices. Do they call in the police? The University of Texas in Austin this afternoon, we saw protesters physically clashing with police.

Do they hold back, like at Harvard, where there were dramatic videos of students literally running into Harvard yard with tents. They were popping up in real-time. And so Columbia, really, I think, at the end of the day, may have kicked off some of this. But they are now in league with a whole bunch of other universities that are struggling with the same set of questions. And it’s a set of questions that they’ve had since this war broke out.

And now these schools only have a week or two left of classes. But we don’t know when these standoffs are going to end. We don’t know if students are going to leave campus for the summer. We don’t know if they’re going to come back in the fall and start protesting right away, or if this year is going to turn out to have been an aberration that was a response to a really awful, bloody war, or if we’re at the beginning of a bigger shift on college campuses that will long outlast this war in the Middle East.

Well, Nick, thank you very much. Thanks for having me, Michael.

We’ll be right back.

Here’s what else you need to know today. The United Nations is calling for an independent investigation into two mass graves found after Israeli forces withdrew from hospitals in Gaza. Officials in Gaza said that some of the bodies found in the graves were Palestinians who had been handcuffed or shot in the head and accused Israel of killing and burying them. In response, Israel said that its soldiers had exhumed bodies in one of the graves as part of an effort to locate Israeli hostages.

And on Wednesday, Hamas released a video of Hersh Goldberg-Polin, an Israeli-American dual citizen, whom Hamas has held hostage since October 7. It was the first time that he has been shown alive since his captivity began. His kidnapping was the subject of a “Daily” episode in October that featured his mother, Rachel. In response to Hamas’s video, Rachel issued a video of her own, in which she spoke directly to her son.

And, Hersh, if you can hear this, we heard your voice today for the first time in 201 days. And if you can hear us, I am telling you, we are telling you, we love you. Stay strong. Survive.

Today’s episode was produced by Sydney Harper, Asthaa Chaturvedi, Olivia Natt, Nina Feldman, and Summer Thomad, with help from Michael Simon Johnson. It was edited by Devon Taylor and Lisa Chow, contains research help by Susan Lee, original music by Marion Lozano and Dan Powell, and was engineered by Chris Wood. Our theme music is by Jim Brunberg and Ben Landsverk of Wonderly. That’s it for “The Daily.” I’m Michael Barbaro. See you tomorrow.

The Daily logo

  • April 26, 2024   •   21:50 Harvey Weinstein Conviction Thrown Out
  • April 25, 2024   •   40:33 The Crackdown on Student Protesters
  • April 24, 2024   •   32:18 Is $60 Billion Enough to Save Ukraine?
  • April 23, 2024   •   30:30 A Salacious Conspiracy or Just 34 Pieces of Paper?
  • April 22, 2024   •   24:30 The Evolving Danger of the New Bird Flu
  • April 19, 2024   •   30:42 The Supreme Court Takes Up Homelessness
  • April 18, 2024   •   30:07 The Opening Days of Trump’s First Criminal Trial
  • April 17, 2024   •   24:52 Are ‘Forever Chemicals’ a Forever Problem?
  • April 16, 2024   •   29:29 A.I.’s Original Sin
  • April 15, 2024   •   24:07 Iran’s Unprecedented Attack on Israel
  • April 14, 2024   •   46:17 The Sunday Read: ‘What I Saw Working at The National Enquirer During Donald Trump’s Rise’
  • April 12, 2024   •   34:23 How One Family Lost $900,000 in a Timeshare Scam

Hosted by Michael Barbaro

Featuring Nicholas Fandos

Produced by Sydney Harper ,  Asthaa Chaturvedi ,  Olivia Natt ,  Nina Feldman and Summer Thomad

With Michael Simon Johnson

Edited by Devon Taylor and Lisa Chow

Original music by Marion Lozano and Dan Powell

Engineered by Chris Wood

Listen and follow The Daily Apple Podcasts | Spotify | Amazon Music

Columbia University has become the epicenter of a growing showdown between student protesters, college administrators and Congress over the war in Gaza and the limits of free speech.

Nicholas Fandos, who covers New York politics and government for The Times, walks us through the intense week at the university. And Isabella Ramírez, the editor in chief of Columbia’s undergraduate newspaper, explains what it has all looked like to a student on campus.

On today’s episode

Nicholas Fandos , who covers New York politics and government for The New York Times

Isabella Ramírez , editor in chief of The Columbia Daily Spectator

A university building during the early morning hours. Tents are set up on the front lawn. Banners are displayed on the hedges.

Background reading

Inside the week that shook Columbia University .

The protests at the university continued after more than 100 arrests.

There are a lot of ways to listen to The Daily. Here’s how.

We aim to make transcripts available the next workday after an episode’s publication. You can find them at the top of the page.

Research help by Susan Lee .

The Daily is made by Rachel Quester, Lynsea Garrison, Clare Toeniskoetter, Paige Cowett, Michael Simon Johnson, Brad Fisher, Chris Wood, Jessica Cheung, Stella Tan, Alexandra Leigh Young, Lisa Chow, Eric Krupke, Marc Georges, Luke Vander Ploeg, M.J. Davis Lin, Dan Powell, Sydney Harper, Mike Benoist, Liz O. Baylen, Asthaa Chaturvedi, Rachelle Bonja, Diana Nguyen, Marion Lozano, Corey Schreppel, Rob Szypko, Elisheba Ittoop, Mooj Zadie, Patricia Willens, Rowan Niemisto, Jody Becker, Rikki Novetsky, John Ketchum, Nina Feldman, Will Reid, Carlos Prieto, Ben Calhoun, Susan Lee, Lexie Diao, Mary Wilson, Alex Stern, Dan Farrell, Sophia Lanman, Shannon Lin, Diane Wong, Devon Taylor, Alyssa Moxley, Summer Thomad, Olivia Natt, Daniel Ramirez and Brendan Klinkenberg.

Our theme music is by Jim Brunberg and Ben Landsverk of Wonderly. Special thanks to Sam Dolnick, Paula Szuchman, Lisa Tobin, Larissa Anderson, Julia Simon, Sofia Milan, Mahima Chablani, Elizabeth Davis-Moorer, Jeffrey Miranda, Renan Borelli, Maddy Masiello, Isabella Anderson and Nina Lassam.

Nicholas Fandos is a Times reporter covering New York politics and government. More about Nicholas Fandos

Advertisement

IMAGES

  1. What IS Problem-Solving?

    problem solving tips maths

  2. Classroom Poster: 4 Steps to Solve Any Math Problem

    problem solving tips maths

  3. Math Problem Solving Posters [Video]

    problem solving tips maths

  4. 5 Tips for maths problem solving

    problem solving tips maths

  5. How to Solve a Wordy Math Problem (with Pictures)

    problem solving tips maths

  6. 3rd Grade Math Problem Solving Iep Goal

    problem solving tips maths

VIDEO

  1. How to solve maths

  2. Problem solving idea

  3. Clarifying the '5 Whys' Problem-Solving Method #shorts #problemsolving

  4. Problem Solving lesson #3

  5. The Essentials of Problem Solving #shorts #problemsolving

  6. Tips to Solving Problems Effective

COMMENTS

  1. 20 Effective Math Strategies For Problem Solving

    Math strategies for problem-solving help students use a range of approaches to solve many different types of problems. It involves identifying the problem and carrying out a plan of action to find the answer to mathematical problems. ... Check out this guide featuring practical examples, tips and strategies to successfully embed metacognition ...

  2. How to Solve Math Problems Faster: 15 Techniques to Show Students

    Here are 15 techniques to show students, helping them solve math problems faster: Addition and Subtraction. 1. Two-Step Addition. Many students struggle when learning to add integers of three digits or higher together, but changing the process's steps can make it easier.

  3. 10 Math Tricks for Quick Calculations in Your Head

    10 tricks for doing fast math. Here are 10 fast math strategies students (and adults!) can use to do math in their heads. Once these strategies are mastered, students should be able to accurately and confidently solve math problems that they once feared solving. 1. Adding large numbers. Adding large numbers just in your head can be difficult.

  4. Unlocking the Power of Math Learning: Strategies and Tools for Success

    A 2014 study by the National Council of Teachers of Mathematics found that the use of multiple representations, such as visual aids, graphs, and real-world examples, supports the development of mathematical connections, reasoning, and problem-solving skills. Moreover, the importance of math learning goes beyond solving equations and formulas.

  5. A Guide to Problem Solving

    A Guide to Problem Solving. When confronted with a problem, in which the solution is not clear, you need to be a skilled problem-solver to know how to proceed. When you look at STEP problems for the first time, it may seem like this problem-solving skill is out of your reach, but like any skill, you can improve your problem-solving with practice.

  6. 6 Tips for Teaching Math Problem-Solving Skills

    Telling a student to reread the problem or to think about what tools or resources would help them solve it is a way to get them to try something new but not take over their thinking. These skills are also transferable across content, and students will be reminded, "Good readers and mathematicians reread.". 6.

  7. 1.3: Problem Solving Strategies

    Problem Solving Strategy 9 (Find the Math, Remove the Context). Sometimes the problem has a lot of details in it that are unimportant, or at least unimportant for getting started. The goal is to find the underlying math problem, then come back to the original question and see if you can solve it using the math.

  8. Art of Problem Solving

    Identify the Problem: The very first step in problem solving is to identify the problem. Problem solving is harder if one doesn't know what "problem" to solve! This is often seen in engineering and math by reading the problem statement. Make a Game Plan: The next step is to have a plan on what to do. In other words, just rushing in won ...

  9. How to Study Maths: 7 Tips for Problem Solving

    7 Tips for Maths Problem Solving. 1. Practice, Practice & More Practice. It is impossible to study maths properly by just reading and listening. To study maths you have to roll up your sleeves and actually solve some problems. The more you practice answering maths problems, the better . Each problem has its own characteristics and it's ...

  10. Problem Solving Maths: Strengthening Mathematical Skills

    There will be lots of answers, but no 'right' answer. Communicate. To solve the word problem we need to find the numbers that will go into 20 without a remainder (the factors). The factors of 20 are 1, 2, 4, 5, 10 and 20. Combinations of numbers that could work are: 1, 1, 20 1, 2, 10 1, 4, 5 2, 2, 5. Reflect.

  11. 3 Easy Ways to Solve Math Problems (with Pictures)

    3. Work on an easier problem. If there is an easier problem available that is similar to the one you are trying to solve, work on the easier problem first. Solving an easier problem that requires some of the same steps and formulas will help you to tackle the more difficult problem. [8] [9] 4.

  12. The Ultimate List of Math Hacks, Tricks, and Tips

    Use simple LaTeX in the following format. Surround your math with \( and \). \( \int g dx = \sqrt{\frac{a}{b}} \) (This is standard simple LaTeX.) NOTE: You can mix both types of math entry in your comment. We compiled the ultimate list of the best math hacks and math tricks to help you ace that next exam and make math fun and easy!

  13. 10 Strategies for Problem Solving in Math

    The most remarkable technique for problem solving in mathematics is to help students see patterns in math problems by instructing them how to extract and list relevant details. This method may be used by students when learning shapes and other topics that need repetition. Students may use this strategy to spot patterns and fill in the blanks.

  14. 10 Best Strategies for Solving Math Word Problems

    6. Use Estimation to Predict Answers. Estimation is a valuable skill in solving math word problems, as it allows students to predict the answer's ballpark figure before solving it precisely. Teaching students to use estimation can help them check their answers for reasonableness and avoid common mistakes.

  15. PDF Strategies for Problem Solving

    Step 4: Check the Solution. After working through the plan and coming up with a solution, it is important to see first of all if the solution makes sense. Then, if it seems to be reasonable, check to be sure that it is accurate. In other words, do a quick estimate first, and then check to be sure the answer is exact.

  16. 14 Effective Ways to Help Your Students Conquer Math Word Problems

    3. Visualize or model the problem. Encourage students to think of word problems as an actual story or scenario. Try acting the problem out if possible, and draw pictures, diagrams, or models. Learn more about this method and get free printable templates at the link. Learn more: Math Geek Mama. 4.

  17. 5 Ways to build math problem solving skills (based on brain research)

    Here's how you can safely foster growth and build math problem solving skills through failure in your classroom: Build in time to analyze errors & reflect. Reward effort & growth as much as, if not more than, accuracy. At least initially, skip the grading so students aren't afraid to be wrong.

  18. Teaching Problem Solving in Math

    Then, I provided them with the "keys to success.". Step 1 - Understand the Problem. To help students understand the problem, I provided them with sample problems, and together we did five important things: read the problem carefully. restated the problem in our own words. crossed out unimportant information.

  19. Tips to be a better problem solver [Last live lecture]

    Tips on problem-solving, with examples from geometry, trig, and probability.Past episodes with integrated quizzes: https://itempool.com/c/3b1bFull playlist: ...

  20. Problem Solving

    Problem Solving. This feature is somewhat larger than our usual features, but that is because it is packed with resources to help you develop a problem-solving approach to the teaching and learning of mathematics. Read Lynne's article which discusses the place of problem solving in the new curriculum and sets the scene.

  21. How to Develop Problem Solving Skills: 4 Tips

    Learning problem-solving techniques is a must for working professionals in any field. No matter your title or job description, the ability to find the root cause of a difficult problem and formulate viable solutions is a skill that employers value. Learning the soft skills and critical thinking techniques that good problem solvers use can help ...

  22. Mathway

    Free math problem solver answers your algebra homework questions with step-by-step explanations.

  23. Problem-Solving Strategies: Definition and 5 Techniques to Try

    In insight problem-solving, the cognitive processes that help you solve a problem happen outside your conscious awareness. 4. Working backward. Working backward is a problem-solving approach often ...

  24. 3 Ways to Strengthen Math Instruction

    A group of high school girls work together to solve an algebra problem during their precalculus class. Allison Shelley for All4Ed Mathematics Video Make Math Instruction Better: 3 Tips on How From ...

  25. The Crackdown on Student Protesters

    The Sunday Read: 'What I Saw Working at The National Enquirer During Donald Trump's Rise'