helpful professor logo

21 Research Objectives Examples (Copy and Paste)

research aim and research objectives, explained below

Research objectives refer to the definitive statements made by researchers at the beginning of a research project detailing exactly what a research project aims to achieve.

These objectives are explicit goals clearly and concisely projected by the researcher to present a clear intention or course of action for his or her qualitative or quantitative study. 

Research objectives are typically nested under one overarching research aim. The objectives are the steps you’ll need to take in order to achieve the aim (see the examples below, for example, which demonstrate an aim followed by 3 objectives, which is what I recommend to my research students).

Research Objectives vs Research Aims

Research aim and research objectives are fundamental constituents of any study, fitting together like two pieces of the same puzzle.

The ‘research aim’ describes the overarching goal or purpose of the study (Kumar, 2019). This is usually a broad, high-level purpose statement, summing up the central question that the research intends to answer.

Example of an Overarching Research Aim:

“The aim of this study is to explore the impact of climate change on crop productivity.” 

Comparatively, ‘research objectives’ are concrete goals that underpin the research aim, providing stepwise actions to achieve the aim.

Objectives break the primary aim into manageable, focused pieces, and are usually characterized as being more specific, measurable, achievable, relevant, and time-bound (SMART).

Examples of Specific Research Objectives:

1. “To examine the effects of rising temperatures on the yield of rice crops during the upcoming growth season.” 2. “To assess changes in rainfall patterns in major agricultural regions over the first decade of the twenty-first century (2000-2010).” 3. “To analyze the impact of changing weather patterns on crop diseases within the same timeframe.”

The distinction between these two terms, though subtle, is significant for successfully conducting a study. The research aim provides the study with direction, while the research objectives set the path to achieving this aim, thereby ensuring the study’s efficiency and effectiveness.

How to Write Research Objectives

I usually recommend to my students that they use the SMART framework to create their research objectives.

SMART is an acronym standing for Specific, Measurable, Achievable, Relevant, and Time-bound. It provides a clear method of defining solid research objectives and helps students know where to start in writing their objectives (Locke & Latham, 2013).

Each element of this acronym adds a distinct dimension to the framework, aiding in the creation of comprehensive, well-delineated objectives.

Here is each step:

  • Specific : We need to avoid ambiguity in our objectives. They need to be clear and precise (Doran, 1981). For instance, rather than stating the objective as “to study the effects of social media,” a more focused detail would be “to examine the effects of social media use (Facebook, Instagram, and Twitter) on the academic performance of college students.”
  • Measurable: The measurable attribute provides a clear criterion to determine if the objective has been met (Locke & Latham, 2013). A quantifiable element, such as a percentage or a number, adds a measurable quality. For example, “to increase response rate to the annual customer survey by 10%,” makes it easier to ascertain achievement.
  • Achievable: The achievable aspect encourages researchers to craft realistic objectives, resembling a self-check mechanism to ensure the objectives align with the scope and resources at disposal (Doran, 1981). For example, “to interview 25 participants selected randomly from a population of 100” is an attainable objective as long as the researcher has access to these participants.
  • Relevance : Relevance, the fourth element, compels the researcher to tailor the objectives in alignment with overarching goals of the study (Locke & Latham, 2013). This is extremely important – each objective must help you meet your overall one-sentence ‘aim’ in your study.
  • Time-Bound: Lastly, the time-bound element fosters a sense of urgency and prioritization, preventing procrastination and enhancing productivity (Doran, 1981). “To analyze the effect of laptop use in lectures on student engagement over the course of two semesters this year” expresses a clear deadline, thus serving as a motivator for timely completion.

You’re not expected to fit every single element of the SMART framework in one objective, but across your objectives, try to touch on each of the five components.

Research Objectives Examples

1. Field: Psychology

Aim: To explore the impact of sleep deprivation on cognitive performance in college students.

  • Objective 1: To compare cognitive test scores of students with less than six hours of sleep and those with 8 or more hours of sleep.
  • Objective 2: To investigate the relationship between class grades and reported sleep duration.
  • Objective 3: To survey student perceptions and experiences on how sleep deprivation affects their cognitive capabilities.

2. Field: Environmental Science

Aim: To understand the effects of urban green spaces on human well-being in a metropolitan city.

  • Objective 1: To assess the physical and mental health benefits of regular exposure to urban green spaces.
  • Objective 2: To evaluate the social impacts of urban green spaces on community interactions.
  • Objective 3: To examine patterns of use for different types of urban green spaces. 

3. Field: Technology

Aim: To investigate the influence of using social media on productivity in the workplace.

  • Objective 1: To measure the amount of time spent on social media during work hours.
  • Objective 2: To evaluate the perceived impact of social media use on task completion and work efficiency.
  • Objective 3: To explore whether company policies on social media usage correlate with different patterns of productivity.

4. Field: Education

Aim: To examine the effectiveness of online vs traditional face-to-face learning on student engagement and achievement.

  • Objective 1: To compare student grades between the groups exposed to online and traditional face-to-face learning.
  • Objective 2: To assess student engagement levels in both learning environments.
  • Objective 3: To collate student perceptions and preferences regarding both learning methods.

5. Field: Health

Aim: To determine the impact of a Mediterranean diet on cardiac health among adults over 50.

  • Objective 1: To assess changes in cardiovascular health metrics after following a Mediterranean diet for six months.
  • Objective 2: To compare these health metrics with a similar group who follow their regular diet.
  • Objective 3: To document participants’ experiences and adherence to the Mediterranean diet.

6. Field: Environmental Science

Aim: To analyze the impact of urban farming on community sustainability.

  • Objective 1: To document the types and quantity of food produced through urban farming initiatives.
  • Objective 2: To assess the effect of urban farming on local communities’ access to fresh produce.
  • Objective 3: To examine the social dynamics and cooperative relationships in the creating and maintaining of urban farms.

7. Field: Sociology

Aim: To investigate the influence of home offices on work-life balance during remote work.

  • Objective 1: To survey remote workers on their perceptions of work-life balance since setting up home offices.
  • Objective 2: To conduct an observational study of daily work routines and family interactions in a home office setting.
  • Objective 3: To assess the correlation, if any, between physical boundaries of workspaces and mental boundaries for work in the home setting.

8. Field: Economics

Aim: To evaluate the effects of minimum wage increases on small businesses.

  • Objective 1: To analyze cost structures, pricing changes, and profitability of small businesses before and after minimum wage increases.
  • Objective 2: To survey small business owners on the strategies they employ to navigate minimum wage increases.
  • Objective 3: To examine employment trends in small businesses in response to wage increase legislation.

9. Field: Education

Aim: To explore the role of extracurricular activities in promoting soft skills among high school students.

  • Objective 1: To assess the variety of soft skills developed through different types of extracurricular activities.
  • Objective 2: To compare self-reported soft skills between students who participate in extracurricular activities and those who do not.
  • Objective 3: To investigate the teachers’ perspectives on the contribution of extracurricular activities to students’ skill development.

10. Field: Technology

Aim: To assess the impact of virtual reality (VR) technology on the tourism industry.

  • Objective 1: To document the types and popularity of VR experiences available in the tourism market.
  • Objective 2: To survey tourists on their interest levels and satisfaction rates with VR tourism experiences.
  • Objective 3: To determine whether VR tourism experiences correlate with increased interest in real-life travel to the simulated destinations.

11. Field: Biochemistry

Aim: To examine the role of antioxidants in preventing cellular damage.

  • Objective 1: To identify the types and quantities of antioxidants in common fruits and vegetables.
  • Objective 2: To determine the effects of various antioxidants on free radical neutralization in controlled lab tests.
  • Objective 3: To investigate potential beneficial impacts of antioxidant-rich diets on long-term cellular health.

12. Field: Linguistics

Aim: To determine the influence of early exposure to multiple languages on cognitive development in children.

  • Objective 1: To assess cognitive development milestones in monolingual and multilingual children.
  • Objective 2: To document the number and intensity of language exposures for each group in the study.
  • Objective 3: To investigate the specific cognitive advantages, if any, enjoyed by multilingual children.

13. Field: Art History

Aim: To explore the impact of the Renaissance period on modern-day art trends.

  • Objective 1: To identify key characteristics and styles of Renaissance art.
  • Objective 2: To analyze modern art pieces for the influence of the Renaissance style.
  • Objective 3: To survey modern-day artists for their inspirations and the influence of historical art movements on their work.

14. Field: Cybersecurity

Aim: To assess the effectiveness of two-factor authentication (2FA) in preventing unauthorized system access.

  • Objective 1: To measure the frequency of unauthorized access attempts before and after the introduction of 2FA.
  • Objective 2: To survey users about their experiences and challenges with 2FA implementation.
  • Objective 3: To evaluate the efficacy of different types of 2FA (SMS-based, authenticator apps, biometrics, etc.).

15. Field: Cultural Studies

Aim: To analyze the role of music in cultural identity formation among ethnic minorities.

  • Objective 1: To document the types and frequency of traditional music practices within selected ethnic minority communities.
  • Objective 2: To survey community members on the role of music in their personal and communal identity.
  • Objective 3: To explore the resilience and transmission of traditional music practices in contemporary society.

16. Field: Astronomy

Aim: To explore the impact of solar activity on satellite communication.

  • Objective 1: To categorize different types of solar activities and their frequencies of occurrence.
  • Objective 2: To ascertain how variations in solar activity may influence satellite communication.
  • Objective 3: To investigate preventative and damage-control measures currently in place during periods of high solar activity.

17. Field: Literature

Aim: To examine narrative techniques in contemporary graphic novels.

  • Objective 1: To identify a range of narrative techniques employed in this genre.
  • Objective 2: To analyze the ways in which these narrative techniques engage readers and affect story interpretation.
  • Objective 3: To compare narrative techniques in graphic novels to those found in traditional printed novels.

18. Field: Renewable Energy

Aim: To investigate the feasibility of solar energy as a primary renewable resource within urban areas.

  • Objective 1: To quantify the average sunlight hours across urban areas in different climatic zones. 
  • Objective 2: To calculate the potential solar energy that could be harnessed within these areas.
  • Objective 3: To identify barriers or challenges to widespread solar energy implementation in urban settings and potential solutions.

19. Field: Sports Science

Aim: To evaluate the role of pre-game rituals in athlete performance.

  • Objective 1: To identify the variety and frequency of pre-game rituals among professional athletes in several sports.
  • Objective 2: To measure the impact of pre-game rituals on individual athletes’ performance metrics.
  • Objective 3: To examine the psychological mechanisms that might explain the effects (if any) of pre-game ritual on performance.

20. Field: Ecology

Aim: To investigate the effects of urban noise pollution on bird populations.

  • Objective 1: To record and quantify urban noise levels in various bird habitats.
  • Objective 2: To measure bird population densities in relation to noise levels.
  • Objective 3: To determine any changes in bird behavior or vocalization linked to noise levels.

21. Field: Food Science

Aim: To examine the influence of cooking methods on the nutritional value of vegetables.

  • Objective 1: To identify the nutrient content of various vegetables both raw and after different cooking processes.
  • Objective 2: To compare the effect of various cooking methods on the nutrient retention of these vegetables.
  • Objective 3: To propose cooking strategies that optimize nutrient retention.

The Importance of Research Objectives

The importance of research objectives cannot be overstated. In essence, these guideposts articulate what the researcher aims to discover, understand, or examine (Kothari, 2014).

When drafting research objectives, it’s essential to make them simple and comprehensible, specific to the point of being quantifiable where possible, achievable in a practical sense, relevant to the chosen research question, and time-constrained to ensure efficient progress (Kumar, 2019). 

Remember that a good research objective is integral to the success of your project, offering a clear path forward for setting out a research design , and serving as the bedrock of your study plan. Each objective must distinctly address a different dimension of your research question or problem (Kothari, 2014). Always bear in mind that the ultimate purpose of your research objectives is to succinctly encapsulate your aims in the clearest way possible, facilitating a coherent, comprehensive and rational approach to your planned study, and furnishing a scientific roadmap for your journey into the depths of knowledge and research (Kumar, 2019). 

Kothari, C.R (2014). Research Methodology: Methods and Techniques . New Delhi: New Age International.

Kumar, R. (2019). Research Methodology: A Step-by-Step Guide for Beginners .New York: SAGE Publications.

Doran, G. T. (1981). There’s a S.M.A.R.T. way to write management’s goals and objectives. Management review, 70 (11), 35-36.

Locke, E. A., & Latham, G. P. (2013). New Developments in Goal Setting and Task Performance . New York: Routledge.

Chris

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 5 Top Tips for Succeeding at University
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 50 Durable Goods Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 100 Consumer Goods Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 30 Globalization Pros and Cons

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Grad Coach

Research Aims, Objectives & Questions

The “Golden Thread” Explained Simply (+ Examples)

By: David Phair (PhD) and Alexandra Shaeffer (PhD) | June 2022

The research aims , objectives and research questions (collectively called the “golden thread”) are arguably the most important thing you need to get right when you’re crafting a research proposal , dissertation or thesis . We receive questions almost every day about this “holy trinity” of research and there’s certainly a lot of confusion out there, so we’ve crafted this post to help you navigate your way through the fog.

Overview: The Golden Thread

  • What is the golden thread
  • What are research aims ( examples )
  • What are research objectives ( examples )
  • What are research questions ( examples )
  • The importance of alignment in the golden thread

What is the “golden thread”?  

The golden thread simply refers to the collective research aims , research objectives , and research questions for any given project (i.e., a dissertation, thesis, or research paper ). These three elements are bundled together because it’s extremely important that they align with each other, and that the entire research project aligns with them.

Importantly, the golden thread needs to weave its way through the entirety of any research project , from start to end. In other words, it needs to be very clearly defined right at the beginning of the project (the topic ideation and proposal stage) and it needs to inform almost every decision throughout the rest of the project. For example, your research design and methodology will be heavily influenced by the golden thread (we’ll explain this in more detail later), as well as your literature review.

The research aims, objectives and research questions (the golden thread) define the focus and scope ( the delimitations ) of your research project. In other words, they help ringfence your dissertation or thesis to a relatively narrow domain, so that you can “go deep” and really dig into a specific problem or opportunity. They also help keep you on track , as they act as a litmus test for relevance. In other words, if you’re ever unsure whether to include something in your document, simply ask yourself the question, “does this contribute toward my research aims, objectives or questions?”. If it doesn’t, chances are you can drop it.

Alright, enough of the fluffy, conceptual stuff. Let’s get down to business and look at what exactly the research aims, objectives and questions are and outline a few examples to bring these concepts to life.

Free Webinar: How To Find A Dissertation Research Topic

Research Aims: What are they?

Simply put, the research aim(s) is a statement that reflects the broad overarching goal (s) of the research project. Research aims are fairly high-level (low resolution) as they outline the general direction of the research and what it’s trying to achieve .

Research Aims: Examples  

True to the name, research aims usually start with the wording “this research aims to…”, “this research seeks to…”, and so on. For example:

“This research aims to explore employee experiences of digital transformation in retail HR.”   “This study sets out to assess the interaction between student support and self-care on well-being in engineering graduate students”  

As you can see, these research aims provide a high-level description of what the study is about and what it seeks to achieve. They’re not hyper-specific or action-oriented, but they’re clear about what the study’s focus is and what is being investigated.

Need a helping hand?

objective of the study in research example

Research Objectives: What are they?

The research objectives take the research aims and make them more practical and actionable . In other words, the research objectives showcase the steps that the researcher will take to achieve the research aims.

The research objectives need to be far more specific (higher resolution) and actionable than the research aims. In fact, it’s always a good idea to craft your research objectives using the “SMART” criteria. In other words, they should be specific, measurable, achievable, relevant and time-bound”.

Research Objectives: Examples  

Let’s look at two examples of research objectives. We’ll stick with the topic and research aims we mentioned previously.  

For the digital transformation topic:

To observe the retail HR employees throughout the digital transformation. To assess employee perceptions of digital transformation in retail HR. To identify the barriers and facilitators of digital transformation in retail HR.

And for the student wellness topic:

To determine whether student self-care predicts the well-being score of engineering graduate students. To determine whether student support predicts the well-being score of engineering students. To assess the interaction between student self-care and student support when predicting well-being in engineering graduate students.

  As you can see, these research objectives clearly align with the previously mentioned research aims and effectively translate the low-resolution aims into (comparatively) higher-resolution objectives and action points . They give the research project a clear focus and present something that resembles a research-based “to-do” list.

The research objectives detail the specific steps that you, as the researcher, will take to achieve the research aims you laid out.

Research Questions: What are they?

Finally, we arrive at the all-important research questions. The research questions are, as the name suggests, the key questions that your study will seek to answer . Simply put, they are the core purpose of your dissertation, thesis, or research project. You’ll present them at the beginning of your document (either in the introduction chapter or literature review chapter) and you’ll answer them at the end of your document (typically in the discussion and conclusion chapters).  

The research questions will be the driving force throughout the research process. For example, in the literature review chapter, you’ll assess the relevance of any given resource based on whether it helps you move towards answering your research questions. Similarly, your methodology and research design will be heavily influenced by the nature of your research questions. For instance, research questions that are exploratory in nature will usually make use of a qualitative approach, whereas questions that relate to measurement or relationship testing will make use of a quantitative approach.  

Let’s look at some examples of research questions to make this more tangible.

Research Questions: Examples  

Again, we’ll stick with the research aims and research objectives we mentioned previously.  

For the digital transformation topic (which would be qualitative in nature):

How do employees perceive digital transformation in retail HR? What are the barriers and facilitators of digital transformation in retail HR?  

And for the student wellness topic (which would be quantitative in nature):

Does student self-care predict the well-being scores of engineering graduate students? Does student support predict the well-being scores of engineering students? Do student self-care and student support interact when predicting well-being in engineering graduate students?  

You’ll probably notice that there’s quite a formulaic approach to this. In other words, the research questions are basically the research objectives “converted” into question format. While that is true most of the time, it’s not always the case. For example, the first research objective for the digital transformation topic was more or less a step on the path toward the other objectives, and as such, it didn’t warrant its own research question.  

So, don’t rush your research questions and sloppily reword your objectives as questions. Carefully think about what exactly you’re trying to achieve (i.e. your research aim) and the objectives you’ve set out, then craft a set of well-aligned research questions . Also, keep in mind that this can be a somewhat iterative process , where you go back and tweak research objectives and aims to ensure tight alignment throughout the golden thread.

The importance of strong alignment 

Alignment is the keyword here and we have to stress its importance . Simply put, you need to make sure that there is a very tight alignment between all three pieces of the golden thread. If your research aims and research questions don’t align, for example, your project will be pulling in different directions and will lack focus . This is a common problem students face and can cause many headaches (and tears), so be warned.

Take the time to carefully craft your research aims, objectives and research questions before you run off down the research path. Ideally, get your research supervisor/advisor to review and comment on your golden thread before you invest significant time into your project, and certainly before you start collecting data .  

Recap: The golden thread

In this post, we unpacked the golden thread of research, consisting of the research aims , research objectives and research questions . You can jump back to any section using the links below.

As always, feel free to leave a comment below – we always love to hear from you. Also, if you’re interested in 1-on-1 support, take a look at our private coaching service here.

objective of the study in research example

Psst… there’s more (for free)

This post is part of our dissertation mini-course, which covers everything you need to get started with your dissertation, thesis or research project. 

You Might Also Like:

Narrative analysis explainer

37 Comments

Isaac Levi

Thank you very much for your great effort put. As an Undergraduate taking Demographic Research & Methodology, I’ve been trying so hard to understand clearly what is a Research Question, Research Aim and the Objectives in a research and the relationship between them etc. But as for now I’m thankful that you’ve solved my problem.

Hatimu Bah

Well appreciated. This has helped me greatly in doing my dissertation.

Dr. Abdallah Kheri

An so delighted with this wonderful information thank you a lot.

so impressive i have benefited a lot looking forward to learn more on research.

Ekwunife, Chukwunonso Onyeka Steve

I am very happy to have carefully gone through this well researched article.

Infact,I used to be phobia about anything research, because of my poor understanding of the concepts.

Now,I get to know that my research question is the same as my research objective(s) rephrased in question format.

I please I would need a follow up on the subject,as I intends to join the team of researchers. Thanks once again.

Tosin

Thanks so much. This was really helpful.

sylas

i found this document so useful towards my study in research methods. thanks so much.

Michael L. Andrion

This is my 2nd read topic in your course and I should commend the simplified explanations of each part. I’m beginning to understand and absorb the use of each part of a dissertation/thesis. I’ll keep on reading your free course and might be able to avail the training course! Kudos!

Scarlett

Thank you! Better put that my lecture and helped to easily understand the basics which I feel often get brushed over when beginning dissertation work.

Enoch Tindiwegi

This is quite helpful. I like how the Golden thread has been explained and the needed alignment.

Sora Dido Boru

This is quite helpful. I really appreciate!

Chulyork

The article made it simple for researcher students to differentiate between three concepts.

Afowosire Wasiu Adekunle

Very innovative and educational in approach to conducting research.

Sàlihu Abubakar Dayyabu

I am very impressed with all these terminology, as I am a fresh student for post graduate, I am highly guided and I promised to continue making consultation when the need arise. Thanks a lot.

Mohammed Shamsudeen

A very helpful piece. thanks, I really appreciate it .

Sonam Jyrwa

Very well explained, and it might be helpful to many people like me.

JB

Wish i had found this (and other) resource(s) at the beginning of my PhD journey… not in my writing up year… 😩 Anyways… just a quick question as i’m having some issues ordering my “golden thread”…. does it matter in what order you mention them? i.e., is it always first aims, then objectives, and finally the questions? or can you first mention the research questions and then the aims and objectives?

UN

Thank you for a very simple explanation that builds upon the concepts in a very logical manner. Just prior to this, I read the research hypothesis article, which was equally very good. This met my primary objective.

My secondary objective was to understand the difference between research questions and research hypothesis, and in which context to use which one. However, I am still not clear on this. Can you kindly please guide?

Derek Jansen

In research, a research question is a clear and specific inquiry that the researcher wants to answer, while a research hypothesis is a tentative statement or prediction about the relationship between variables or the expected outcome of the study. Research questions are broader and guide the overall study, while hypotheses are specific and testable statements used in quantitative research. Research questions identify the problem, while hypotheses provide a focus for testing in the study.

Saen Fanai

Exactly what I need in this research journey, I look forward to more of your coaching videos.

Abubakar Rofiat Opeyemi

This helped a lot. Thanks so much for the effort put into explaining it.

Lamin Tarawally

What data source in writing dissertation/Thesis requires?

What is data source covers when writing dessertation/thesis

Latifat Muhammed

This is quite useful thanks

Yetunde

I’m excited and thankful. I got so much value which will help me progress in my thesis.

Amer Al-Rashid

where are the locations of the reserch statement, research objective and research question in a reserach paper? Can you write an ouline that defines their places in the researh paper?

Webby

Very helpful and important tips on Aims, Objectives and Questions.

Refiloe Raselane

Thank you so much for making research aim, research objectives and research question so clear. This will be helpful to me as i continue with my thesis.

Annabelle Roda-Dafielmoto

Thanks much for this content. I learned a lot. And I am inspired to learn more. I am still struggling with my preparation for dissertation outline/proposal. But I consistently follow contents and tutorials and the new FB of GRAD Coach. Hope to really become confident in writing my dissertation and successfully defend it.

Joe

As a researcher and lecturer, I find splitting research goals into research aims, objectives, and questions is unnecessarily bureaucratic and confusing for students. For most biomedical research projects, including ‘real research’, 1-3 research questions will suffice (numbers may differ by discipline).

Abdella

Awesome! Very important resources and presented in an informative way to easily understand the golden thread. Indeed, thank you so much.

Sheikh

Well explained

New Growth Care Group

The blog article on research aims, objectives, and questions by Grad Coach is a clear and insightful guide that aligns with my experiences in academic research. The article effectively breaks down the often complex concepts of research aims and objectives, providing a straightforward and accessible explanation. Drawing from my own research endeavors, I appreciate the practical tips offered, such as the need for specificity and clarity when formulating research questions. The article serves as a valuable resource for students and researchers, offering a concise roadmap for crafting well-defined research goals and objectives. Whether you’re a novice or an experienced researcher, this article provides practical insights that contribute to the foundational aspects of a successful research endeavor.

yaikobe

A great thanks for you. it is really amazing explanation. I grasp a lot and one step up to research knowledge.

UMAR SALEH

I really found these tips helpful. Thank you very much Grad Coach.

Rahma D.

I found this article helpful. Thanks for sharing this.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Writing the Research Objectives: 5 Straightforward Examples

The research objective of a research proposal or scientific article defines the direction or content of a research investigation. Without the research objectives, the proposal or research paper is in disarray. It is like a fisherman riding on a boat without any purpose and with no destination in sight. Therefore, at the beginning of any research venture, the researcher must be clear about what he or she intends to do or achieve in conducting a study.

How do you define the objectives of a study? What are the uses of the research objective? How would a researcher write this essential part of the research? This article aims to provide answers to these questions.

Table of Contents

Definition of a research objective.

A research objective describes, in a few words, the result of the research project after its implementation. It answers the question,

“ What does the researcher want or hope to achieve at the end of the research project.”  

The research objective provides direction to the performance of the study.

What are the Uses of the Research Objective?

The uses of the research objective are enumerated below:

  • serves as the researcher’s guide in identifying the appropriate research design,
  • identifies the variables of the study, and
  • specifies the data collection procedure and the corresponding analysis for the data generated.

The research design serves as the “blueprint” for the research investigation. The University of Southern California describes the different types of research design extensively. It details the data to be gathered, data collection procedure, data measurement, and statistical tests to use in the analysis.

The variables of the study include those factors that the researcher wants to evaluate in the study. These variables narrow down the research to several manageable components to see differences or correlations between them.

Specifying the data collection procedure ensures data accuracy and integrity . Thus, the probability of error is minimized. Generalizations or conclusions based on valid arguments founded on reliable data strengthens research findings on particular issues and problems.

In data mining activities where large data sets are involved, the research objective plays a crucial role. Without a clear objective to guide the machine learning process, the desired outcomes will not be met.

How is the Research Objective Written?

A research objective must be achievable, i.e., it must be framed keeping in mind the available time, infrastructure required for research, and other resources.

Before forming a research objective, you should read about all the developments in your area of research and find gaps in knowledge that need to be addressed. Readings will help you come up with suitable objectives for your research project.

5 Examples of Research Objectives

The following examples of research objectives based on several published studies on various topics demonstrate how the research objectives are written:

  • This study aims to find out if there is a difference in quiz scores between students exposed to direct instruction and flipped classrooms (Webb and Doman, 2016).
  • This study seeks to examine the extent, range, and method of coral reef rehabilitation projects in five shallow reef areas adjacent to popular tourist destinations in the Philippines (Yeemin et al ., 2006).
  • This study aims to investigate species richness of mammal communities in five protected areas over the past 20 years (Evans et al ., 2006).
  • This study aims to clarify the demographic, epidemiological, clinical, and radiological features of 2019-nCoV patients with other causes of pneumonia (Zhao et al ., 2020).
  • This research aims to assess species extinction risks for sample regions that cover some 20% of the Earth’s terrestrial surface.

Finally, writing the research objectives requires constant practice, experience, and knowledge about the topic investigated. Clearly written objectives save time, money, and effort.

Once you have a clear idea of your research objectives, you can now develop your conceptual framework which is a crucial element of your research paper as it guides the flow of your research. The conceptual framework will help you develop your methodology and statistical tests.

I wrote a detailed, step-by-step guide on how to develop a conceptual framework with illustration in my post titled “ Conceptual Framework: A Step by Step Guide on How to Make One. “

Evans, K. L., Rodrigues, A. S., Chown, S. L., & Gaston, K. J. (2006). Protected areas and regional avian species richness in South Africa.  Biology letters ,  2 (2), 184-188.

Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., … & Hughes, L. (2004). Extinction risk from climate change. Nature, 427(6970), 145-148.

Webb, M., & Doman, E. (2016). Does the Flipped Classroom Lead to Increased Gains on Learning Outcomes in ESL/EFL Contexts?. CATESOL Journal, 28(1), 39-67.

Yeemin, T., Sutthacheep, M., & Pettongma, R. (2006). Coral reef restoration projects in Thailand.  Ocean & Coastal Management ,  49 (9-10), 562-575.

Zhao, D., Yao, F., Wang, L., Zheng, L., Gao, Y., Ye, J., Guo, F., Zhao, H. & Gao, R. (2020). A comparative study on the clinical features of COVID-19 pneumonia to other pneumonias, Clinical Infectious Diseases , ciaa247, https://doi.org/10.1093/cid/ciaa247

© 2020 March 23 P. A. Regoniel Updated 17 November 2020 | Updated 18 January 2024

Related Posts

A critique on the cooperative writing response groups, writing a thesis introduction: from general to specific.

Research Agenda: Two Tools to Narrow Down the Research Topic

Research Agenda: Two Tools to Narrow Down the Research Topic

About the author, patrick regoniel.

Dr. Regoniel, a faculty member of the graduate school, served as consultant to various environmental research and development projects covering issues and concerns on climate change, coral reef resources and management, economic valuation of environmental and natural resources, mining, and waste management and pollution. He has extensive experience on applied statistics, systems modelling and analysis, an avid practitioner of LaTeX, and a multidisciplinary web developer. He leverages pioneering AI-powered content creation tools to produce unique and comprehensive articles in this website.

thank you for clarification

This is excellent

objective of the study in research example

  • Aims and Objectives – A Guide for Academic Writing
  • Doing a PhD

One of the most important aspects of a thesis, dissertation or research paper is the correct formulation of the aims and objectives. This is because your aims and objectives will establish the scope, depth and direction that your research will ultimately take. An effective set of aims and objectives will give your research focus and your reader clarity, with your aims indicating what is to be achieved, and your objectives indicating how it will be achieved.

Introduction

There is no getting away from the importance of the aims and objectives in determining the success of your research project. Unfortunately, however, it is an aspect that many students struggle with, and ultimately end up doing poorly. Given their importance, if you suspect that there is even the smallest possibility that you belong to this group of students, we strongly recommend you read this page in full.

This page describes what research aims and objectives are, how they differ from each other, how to write them correctly, and the common mistakes students make and how to avoid them. An example of a good aim and objectives from a past thesis has also been deconstructed to help your understanding.

What Are Aims and Objectives?

Research aims.

A research aim describes the main goal or the overarching purpose of your research project.

In doing so, it acts as a focal point for your research and provides your readers with clarity as to what your study is all about. Because of this, research aims are almost always located within its own subsection under the introduction section of a research document, regardless of whether it’s a thesis , a dissertation, or a research paper .

A research aim is usually formulated as a broad statement of the main goal of the research and can range in length from a single sentence to a short paragraph. Although the exact format may vary according to preference, they should all describe why your research is needed (i.e. the context), what it sets out to accomplish (the actual aim) and, briefly, how it intends to accomplish it (overview of your objectives).

To give an example, we have extracted the following research aim from a real PhD thesis:

Example of a Research Aim

The role of diametrical cup deformation as a factor to unsatisfactory implant performance has not been widely reported. The aim of this thesis was to gain an understanding of the diametrical deformation behaviour of acetabular cups and shells following impaction into the reamed acetabulum. The influence of a range of factors on deformation was investigated to ascertain if cup and shell deformation may be high enough to potentially contribute to early failure and high wear rates in metal-on-metal implants.

Note: Extracted with permission from thesis titled “T he Impact And Deformation Of Press-Fit Metal Acetabular Components ” produced by Dr H Hothi of previously Queen Mary University of London.

Research Objectives

Where a research aim specifies what your study will answer, research objectives specify how your study will answer it.

They divide your research aim into several smaller parts, each of which represents a key section of your research project. As a result, almost all research objectives take the form of a numbered list, with each item usually receiving its own chapter in a dissertation or thesis.

Following the example of the research aim shared above, here are it’s real research objectives as an example:

Example of a Research Objective

  • Develop finite element models using explicit dynamics to mimic mallet blows during cup/shell insertion, initially using simplified experimentally validated foam models to represent the acetabulum.
  • Investigate the number, velocity and position of impacts needed to insert a cup.
  • Determine the relationship between the size of interference between the cup and cavity and deformation for different cup types.
  • Investigate the influence of non-uniform cup support and varying the orientation of the component in the cavity on deformation.
  • Examine the influence of errors during reaming of the acetabulum which introduce ovality to the cavity.
  • Determine the relationship between changes in the geometry of the component and deformation for different cup designs.
  • Develop three dimensional pelvis models with non-uniform bone material properties from a range of patients with varying bone quality.
  • Use the key parameters that influence deformation, as identified in the foam models to determine the range of deformations that may occur clinically using the anatomic models and if these deformations are clinically significant.

It’s worth noting that researchers sometimes use research questions instead of research objectives, or in other cases both. From a high-level perspective, research questions and research objectives make the same statements, but just in different formats.

Taking the first three research objectives as an example, they can be restructured into research questions as follows:

Restructuring Research Objectives as Research Questions

  • Can finite element models using simplified experimentally validated foam models to represent the acetabulum together with explicit dynamics be used to mimic mallet blows during cup/shell insertion?
  • What is the number, velocity and position of impacts needed to insert a cup?
  • What is the relationship between the size of interference between the cup and cavity and deformation for different cup types?

Difference Between Aims and Objectives

Hopefully the above explanations make clear the differences between aims and objectives, but to clarify:

  • The research aim focus on what the research project is intended to achieve; research objectives focus on how the aim will be achieved.
  • Research aims are relatively broad; research objectives are specific.
  • Research aims focus on a project’s long-term outcomes; research objectives focus on its immediate, short-term outcomes.
  • A research aim can be written in a single sentence or short paragraph; research objectives should be written as a numbered list.

How to Write Aims and Objectives

Before we discuss how to write a clear set of research aims and objectives, we should make it clear that there is no single way they must be written. Each researcher will approach their aims and objectives slightly differently, and often your supervisor will influence the formulation of yours on the basis of their own preferences.

Regardless, there are some basic principles that you should observe for good practice; these principles are described below.

Your aim should be made up of three parts that answer the below questions:

  • Why is this research required?
  • What is this research about?
  • How are you going to do it?

The easiest way to achieve this would be to address each question in its own sentence, although it does not matter whether you combine them or write multiple sentences for each, the key is to address each one.

The first question, why , provides context to your research project, the second question, what , describes the aim of your research, and the last question, how , acts as an introduction to your objectives which will immediately follow.

Scroll through the image set below to see the ‘why, what and how’ associated with our research aim example.

Explaining aims vs objectives

Note: Your research aims need not be limited to one. Some individuals per to define one broad ‘overarching aim’ of a project and then adopt two or three specific research aims for their thesis or dissertation. Remember, however, that in order for your assessors to consider your research project complete, you will need to prove you have fulfilled all of the aims you set out to achieve. Therefore, while having more than one research aim is not necessarily disadvantageous, consider whether a single overarching one will do.

Research Objectives

Each of your research objectives should be SMART :

  • Specific – is there any ambiguity in the action you are going to undertake, or is it focused and well-defined?
  • Measurable – how will you measure progress and determine when you have achieved the action?
  • Achievable – do you have the support, resources and facilities required to carry out the action?
  • Relevant – is the action essential to the achievement of your research aim?
  • Timebound – can you realistically complete the action in the available time alongside your other research tasks?

In addition to being SMART, your research objectives should start with a verb that helps communicate your intent. Common research verbs include:

Table of Research Verbs to Use in Aims and Objectives

Last, format your objectives into a numbered list. This is because when you write your thesis or dissertation, you will at times need to make reference to a specific research objective; structuring your research objectives in a numbered list will provide a clear way of doing this.

To bring all this together, let’s compare the first research objective in the previous example with the above guidance:

Checking Research Objective Example Against Recommended Approach

Research Objective:

1. Develop finite element models using explicit dynamics to mimic mallet blows during cup/shell insertion, initially using simplified experimentally validated foam models to represent the acetabulum.

Checking Against Recommended Approach:

Q: Is it specific? A: Yes, it is clear what the student intends to do (produce a finite element model), why they intend to do it (mimic cup/shell blows) and their parameters have been well-defined ( using simplified experimentally validated foam models to represent the acetabulum ).

Q: Is it measurable? A: Yes, it is clear that the research objective will be achieved once the finite element model is complete.

Q: Is it achievable? A: Yes, provided the student has access to a computer lab, modelling software and laboratory data.

Q: Is it relevant? A: Yes, mimicking impacts to a cup/shell is fundamental to the overall aim of understanding how they deform when impacted upon.

Q: Is it timebound? A: Yes, it is possible to create a limited-scope finite element model in a relatively short time, especially if you already have experience in modelling.

Q: Does it start with a verb? A: Yes, it starts with ‘develop’, which makes the intent of the objective immediately clear.

Q: Is it a numbered list? A: Yes, it is the first research objective in a list of eight.

Mistakes in Writing Research Aims and Objectives

1. making your research aim too broad.

Having a research aim too broad becomes very difficult to achieve. Normally, this occurs when a student develops their research aim before they have a good understanding of what they want to research. Remember that at the end of your project and during your viva defence , you will have to prove that you have achieved your research aims; if they are too broad, this will be an almost impossible task. In the early stages of your research project, your priority should be to narrow your study to a specific area. A good way to do this is to take the time to study existing literature, question their current approaches, findings and limitations, and consider whether there are any recurring gaps that could be investigated .

Note: Achieving a set of aims does not necessarily mean proving or disproving a theory or hypothesis, even if your research aim was to, but having done enough work to provide a useful and original insight into the principles that underlie your research aim.

2. Making Your Research Objectives Too Ambitious

Be realistic about what you can achieve in the time you have available. It is natural to want to set ambitious research objectives that require sophisticated data collection and analysis, but only completing this with six months before the end of your PhD registration period is not a worthwhile trade-off.

3. Formulating Repetitive Research Objectives

Each research objective should have its own purpose and distinct measurable outcome. To this effect, a common mistake is to form research objectives which have large amounts of overlap. This makes it difficult to determine when an objective is truly complete, and also presents challenges in estimating the duration of objectives when creating your project timeline. It also makes it difficult to structure your thesis into unique chapters, making it more challenging for you to write and for your audience to read.

Fortunately, this oversight can be easily avoided by using SMART objectives.

Hopefully, you now have a good idea of how to create an effective set of aims and objectives for your research project, whether it be a thesis, dissertation or research paper. While it may be tempting to dive directly into your research, spending time on getting your aims and objectives right will give your research clear direction. This won’t only reduce the likelihood of problems arising later down the line, but will also lead to a more thorough and coherent research project.

Finding a PhD has never been this easy – search for a PhD by keyword, location or academic area of interest.

Browse PhDs Now

Join thousands of students.

Join thousands of other students and stay up to date with the latest PhD programmes, funding opportunities and advice.

No internet connection.

All search filters on the page have been cleared., your search has been saved..

  • All content
  • Dictionaries
  • Encyclopedias
  • Expert Insights
  • Foundations
  • How-to Guides
  • Journal Articles
  • Little Blue Books
  • Little Green Books
  • Project Planner
  • Tools Directory
  • Sign in to my profile My Profile

Not Logged In

  • Sign in Signed in
  • My profile My Profile

Not Logged In

Writing Effective Research Aims and Objectives

  • By: Margaret-Anne Houston , Marissa McDonagh Edited by: Margaret-Anne Houston
  • Product: Sage Research Methods: Business
  • Publisher: SAGE Publications Ltd
  • Publication year: 2023
  • Online pub date: March 21, 2023
  • Discipline: Business and Management
  • Methods: Research questions , Writing research , Research design
  • DOI: https:// doi. org/10.4135/9781529668216
  • Keywords: fuel poverty , social media Show all Show less
  • Academic Level: Advanced Undergraduate Online ISBN: 9781529668216 More information Less information

The writing of effective research aims and objectives can cause confusion and concern to new and experienced researchers and learners. This step in your research journey is usually the first written method used to convey your research idea to your tutor. Therefore, aims and objectives should clearly convey your topic, academic foundation, and research design. In order to write effective research aims and objectives, researchers should consider all aspects of their proposed work. For example, the sample(s) to be approached for participation in the primary data collection. Identifying research objectives that are SMART is key to ensuring key aspects of the work are considered prior to any data collection. This includes consideration of access to samples and the ethics of researching the topic and research design. Finally, seeing your work as others will read it, can be an effective evaluation tool to ensure your own research objectives adequately capture and reflect your intended study. Therefore, this guide encourages you to consider common issues with identifying and writing research aims and objectives through consideration of examples.

Learning Outcomes

By the end of this guide, readers should be able to:

  • Identify the meaning and purpose of a research aim within business research
  • Understand the link between an effective research aim and the wider topic and literature/secondary sources, where appropriate
  • Understand how to identify and write Specific, Measurable, Achievable, Realistic and Timely (SMART) Research objectives, research questions, and consideration of research hypothesis
  • Recognize the link between writing an effective research aim and the research design. Write own research aim and objectives

Introduction

The writing of effective research aims and objectives can cause confusion and concern to new (and experienced!) researchers and learners. Attempting to identify the scope and focus of a project within a few specific statements, can take time and consideration of all aspects of your research design. If you are still unsure of your approach to your topic, or even the boundaries of the topic itself, this uncertainty can make the framing of an effective research aim seem like an uphill task.

However, even if this is your first time trying to convey your research idea within a few concise and precise statements, there are steps to take to ensure your work clearly communicates your meaning to your audience. This how-to-guide draws on examples of business topic research aims and objectives and explores techniques for reviewing their meaning. This active learning approach will enable you to grow confidence in framing and communicating your own research.

The importance of ensuring the research aim and objectives are not only reflective of the topic choice but are also achievable can be a fluid process, which in itself, can result in anxious researchers. Seeing your work as others will read it, can be an effective evaluation tool to ensure your own research objectives adequately capture and reflect your intended study. Therefore, this guide encourages you to consider common issues with identifying and writing research aims and objectives through consideration of examples.

Identify the Meaning and Purpose of a Research Aim with Business Research

Writing an effective research aim is an integral part of the research process. A research aim is a statement of intent. It should communicate your research goal clearly and should provide a focus for your work from the offset. It is important to differentiate between a research aim and the objectives. If a research aim tells the reader what you plan to achieve, then the research objectives should state how you would reach that goal. Often the objectives will provide a road map of the steps you will take in order to meet the research aim. Therefore, a research aim in business-related topics is typically a single sentence or even two, which conveys the overall purpose of the research-the end goal!

The terminology you use when writing your research aim is important. Note the following example aims from Business related topics:

  • 1. This research aims to evaluate the lasting effects of lockdown and ‘work from home’ initiatives on productiveness in the financial service industry.
  • 2. This research aims to establish a link between innovations in Artificial Intelligence (AI) and recruitment processes for The Royal Bank of Scotland.
  • 3. This research aims to investigate to what extent Corporate Social Responsibility (CSR) initiatives can influence consumer behavior. A case study of Aldi UK.
  • 4. This research aims to assess the effectiveness of technology companies’ risk management of cyber and information risks measured on the basis of supply chain resilience.
  • 5. This research aims to explore the impact of Government funded initiatives to encourage social entrepreneurship in Scotland.

As evidenced above all of the aims stated contain verbs, these highlight how the research will be undertaken. Words such as to assess, to establish, to explore or to evaluate all reflect research analysis. This conveys your intention clearly to the reader and whilst it may not fully demonstrate exactly how the project will be undertaken, the verbs show what the goal is.

The objectives, which follow the aim, can help to show the exact ways the aim will be achieved, highlighting the research methods. It is important to think carefully about whether you plan to or will be to, come to a clear conclusion. Often it is not possible and this can be due to many factors such as the time or scope of the issue. For example, in the aims stated above number 2 is the only one that states it will ‘establish a link.’ This is because the aim is specific and measurable. The objectives should identify the specific processes it will examine and link to effective recruitment practices that are more effective than prior to AI being used.

However, for the other aims it is more appropriate to explore or investigate the topics, as opposed to ‘establishing’ or to ‘evidence an impact.’

Abbreviations are a useful way of shortening words or phrases and they can give writing a more coherent flow. It is worth noting that all abbreviations like AI or CSR should only be used when they are spelled out initially and if they appear frequently throughout your writing.

It is important to always check with your supervisor or course Handbook but typically, you should have a research question, a research aim, and objectives. The research question should capture what the issue is, often it will help to explain your research aim by offering a critical perspective. For example, if your research is to evaluate the effect of something then your question may be to what extent is that something works?

Finally, it is important to remember that the wording of your research aim may change slightly as your research progresses. Often students will modify the words to reflect what they are undertaking as the process develops.

Section Summary

  • An effective research aim should clearly set out the goal of a project.
  • Carefully consider the terminology you use at this stage, and ensure it reflects the outcome of the study.
  • Remember a research aim can be fluid and the exact wording is likely to change as you progress through your research journey.

Understand the Link Between an Effective Research Aim and the Wider Topic and Literature/secondary Sources, Where Appropriate

When developing the research aim it is important to be engaged with the wider topic and associated literature and secondary sources from the offset. These sources will be crucial in helping you to tackle the topic successfully.

Identifying an idea for a research project can sometimes be a relatively simple first step in the research process. It is often narrowing the idea down to a research aim, which can be more difficult. A good way to start is to brainstorm ideas, think about what interests you the most about your studies, and note down keywords which can then be used as search terms. Researchers, at all levels of research and study, should consider information-seeking as a process through which they engage with the primary literature and secondary sources concerning their topic area. This will develop self-confidence in your ability to define the terms of reference of your work and studies. An inquiring mind and openness to a degree of flexibility of approach in these early stages of research, can be key to ensuring initial topic ideas can be molded into achievable research aims and objectives.

Research could be considered to be cyclical, not a one-off process. Therefore, in order to ensure a definable and achievable research topic, many projects use a mixture of sources. This requires a degree of confidence on the part of the researcher; to identify the relevant resources they require, a strategy for how to find them and also, a process for information management.

Many researchers will start with an online search for both academic and non-academic sources. The short-term success of this first step can be dictated by the choice of keywords and phrases. That is, those terms that the researcher believes are most relevant for, and most likely to come up with links to their research topic. However, caution should be employed in this initial task of online searching - this is an important opportunity to consider how we identify these specific keywords. A limited understanding of the area will be enhanced through further reading. It can allow the researcher to access previous studies in the same topic area and identify effective research methods. An informed research aim should be underpinned by reading and evaluating sources in relation to the research idea.

Using the research aims below as examples, note the sources required and some issues to consider for each source. By strategically linking your research aim to the wider area you will ensure your research is robust from the start.

  • Reading combined with ongoing critical appraisal of associated sources can help to refine and focus your research aim and objectives.
  • Think of your research as an ongoing process. Reading associated sources should be embedded in every stage of your research journey.
  • Ensure you are acknowledging the wider research area and associated sources from the offset as this will help to refine and focus your research aim and objectives.

Understanding How to Identify SMART Research Objectives, Research Questions, and Consideration of Research Hypothesis

First-time final year undergraduates are normally expected to identify a research topic and research design that are realistic and achievable. Not only should they be realistic as topics but also achievable within a short time period when most learners have never undertaken such work previously. A common pitfall of many initial research topics is identifying an area that is too wide in scope. A simple step is to consider how to express and convey the work within a series of research objectives. Careful consideration of the content of these statements can help narrow the topic focus, and ensure the research design is relevant to the work to be undertaken. Therefore, writing your objectives should be viewed as a process and not a one-off exercise. Remember, they convey your work to an audience and set out the initial boundaries of the research to be undertaken.

Therefore, research aims and objectives should provide focus and direction for the research topic. Many business research methods texts will introduce the writing of research aims and objectives as a specific skill required to ensure they are Specific, Measurable, Achievable, Realistic and Timely (SMART). By following the SMART guidelines and analyzing examples of common issues within aims and objectives, learners can build confidence and ensure their aims and objectives are strong. Together with these five criteria, the language used can convey the depth of the inquiry. By way of explanation, consider the following topic submitted for consideration as a final-year project:

The research aim is to evaluate consumer perceptions of the impact of social media advertising on their car purchasing decisions. The fieldwork will examine consumer attitudes toward social media advertising and the benefits of this approach. This will be explored through the following research objectives:

  • 1. Examine relevant literature concerning advertising, and trends in social media within the car industry;
  • 2. Identify the attitudes of key players and stakeholders within the advertising industry toward the use of social media;
  • 3. Discuss the effects of new technology on social media and advertising trends;
  • 4. Evaluate how consumers relate to new technology with a view to making recommendations for improvement in the use of social media within online advertising.

S pecific – the research objectives reflect the terminology also used within the research aim.

M easureable – this does not necessarily mean that the work will involve quantitative data. Consider that the objectives identify the issues and samples and so the target of the work.

A chievable – does the work appear to be a piece of research that could be undertaken and completed within the confines of the undergraduate program? It could be achievable on the basis that the work does not appear to require a long time period to complete and the samples should be accessible. Achievability is also a consideration of university ethical consideration processes. For example, although a researcher is able to identify a sample of participants who are experiencing fuel poverty, consideration must be given to the possible ethical issues that surround requesting their participation. It may be deemed that the research could in some manner cause harm to the participants, such as stress through talking about their lived experiences. This stress could also be felt by the researcher who may not be trained to deal with such emotional situations. In both of these examples, the university ethics process could decide this work is unachievable.

R ealistic – the issue of social media advertising is realistic within the stated industry. The samples identified also appear linked to the topic. Furthermore, the academic foundation of the work is also identified – advertising. The work also appears to be realistic in terms of the resources required to complete it. The ethical use of data gathered from social media could also be relevant to determining if this topic is realistic. As with Achievability above, issues such as how the data was originally gathered and how it will then be used by the researcher, would be scrutinized by the Ethics process. Again, the principle of ‘do no harm’ would be applied to determine if the work is realistic.

T imely – although the work does not offer a specific timeframe, the use of social media for advertising is evident within the car industry. Therefore, this could be said to be timely.

Furthermore, the terminology is important. If you choose words that are descriptive, they will convey work that is also descriptive. So, try to use words such as ‘describe,’ ‘understand,’ or ‘gain an insight into’ only where they adequately reflect that your research is not an in-depth study. Consider using terms to evidence how you will approach each objective including: evaluate; critique; critically discuss and examine. All infer the research will go beyond a surface inquiry.

Now, at this stage, consider if the research wished to study the possible relationships between variables such as the impact on consumers of exposure to social media advertising on car sales decision-making. As with the approach to the similar topic above, this could be explored using qualitative data by gathering the experiences of consumers and/or people within the car industry. However, research that specifically wishes to explore possible links between issues and/or specific variables, could sometimes be better framed using a research hypothesis. This is a statement that identifies possible c ause and effect ’ relationships between variables. Therefore, the focus of the above topic could be reconsidered to identify the impact of social media advertising within the car industry. The new research question and hypothesis could be thus:

The research question: Do consumers perceive the impact of social media advertising on their car purchasing decisions?

Null Hypothesis: There is no difference in car purchasing decisions between those consumers who are exposed to social media advertising of cars compared to those who are not.

Alternative Hypothesis: There is a relationship between whether or not a consumer has been exposed to social media advertising and their car purchasing decision.

In order to address the hypothesis, some form of statistical testing would be required which is not covered in this guide. However, as a researcher, you should always consider what it is specifically that you wish to research when framing your work. This topic consideration could identify specific issues and/or variables which you wish to explore further to test if there are statistical relationships. In this situation, you could consider including hypothesis testing within your research design. As can be viewed above, related topics may be presented in different ways, with the inclusion or exclusion of a research hypothesis. The existence of possible relationships may be explored through research that seeks perceptions of advertising. However, research which seeks statistical evidence would be best represented with hypothesis testing.

  • Research aim and objectives convey to your audience the topic and possible boundaries of your work. Therefore, ensuring they are presented as SMART, allows others to assess your work in the way you intended.
  • Research ethics should be considered when writing research aims and objectives, including the potential impact of participation on individuals. Research should do no harm to the individuals involved, including the sample and researchers themselves.
  • Research does not always necessitate consideration of the research hypothesis. However, in some circumstances, a well-considered hypothesis could offer statistical weight to your findings.

Recognizing the Link Between Writing an Effective Research Aim and the Research Design

The research aim and objectives should be written in a way that conveys the specific area or problem to be researched. This should allow anyone reading your research aim to understand the main focus of the work. For example, your work may aim to examine the lived experiences of individuals living with fuel poverty within a specific geographic area or demographic. In this example, you can clearly identify the topic – lived experiences of fuel poverty – and the focus – individuals within the chosen geographical area/demographic . To a more experienced researcher, it can also offer insight into the research design which may be reasonably expected. So, studies of ‘lived experiences’ can involve the gathering and/or analysis of qualitative data from individuals/communities as the researcher seek to gather the first-hand experiences of participants (individuals).

Clearly written research aim and objectives should allow the reader to consider the following information:

  • 1. Wider academic area(s) within which the topic falls (for example, accountancy; marketing; management);
  • 2. The main areas of the literature identified within the aim and/or objectives;
  • 3. The data which would be expected to be gathered to in order to meet/address the research objectives;
  • 4. The data collection methods which could be deemed relevant to the research aim and,
  • 5. Overall, if the research aim and objectives are SMART (see above).

Consider the wording in the example below:

The research aim of this dissertation is to examine the lived experiences of people living with fuel poverty and their attitudes towards support services within a local council area. This research aim will be addressed through the following research objectives:

  • 1. Critically review previous literature and evaluate the origins and purpose of different definitions of ‘fuel poverty.’
  • 2. Explore the attitudes of individuals currently experiencing fuel poverty towards support agencies and other stakeholders.
  • 3. Analyze the opportunities and barriers to support agencies and related stakeholders within a local council area with specific regard to supporting those experiencing fuel poverty.
  • 4. Compare and contrast the lived experiences of individuals experiencing fuel poverty with those of the support agencies to identify potential service gaps.

Looking closely at the work above, it could be reasonable to make the following assumptions about the research:

The academic area(s) within which the topic falls (for example, accountancy; marketing; management; social sciences; economics). This can be researched and explored by keyword searching the research aim. In this example, there appear to be multiple academic roots to the work:

  • ‘lived experiences of people living with fuel poverty’ – this could be viewed as a social science/economics topic or even an engineering area. Either would depend on the specific view taken to investigate fuel poverty, i.e., real-world examples of lived experiences, specially such as narratives about their daily life. Alternatively, this aim could encapsulate studies within engineering areas that seek to understand the impact of construction and design decisions on the daily life of individuals.
  • ‘…and their attitudes towards support services within a local council area’ – by adding a focus for the study as being specific to support services, this work is now narrowed to more reflect the social sciences area.
  • If the work was indeed to study any issues such as building construction, this would be expected to appear within the research aim to convey the topic clearly and precisely.

Therefore, it could be expected that if the research draws on wider academic areas, this should be evident from the terminology within the research objectives. A consistent use of terminology ensures the academic foundation of the work is identifiable throughout. It could also be reasonably presumed that the relevant issues of each sample (individuals within fuel poverty, the support services, and stakeholders), would be refined to include specific factors to ensure the work is focused on specific issues.

Next, consider the type of data you would expect to gather to in order to meet/address the research objectives. The following options appear to be linked to the wording of the objectives:

  • Secondary Data: The objectives identify the need for literature in the first stages of work in order to address objectives 1, 2, and 3. As the research is based on lived experiences, this could include not only academic work but also charity and government reports. Given that this is a real-world issue, examples could also be identified from reputable news agencies. All of these sources could help identify possible issues that may be identified by research participants during the data gathering. If these issues are not identified by the participants, they could be used to form a critical discussion around opportunities or barriers (objective 3).
  • Primary Data: Given the focus on lived experiences related to support services, the research may be presumed to include a qualitative study. A qualitative study would allow participants to use their own voices and language to explain their lived experiences. Whereas a quantitative study, by its nature, could explore the issues already known to the researcher when the instrument was written, e.g., survey. Qualitative data could perhaps encourage more personal issues to be identified by the individual participants, and also offer some context for their position.

Subsequently, consider which data collection methods you would expect to be used to address the research aim.

  • Quantitative data gathering tools: Could quantitative data gathering explore the lived experiences of this sample? Many areas could be effectively explored however lived experiences tend to be personal to the individual and so qualitative could offer more depth and richness to the data.
  • As both the research aim and objectives identify specific samples, the research could be considered to have a boundary around those to be invited to participate. Therefore, secondary data may identify the definitions of fuel poverty and offer reasons for any differences. It could also allow the identification of the roles and remits of support services and stakeholders. However, it will not offer specific lived experience details that can come from the sample of individuals.

If specific organizational sectors or companies were identified, the use of quantitative data-gathering tools, such as a survey, may allow more specific information to be gathered. Remember, the research aim identifies that the focus is the individuals who experience fuel poverty. Therefore, a survey could address issues such as knowledge and understanding of these service providers. However, it could then miss hearing about the informal networks used by individuals for support, which could come to light during a qualitative study.

Finally, if in doubt, show your research aim and objectives to a colleague and ask them to tell you , what they think your research is about. This simple exercise will enable you to realize what other people understand from your work and so, allow you to tweak where necessary. This should ensure your research is not only accessible to different audiences but ultimately, is a fair reflection of your topic choice.

  • Clearly written research aims and objectives can effectively convey information about your work. This allows a reader to consider the key aspects of your topic and sets expectations about the contents of your report/dissertation/thesis.
  • Always ensure that the language used to write a research aim and objectives, adequately convey the meaning and depth of your research. It should be specific to your topic but also accessible to the intended audience(s).
  • SMART research objectives can convey your understanding of research design. This should be apparent from the layering of issues and identification of relevant samples.

In conclusion, this guide has offered practical steps through example-based exercises to help you format your idea into an effective research aim and objectives. Having progressed through the exercises, you will have considered issues such as the importance of understanding how a research aim can help you refine your idea. It is also the mechanism to convey your research intention to your audience. Through exploring the importance of linking your research aim to the wider research area this will give you the confidence to develop SMART objectives. Following this, your work will reflect key areas of your research design through the use of relevant research methods terminology.

Therefore, by following the steps in this guide you should now be confident to take your idea and form it into robust research aims and objectives.

Multiple-Choice Quiz Questions

1. The purpose of a research aim is to ______.

Incorrect Answer

Feedback: This is not the correct answer. The correct answer is C.

Correct Answer

Feedback: Well done, correct answer

2. It is important to understand the link between the research aim and the wider topic because ______.

Feedback: This is not the correct answer. The correct answer is B.

3. How many research objectives are necessary to ensure a successful final-year project?

4. Research objectives reflect ______

5. Research design can be reflected in the research aim and objectives by ______.

Web Resources

Further reading, sign in to access this content, get a 30 day free trial, more like this, sage recommends.

We found other relevant content for you on other Sage platforms.

Have you created a personal profile? Login or create a profile so that you can save clips, playlists and searches

  • Sign in/register

Navigating away from this page will delete your results

Please save your results to "My Self-Assessments" in your profile before navigating away from this page.

Sign in to my profile

Sign up for a free trial and experience all Sage Learning Resources have to offer.

You must have a valid academic email address to sign up.

Get off-campus access

  • View or download all content my institution has access to.

Sign up for a free trial and experience all Sage Research Methods has to offer.

  • view my profile
  • view my lists
  • Link to facebook
  • Link to linkedin
  • Link to twitter
  • Link to youtube
  • Writing Tips

How to Write Research Objectives

How to Write Research Objectives

3-minute read

  • 22nd November 2021

Writing a research paper, thesis, or dissertation ? If so, you’ll want to state your research objectives in the introduction of your paper to make it clear to your readers what you’re trying to accomplish. But how do you write effective research objectives? In this post, we’ll look at two key topics to help you do this:

  • How to use your research aims as a basis for developing objectives.
  • How to use SMART criteria to refine your research objectives.

For more advice on how to write strong research objectives, see below.

Research Aims and Objectives

There is an important difference between research aims and research objectives:

  • A research aim defines the main purpose of your research. As such, you can think of your research aim as answering the question “What are you doing?”
  • Research objectives (as most studies will have more than one) are the steps you will take to fulfil your aims. As such, your objectives should answer the question “How are you conducting your research?”

For instance, an example research aim could be:

This study will investigate the link between dehydration and the incidence of urinary tract infections (UTIs) in intensive care patients in Australia.

To develop a set of research objectives, you would then break down the various steps involved in meeting said aim. For example:

This study will investigate the link between dehydration and the incidence of urinary tract infections (UTIs) in intensive care patients in Australia. To achieve this, the study objectives w ill include:

  • Replicat ing a small Singaporean study into the role of dehydration in UTIs in hospital patients (Sepe, 2018) in a larger Australian cohort.
  • Trialing the use of intravenous fluids for intensive care patients to prevent dehydration.
  • Assessing the relationship between the age of patients and quantities of intravenous fluids needed to counter dehydration.

Find this useful?

Subscribe to our newsletter and get writing tips from our editors straight to your inbox.

Note that the objectives don’t go into any great detail here. The key is to briefly summarize each component of your study. You can save details for how you will conduct the research for the methodology section of your paper.

Make Your Research Objectives SMART

A great way to refine your research objectives is to use SMART criteria . Borrowed from the world of project management, there are many versions of this system. However, we’re going to focus on developing specific, measurable, achievable, relevant, and timebound objectives.

In other words, a good research objective should be all of the following:

  • S pecific – Is the objective clear and well-defined?
  • M easurable – How will you know when the objective has been achieved? Is there a way to measure the thing you’re seeking to do?
  • A chievable – Do you have the support and resources necessary to undertake this action? Are you being overly ambitious with this objective?
  • R elevant – Is this objective vital for fulfilling your research aim?
  • T imebound – Can this action be realistically undertaken in the time you have?

If you follow this system, your research objectives will be much stronger.

Expert Research Proofreading

Whatever your research aims and objectives, make sure to have your academic writing proofread by the experts!

Our academic editors can help you with research papers and proposals , as well as any other scholarly document you need checking. And this will help to ensure that your academic writing is always clear, concise, and precise.

Submit a free sample document today to trial our services and find out more.

Share this article:

Post A New Comment

Got content that needs a quick turnaround? Let us polish your work. Explore our editorial business services.

4-minute read

The Benefits of Using an Online Proofreading Service

Proofreading is important to ensure your writing is clear and concise for your readers. Whether...

2-minute read

6 Online AI Presentation Maker Tools

Creating presentations can be time-consuming and frustrating. Trying to construct a visually appealing and informative...

What Is Market Research?

No matter your industry, conducting market research helps you keep up to date with shifting...

8 Press Release Distribution Services for Your Business

In a world where you need to stand out, press releases are key to being...

How to Get a Patent

In the United States, the US Patent and Trademarks Office issues patents. In the United...

The 5 Best Ecommerce Website Design Tools 

A visually appealing and user-friendly website is essential for success in today’s competitive ecommerce landscape....

Logo Harvard University

Make sure your writing is the best it can be with our expert English proofreading and editing.

  • Defining Research Objectives: How To  Write Them

Moradeke Owa

Almost all industries use research for growth and development. Research objectives are how researchers ensure that their study has direction and makes a significant contribution to growing an industry or niche.

Research objectives provide a clear and concise statement of what the researcher wants to find out. As a researcher, you need to clearly outline and define research objectives to guide the research process and ensure that the study is relevant and generates the impact you want.

In this article, we will explore research objectives and how to leverage them to achieve successful research studies.

What Are Research Objectives?

Research objectives are what you want to achieve through your research study. They guide your research process and help you focus on the most important aspects of your topic.

You can also define the scope of your study and set realistic and attainable study goals with research objectives. For example, with clear research objectives, your study focuses on the specific goals you want to achieve and prevents you from spending time and resources collecting unnecessary data.

However, sticking to research objectives isn’t always easy, especially in broad or unconventional research. This is why most researchers follow the SMART criteria when defining their research objectives.

Understanding SMART Criteria in Research

Think of research objectives as a roadmap to achieving your research goals, with the SMART criteria as your navigator on the map.

SMART stands for Specific, Measurable, Achievable, Relevant, and Time-bound. These criteria help you ensure that your research objectives are clear, specific, realistic, meaningful, and time-bound.

Here’s a breakdown of the SMART Criteria:

Specific : Your research objectives should be clear: what do you want to achieve, why do you want to achieve it, and how do you plan to achieve it? Avoid vague or broad statements that don’t provide enough direction for your research.

Measurable : Your research objectives should have metrics that help you track your progress and measure your results. Also, ensure the metrics are measurable with data to verify them.

Achievable : Your research objectives should be within your research scope, timeframe, and budget. Also, set goals that are challenging but not impossible.

Relevant: Your research objectives should be in line with the goal and significance of your study. Also, ensure that the objectives address a specific issue or knowledge gap that is interesting and relevant to your industry or niche.

Time-bound : Your research objectives should have a specific deadline or timeframe for completion. This will help you carefully set a schedule for your research activities and milestones and monitor your study progress.

Characteristics of Effective Research Objectives

Clarity : Your objectives should be clear and unambiguous so that anyone who reads them can understand what you intend to do. Avoid vague or general terms that could be taken out of context.

Specificity : Your objectives should be specific and address the research questions that you have formulated. Do not use broad or narrow objectives as they may restrict your field of research or make your research irrelevant.

Measurability : Define your metrics with indicators or metrics that help you determine if you’ve accomplished your goals or not. This will ensure you are tracking the research progress and making interventions when needed.

Also, do use objectives that are subjective or based on personal opinions, as they may be difficult to accurately verify and measure.

Achievability : Your objectives should be realistic and attainable, given the resources and time available for your research project. You should set objectives that match your skills and capabilities, they can be difficult but not so hard that they are realistically unachievable.

For example, setting very difficult make you lose confidence, and abandon your research. Also, setting very simple objectives could demotivate you and prevent you from closing the knowledge gap or making significant contributions to your field with your research.

Relevance : Your objectives should be relevant to your research topic and contribute to the existing knowledge in your field. Avoid objectives that are unrelated or insignificant, as they may waste your time or resources.

Time-bound : Your objectives should be time-bound and specify when you will complete them. Have a realistic and flexible timeframe for achieving your objectives, and track your progress with it. 

Steps to Writing Research Objectives

Identify the research questions.

The first step in writing effective research objectives is to identify the research questions that you are trying to answer. Research questions help you narrow down your topic and identify the gaps or problems that you want to address with your research.

For example, if you are interested in the impact of technology on children’s development, your research questions could be:

  • What is the relationship between technology use and academic performance among children?
  • Are children who use technology more likely to do better in school than those who do not?
  • What is the social and psychological impact of technology use on children?

Brainstorm Objectives

Once you have your research questions, you can brainstorm possible objectives that relate to them. Objectives are more specific than research questions, and they tell you what you want to achieve or learn in your research.

You can use verbs such as analyze, compare, evaluate, explore, investigate, etc. to express your objectives. Also, try to generate as many objectives as possible, without worrying about their quality or feasibility at this stage.

Prioritize Objectives

Once you’ve brainstormed your objectives, you’ll need to prioritize them based on their relevance and feasibility. Relevance is how relevant the objective is to your research topic and how well it fits into your overall research objective.

Feasibility is how realistic and feasible the objective is compared to the time, money, and expertise you have. You can create a matrix or ranking system to organize your objectives and pick the ones that matter the most.

Refine Objectives

The next step is to refine and revise your objectives to ensure clarity and specificity. Start by ensuring that your objectives are consistent and coherent with each other and with your research questions. 

Make Objectives SMART

A useful way to refine your objectives is to make them SMART, which stands for specific, measurable, achievable, relevant, and time-bound. 

  • Specific : Objectives should clearly state what you hope to achieve.
  • Measurable : They should be able to be quantified or evaluated.
  • Achievable : realistic and within the scope of the research study.
  • Relevant : They should be directly related to the research questions.
  • Time-bound : specific timeframe for research completion.

Review and Finalize Objectives

The final step is to review your objectives for coherence and alignment with your research questions and aim. Ensure your objectives are logically connected and consistent with each other and with the purpose of your study.

You also need to check that your objectives are not too broad or too narrow, too easy or too hard, too many or too few. You can use a checklist or a rubric to evaluate your objectives and make modifications.

Examples of Well-Written Research Objectives

Example 1- Psychology

Research question: What are the effects of social media use on teenagers’ mental health?

Objective : To determine the relationship between the amount of time teenagers in the US spend on social media and their levels of anxiety and depression before and after using social media.

What Makes the Research Objective SMART?

The research objective is specific because it clearly states what the researcher hopes to achieve. It is measurable because it can be quantified by measuring the levels of anxiety and depression in teenagers. 

Also, the objective is achievable because the researcher can collect enough data to answer the research question. It is relevant because it is directly related to the research question. It is time-bound because it has a specific deadline for completion.

Example 2- Marketing

Research question : How can a company increase its brand awareness by 10%?

Objective : To develop a marketing strategy that will increase the company’s sales by 10% within the next quarter.

How Is this Research Objective SMART?

The research states what the researcher hopes to achieve ( Specific ). You can also measure the company’s reach before and after the marketing plan is implemented ( Measurable ).

The research objective is also achievable because you can develop a marketing plan that will increase awareness by 10% within the timeframe. The objective is directly related to the research question ( Relevant ). It is also time-bound because it has a specific deadline for completion.

Research objectives are a well-designed roadmap to completing and achieving your overall research goal. 

However, research goals are only effective if they are well-defined and backed up with the best practices such as the SMART criteria. Properly defining research objectives will help you plan and conduct your research project effectively and efficiently.

Logo

Connect to Formplus, Get Started Now - It's Free!

  • research goals
  • research objectives
  • research roadmap
  • smart goals
  • SMART research objectives
  • Moradeke Owa

Formplus

You may also like:

Research Summary: What Is It & How To Write One

Introduction A research summary is a requirement during academic research and sometimes you might need to prepare a research summary...

objective of the study in research example

Projective Techniques In Surveys: Definition, Types & Pros & Cons

Introduction When you’re conducting a survey, you need to find out what people think about things. But how do you get an accurate and...

Desk Research: Definition, Types, Application, Pros & Cons

If you are looking for a way to conduct a research study while optimizing your resources, desk research is a great option. Desk research...

Subgroup Analysis: What It Is + How to Conduct It

Introduction Clinical trials are an integral part of the drug development process. They aim to assess the safety and efficacy of a new...

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

We use cookies to give you the best experience possible. By continuing we’ll assume you’re on board with our cookie policy

Logo

  • A Research Guide
  • Research Paper Guide

How to Write Research Objectives

  • What are research objectives
  • Step-by-step writing guide
  • Helpful tips
  • Research objectives examples

What are research objectives, and why are they important?

Step-by-step research objectives writing guide, step 1: provide the major background of your research, step 2: mention several objectives from the most to least important aspects, step 3: follow your resources and do not promise too much, step 4: keep your objectives and limitations mentioned, step 5: provide action verbs and tone, helpful tips for writing research objectives.

  • Keep your content specific! It is necessary to narrow things down and leave no space for double meanings or confusion. If some idea cannot be supported with a piece of evidence, it’s better to avoid it in your objectives.
  • Objectives must be measurable! It is crucial to make it possible to replicate your work in further research. Creating an outline as you strive for your goals and set the purpose is necessary.
  • Keeping things relevant! Your research objectives should be related to your thesis statement and the subject that you have chosen to work with. It will help to avoid introducing ideas that are not related to your work.
  • Temporal factor! Set deadlines to track your progress and provide a setting for your research if it is relevant. It will help your target audience to see your limitations and specifics.

Research objectives example

Research objective 1: The study aims to explore the origins and evolution of the youth movements in the Flemish provinces in Belgium, namely Chiro and KSA. This research evaluates the major differences during the post-WW2 period and the social factors that created differences between the movements. 

Research objective 2: This paper implements surveys and personal interviews to determine first-hand feedback from the youth members and the team leaders. 

Research objective 3: Aiming to compare and contrast, this study determines the positive outcomes of the unity project work between the branches of the youth movement in Belgium, aiming for statistical data to support it. 

aside icon

Receive paper in 3 Hours!

  • Choose the number of pages.
  • Select your deadline.
  • Complete your order.

Number of Pages

550 words (double spaced)

Deadline: 10 days left

By clicking "Log In", you agree to our terms of service and privacy policy . We'll occasionally send you account related and promo emails.

Sign Up for your FREE account

  • Chapter 1: Home
  • Narrowing Your Topic
  • Problem Statement

Purpose Statement Overview

Best practices for writing your purpose statement, writing your purpose statement, sample purpose statements.

  • Student Experience Feedback Buttons
  • Conceptual Framework
  • Theoretical Framework
  • Quantitative Research Questions This link opens in a new window
  • Qualitative Research Questions This link opens in a new window
  • Qualitative & Quantitative Research Support with the ASC This link opens in a new window
  • Library Research Consultations This link opens in a new window

Jump to DSE Guide

The purpose statement succinctly explains (on no more than 1 page) the objectives of the research study. These objectives must directly address the problem and help close the stated gap. Expressed as a formula:

objective of the study in research example

Good purpose statements:

  • Flow from the problem statement and actually address the proposed problem
  • Are concise and clear
  • Answer the question ‘Why are you doing this research?’
  • Match the methodology (similar to research questions)
  • Have a ‘hook’ to get the reader’s attention
  • Set the stage by clearly stating, “The purpose of this (qualitative or quantitative) study is to ...

In PhD studies, the purpose usually involves applying a theory to solve the problem. In other words, the purpose tells the reader what the goal of the study is, and what your study will accomplish, through which theoretical lens. The purpose statement also includes brief information about direction, scope, and where the data will come from.

A problem and gap in combination can lead to different research objectives, and hence, different purpose statements. In the example from above where the problem was severe underrepresentation of female CEOs in Fortune 500 companies and the identified gap related to lack of research of male-dominated boards; one purpose might be to explore implicit biases in male-dominated boards through the lens of feminist theory. Another purpose may be to determine how board members rated female and male candidates on scales of competency, professionalism, and experience to predict which candidate will be selected for the CEO position. The first purpose may involve a qualitative ethnographic study in which the researcher observes board meetings and hiring interviews; the second may involve a quantitative regression analysis. The outcomes will be very different, so it’s important that you find out exactly how you want to address a problem and help close a gap!

The purpose of the study must not only align with the problem and address a gap; it must also align with the chosen research method. In fact, the DP/DM template requires you to name the  research method at the very beginning of the purpose statement. The research verb must match the chosen method. In general, quantitative studies involve “closed-ended” research verbs such as determine , measure , correlate , explain , compare , validate , identify , or examine ; whereas qualitative studies involve “open-ended” research verbs such as explore , understand , narrate , articulate [meanings], discover , or develop .

A qualitative purpose statement following the color-coded problem statement (assumed here to be low well-being among financial sector employees) + gap (lack of research on followers of mid-level managers), might start like this:

In response to declining levels of employee well-being, the purpose of the qualitative phenomenology was to explore and understand the lived experiences related to the well-being of the followers of novice mid-level managers in the financial services industry. The levels of follower well-being have been shown to correlate to employee morale, turnover intention, and customer orientation (Eren et al., 2013). A combined framework of Leader-Member Exchange (LMX) Theory and the employee well-being concept informed the research questions and supported the inquiry, analysis, and interpretation of the experiences of followers of novice managers in the financial services industry.

A quantitative purpose statement for the same problem and gap might start like this:

In response to declining levels of employee well-being, the purpose of the quantitative correlational study was to determine which leadership factors predict employee well-being of the followers of novice mid-level managers in the financial services industry. Leadership factors were measured by the Leader-Member Exchange (LMX) assessment framework  by Mantlekow (2015), and employee well-being was conceptualized as a compound variable consisting of self-reported turnover-intent and psychological test scores from the Mental Health Survey (MHS) developed by Johns Hopkins University researchers.

Both of these purpose statements reflect viable research strategies and both align with the problem and gap so it’s up to the researcher to design a study in a manner that reflects personal preferences and desired study outcomes. Note that the quantitative research purpose incorporates operationalized concepts  or variables ; that reflect the way the researcher intends to measure the key concepts under study; whereas the qualitative purpose statement isn’t about translating the concepts under study as variables but instead aim to explore and understand the core research phenomenon.  

Always keep in mind that the dissertation process is iterative, and your writing, over time, will be refined as clarity is gradually achieved. Most of the time, greater clarity for the purpose statement and other components of the Dissertation is the result of a growing understanding of the literature in the field. As you increasingly master the literature you will also increasingly clarify the purpose of your study.

The purpose statement should flow directly from the problem statement. There should be clear and obvious alignment between the two and that alignment will get tighter and more pronounced as your work progresses.

The purpose statement should specifically address the reason for conducting the study, with emphasis on the word specifically. There should not be any doubt in your readers’ minds as to the purpose of your study. To achieve this level of clarity you will need to also insure there is no doubt in your mind as to the purpose of your study.

Many researchers benefit from stopping your work during the research process when insight strikes you and write about it while it is still fresh in your mind. This can help you clarify all aspects of a dissertation, including clarifying its purpose.

Your Chair and your committee members can help you to clarify your study’s purpose so carefully attend to any feedback they offer.

The purpose statement should reflect the research questions and vice versa. The chain of alignment that began with the research problem description and continues on to the research purpose, research questions, and methodology must be respected at all times during dissertation development. You are to succinctly describe the overarching goal of the study that reflects the research questions. Each research question narrows and focuses the purpose statement. Conversely, the purpose statement encompasses all of the research questions.

Identify in the purpose statement the research method as quantitative, qualitative or mixed (i.e., “The purpose of this [qualitative/quantitative/mixed] study is to ...)

Avoid the use of the phrase “research study” since the two words together are redundant.

Follow the initial declaration of purpose with a brief overview of how, with what instruments/data, with whom and where (as applicable) the study will be conducted. Identify variables/constructs and/or phenomenon/concept/idea. Since this section is to be a concise paragraph, emphasis must be placed on the word brief. However, adding these details will give your readers a very clear picture of the purpose of your research.

Developing the purpose section of your dissertation is usually not achieved in a single flash of insight. The process involves a great deal of reading to find out what other scholars have done to address the research topic and problem you have identified. The purpose section of your dissertation could well be the most important paragraph you write during your academic career, and every word should be carefully selected. Think of it as the DNA of your dissertation. Everything else you write should emerge directly and clearly from your purpose statement. In turn, your purpose statement should emerge directly and clearly from your research problem description. It is good practice to print out your problem statement and purpose statement and keep them in front of you as you work on each part of your dissertation in order to insure alignment.

It is helpful to collect several dissertations similar to the one you envision creating. Extract the problem descriptions and purpose statements of other dissertation authors and compare them in order to sharpen your thinking about your own work.  Comparing how other dissertation authors have handled the many challenges you are facing can be an invaluable exercise. Keep in mind that individual universities use their own tailored protocols for presenting key components of the dissertation so your review of these purpose statements should focus on content rather than form.

Once your purpose statement is set it must be consistently presented throughout the dissertation. This may require some recursive editing because the way you articulate your purpose may evolve as you work on various aspects of your dissertation. Whenever you make an adjustment to your purpose statement you should carefully follow up on the editing and conceptual ramifications throughout the entire document.

In establishing your purpose you should NOT advocate for a particular outcome. Research should be done to answer questions not prove a point. As a researcher, you are to inquire with an open mind, and even when you come to the work with clear assumptions, your job is to prove the validity of the conclusions reached. For example, you would not say the purpose of your research project is to demonstrate that there is a relationship between two variables. Such a statement presupposes you know the answer before your research is conducted and promotes or supports (advocates on behalf of) a particular outcome. A more appropriate purpose statement would be to examine or explore the relationship between two variables.

Your purpose statement should not imply that you are going to prove something. You may be surprised to learn that we cannot prove anything in scholarly research for two reasons. First, in quantitative analyses, statistical tests calculate the probability that something is true rather than establishing it as true. Second, in qualitative research, the study can only purport to describe what is occurring from the perspective of the participants. Whether or not the phenomenon they are describing is true in a larger context is not knowable. We cannot observe the phenomenon in all settings and in all circumstances.

It is important to distinguish in your mind the differences between the Problem Statement and Purpose Statement.

The Problem Statement is why I am doing the research

The Purpose Statement is what type of research I am doing to fit or address the problem

The Purpose Statement includes:

  • Method of Study
  • Specific Population

Remember, as you are contemplating what to include in your purpose statement and then when you are writing it, the purpose statement is a concise paragraph that describes the intent of the study, and it should flow directly from the problem statement.  It should specifically address the reason for conducting the study, and reflect the research questions.  Further, it should identify the research method as qualitative, quantitative, or mixed.  Then provide a brief overview of how the study will be conducted, with what instruments/data collection methods, and with whom (subjects) and where (as applicable). Finally, you should identify variables/constructs and/or phenomenon/concept/idea.

Qualitative Purpose Statement

Creswell (2002) suggested for writing purpose statements in qualitative research include using deliberate phrasing to alert the reader to the purpose statement. Verbs that indicate what will take place in the research and the use of non-directional language that do not suggest an outcome are key. A purpose statement should focus on a single idea or concept, with a broad definition of the idea or concept. How the concept was investigated should also be included, as well as participants in the study and locations for the research to give the reader a sense of with whom and where the study took place. 

Creswell (2003) advised the following script for purpose statements in qualitative research:

“The purpose of this qualitative_________________ (strategy of inquiry, such as ethnography, case study, or other type) study is (was? will be?) to ________________ (understand? describe? develop? discover?) the _________________(central phenomenon being studied) for ______________ (the participants, such as the individual, groups, organization) at __________(research site). At this stage in the research, the __________ (central phenomenon being studied) will be generally defined as ___________________ (provide a general definition)” (pg. 90).

Quantitative Purpose Statement

Creswell (2003) offers vast differences between the purpose statements written for qualitative research and those written for quantitative research, particularly with respect to language and the inclusion of variables. The comparison of variables is often a focus of quantitative research, with the variables distinguishable by either the temporal order or how they are measured. As with qualitative research purpose statements, Creswell (2003) recommends the use of deliberate language to alert the reader to the purpose of the study, but quantitative purpose statements also include the theory or conceptual framework guiding the study and the variables that are being studied and how they are related. 

Creswell (2003) suggests the following script for drafting purpose statements in quantitative research:

“The purpose of this _____________________ (experiment? survey?) study is (was? will be?) to test the theory of _________________that _________________ (compares? relates?) the ___________(independent variable) to _________________________(dependent variable), controlling for _______________________ (control variables) for ___________________ (participants) at _________________________ (the research site). The independent variable(s) _____________________ will be generally defined as _______________________ (provide a general definition). The dependent variable(s) will be generally defined as _____________________ (provide a general definition), and the control and intervening variables(s), _________________ (identify the control and intervening variables) will be statistically controlled in this study” (pg. 97).

  • The purpose of this qualitative study was to determine how participation in service-learning in an alternative school impacted students academically, civically, and personally.  There is ample evidence demonstrating the failure of schools for students at-risk; however, there is still a need to demonstrate why these students are successful in non-traditional educational programs like the service-learning model used at TDS.  This study was unique in that it examined one alternative school’s approach to service-learning in a setting where students not only serve, but faculty serve as volunteer teachers.  The use of a constructivist approach in service-learning in an alternative school setting was examined in an effort to determine whether service-learning participation contributes positively to academic, personal, and civic gain for students, and to examine student and teacher views regarding the overall outcomes of service-learning.  This study was completed using an ethnographic approach that included observations, content analysis, and interviews with teachers at The David School.
  • The purpose of this quantitative non-experimental cross-sectional linear multiple regression design was to investigate the relationship among early childhood teachers’ self-reported assessment of multicultural awareness as measured by responses from the Teacher Multicultural Attitude Survey (TMAS) and supervisors’ observed assessment of teachers’ multicultural competency skills as measured by the Multicultural Teaching Competency Scale (MTCS) survey. Demographic data such as number of multicultural training hours, years teaching in Dubai, curriculum program at current school, and age were also examined and their relationship to multicultural teaching competency. The study took place in the emirate of Dubai where there were 14,333 expatriate teachers employed in private schools (KHDA, 2013b).
  • The purpose of this quantitative, non-experimental study is to examine the degree to which stages of change, gender, acculturation level and trauma types predicts the reluctance of Arab refugees, aged 18 and over, in the Dearborn, MI area, to seek professional help for their mental health needs. This study will utilize four instruments to measure these variables: University of Rhode Island Change Assessment (URICA: DiClemente & Hughes, 1990); Cumulative Trauma Scale (Kira, 2012); Acculturation Rating Scale for Arabic Americans-II Arabic and English (ARSAA-IIA, ARSAA-IIE: Jadalla & Lee, 2013), and a demographic survey. This study will examine 1) the relationship between stages of change, gender, acculturation levels, and trauma types and Arab refugees’ help-seeking behavior, 2) the degree to which any of these variables can predict Arab refugee help-seeking behavior.  Additionally, the outcome of this study could provide researchers and clinicians with a stage-based model, TTM, for measuring Arab refugees’ help-seeking behavior and lay a foundation for how TTM can help target the clinical needs of Arab refugees. Lastly, this attempt to apply the TTM model to Arab refugees’ condition could lay the foundation for future research to investigate the application of TTM to clinical work among refugee populations.
  • The purpose of this qualitative, phenomenological study is to describe the lived experiences of LLM for 10 EFL learners in rural Guatemala and to utilize that data to determine how it conforms to, or possibly challenges, current theoretical conceptions of LLM. In accordance with Morse’s (1994) suggestion that a phenomenological study should utilize at least six participants, this study utilized semi-structured interviews with 10 EFL learners to explore why and how they have experienced the motivation to learn English throughout their lives. The methodology of horizontalization was used to break the interview protocols into individual units of meaning before analyzing these units to extract the overarching themes (Moustakas, 1994). These themes were then interpreted into a detailed description of LLM as experienced by EFL students in this context. Finally, the resulting description was analyzed to discover how these learners’ lived experiences with LLM conformed with and/or diverged from current theories of LLM.
  • The purpose of this qualitative, embedded, multiple case study was to examine how both parent-child attachment relationships are impacted by the quality of the paternal and maternal caregiver-child interactions that occur throughout a maternal deployment, within the context of dual-military couples. In order to examine this phenomenon, an embedded, multiple case study was conducted, utilizing an attachment systems metatheory perspective. The study included four dual-military couples who experienced a maternal deployment to Operation Iraqi Freedom (OIF) or Operation Enduring Freedom (OEF) when they had at least one child between 8 weeks-old to 5 years-old.  Each member of the couple participated in an individual, semi-structured interview with the researcher and completed the Parenting Relationship Questionnaire (PRQ). “The PRQ is designed to capture a parent’s perspective on the parent-child relationship” (Pearson, 2012, para. 1) and was used within the proposed study for this purpose. The PRQ was utilized to triangulate the data (Bekhet & Zauszniewski, 2012) as well as to provide some additional information on the parents’ perspective of the quality of the parent-child attachment relationship in regards to communication, discipline, parenting confidence, relationship satisfaction, and time spent together (Pearson, 2012). The researcher utilized the semi-structured interview to collect information regarding the parents' perspectives of the quality of their parental caregiver behaviors during the deployment cycle, the mother's parent-child interactions while deployed, the behavior of the child or children at time of reunification, and the strategies or behaviors the parents believe may have contributed to their child's behavior at the time of reunification. The results of this study may be utilized by the military, and by civilian providers, to develop proactive and preventive measures that both providers and parents can implement, to address any potential adverse effects on the parent-child attachment relationship, identified through the proposed study. The results of this study may also be utilized to further refine and understand the integration of attachment theory and systems theory, in both clinical and research settings, within the field of marriage and family therapy.

Was this resource helpful?

  • << Previous: Problem Statement
  • Next: Alignment >>
  • Last Updated: Apr 24, 2023 1:37 PM
  • URL: https://resources.nu.edu/c.php?g=1006886

NCU Library Home

objective of the study in research example

The Importance Of Research Objectives

Imagine you’re a student planning a vacation in a foreign country. You’re on a tight budget and need to draw…

The Importance Of Research Objectives

Imagine you’re a student planning a vacation in a foreign country. You’re on a tight budget and need to draw up a pocket-friendly plan. Where do you begin? The first step is to do your research.

Before that, you make a mental list of your objectives—finding reasonably-priced hotels, traveling safely and finding ways of communicating with someone back home. These objectives help you focus sharply during your research and be aware of the finer details of your trip.

More often than not, research is a part of our daily lives. Whether it’s to pick a restaurant for your next birthday dinner or to prepare a presentation at work, good research is the foundation of effective learning. Read on to understand the meaning, importance and examples of research objectives.

Why Do We Need Research?

What are the objectives of research, what goes into a research plan.

Research is a careful and detailed study of a particular problem or concern, using scientific methods. An in-depth analysis of information creates space for generating new questions, concepts and understandings. The main objective of research is to explore the unknown and unlock new possibilities. It’s an essential component of success.

Over the years, businesses have started emphasizing the need for research. You’ve probably noticed organizations hiring research managers and analysts. The primary purpose of business research is to determine the goals and opportunities of an organization. It’s critical in making business decisions and appropriately allocating available resources.

Here are a few benefits of research that’ll explain why it is a vital aspect of our professional lives:

Expands Your Knowledge Base

One of the greatest benefits of research is to learn and gain a deeper understanding. The deeper you dig into a topic, the more well-versed you are. Furthermore, research has the power to help you build on any personal experience you have on the subject.

Keeps You Up To Date

Research encourages you to discover the most recent information available. Updated information prevents you from falling behind and helps you present accurate information. You’re better equipped to develop ideas or talk about a topic when you’re armed with the latest inputs.

Builds Your Credibility

Research provides you with a good foundation upon which you can develop your thoughts and ideas. People take you more seriously when your suggestions are backed by research. You can speak with greater confidence because you know that the information is accurate.

Sparks Connections

Take any leading nonprofit organization, you’ll see how they have a strong research arm supported by real-life stories. Research also becomes the base upon which real-life connections and impact can be made. It even helps you communicate better with others and conveys why you’re pursuing something.

Encourages Curiosity

As we’ve already established, research is mostly about using existing information to create new ideas and opinions. In the process, it sparks curiosity as you’re encouraged to explore and gain deeper insights into a subject. Curiosity leads to higher levels of positivity and lower levels of anxiety.

Well-defined objectives of research are an essential component of successful research engagement. If you want to drive all aspects of your research methodology such as data collection, design, analysis and recommendation, you need to lay down the objectives of research methodology. In other words, the objectives of research should address the underlying purpose of investigation and analysis. It should outline the steps you’d take to achieve desirable outcomes. Research objectives help you stay focused and adjust your expectations as you progress.

The objectives of research should be closely related to the problem statement, giving way to specific and achievable goals. Here are the four types of research objectives for you to explore:

General Objective

Also known as secondary objectives, general objectives provide a detailed view of the aim of a study. In other words, you get a general overview of what you want to achieve by the end of your study. For example, if you want to study an organization’s contribution to environmental sustainability, your general objective could be: a study of sustainable practices and the use of renewable energy by the organization.

Specific Objectives

Specific objectives define the primary aim of the study. Typically, general objectives provide the foundation for identifying specific objectives. In other words, when general objectives are broken down into smaller and logically connected objectives, they’re known as specific objectives. They help define the who, what, why, when and how aspects of your project. Once you identify the main objective of research, it’s easier to develop and pursue a plan of action.

Let’s take the example of ‘a study of an organization’s contribution to environmental sustainability’ again. The specific objectives will look like this:

To determine through history how the organization has changed its practices and adopted new solutions

To assess how the new practices, technology and strategies will contribute to the overall effectiveness

Once you’ve identified the objectives of research, it’s time to organize your thoughts and streamline your research goals. Here are a few effective tips to develop a powerful research plan and improve your business performance.

Set SMART Goals

Your research objectives should be SMART—Specific, Measurable, Achievable, Realistic and Time-constrained. When you focus on utilizing available resources and setting realistic timeframes and milestones, it’s easier to prioritize objectives. Continuously track your progress and check whether you need to revise your expectations or targets. This way, you’re in greater control over the process.

Create A Plan

Create a plan that’ll help you select appropriate methods to collect accurate information. A well-structured plan allows you to use logical and creative approaches towards problem-solving. The complexity of information and your skills are bound to influence your plan, which is why you need to make room for flexibility. The availability of resources will also play a big role in influencing your decisions.

Collect And Collate

After you’ve created a plan for the research process, make a list of the data you’re going to collect and the methods you’ll use. Not only will it help make sense of your insights but also keep track of your approach. The information you collect should be:

Logical, rigorous and objective

Can be reproduced by other people working on the same subject

Free of errors and highlighting necessary details

Current and updated

Includes everything required to support your argument/suggestions

Analyze And Keep Ready

Data analysis is the most crucial part of the process and there are many ways in which the information can be utilized. Four types of data analysis are often seen in a professional environment. While they may be divided into separate categories, they’re linked to each other.

Descriptive Analysis:

The most commonly used data analysis, descriptive analysis simply summarizes past data. For example, Key Performance Indicators (KPIs) use descriptive analysis. It establishes certain benchmarks after studying how someone has been performing in the past.

Diagnostic Analysis:

The next step is to identify why something happened. Diagnostic analysis uses the information gathered through descriptive analysis and helps find the underlying causes of an outcome. For example, if a marketing initiative was successful, you deep-dive into the strategies that worked.

Predictive Analysis:

It attempts to answer ‘what’s likely to happen’. Predictive analysis makes use of past data to predict future outcomes. However, the accuracy of predictions depends on the quality of the data provided. Risk assessment is an ideal example of using predictive analysis.

Prescriptive Analysis: 

The most sought-after type of data analysis, prescriptive analysis combines the insights of all of the previous analyses. It’s a huge organizational commitment as it requires plenty of effort and resources. A great example of prescriptive analysis is Artificial Intelligence (AI), which consumes large amounts of data. You need to be prepared to commit to this type of analysis.

Review And Interpret

Once you’ve collected and collated your data, it’s time to review it and draw accurate conclusions. Here are a few ways to improve the review process:

Identify the fundamental issues, opportunities and problems and make note of recurring trends if any

Make a list of your insights and check which is the most or the least common. In short, keep track of the frequency of each insight

Conduct a SWOT analysis and identify the strengths, weaknesses, opportunities and threats

Write down your conclusions and recommendations of the research

When we think about research, we often associate it with academicians and students. but the truth is research is for everybody who is willing to learn and enhance their knowledge. If you want to master the art of strategically upgrading your knowledge, Harappa Education’s Learning Expertly course has all the answers. Not only will it help you look at things from a fresh perspective but also show you how to acquire new information with greater efficiency. The Growth Mindset framework will teach you how to believe in your abilities to grow and improve. The Learning Transfer framework will help you apply your learnings from one context to another. Begin the journey of tactful learning and self-improvement today!

Explore Harappa Diaries to learn more about topics related to the THINK Habit such as  Learning From Experience ,  Critical Thinking  & What is  Brainstorming  to think clearly and rationally.

Thriversitybannersidenav

Frequently asked questions

What’s an example of a research objective.

Your research objectives indicate how you’ll try to address your research problem and should be specific:

Frequently asked questions: Writing a research paper

A research project is an academic, scientific, or professional undertaking to answer a research question . Research projects can take many forms, such as qualitative or quantitative , descriptive , longitudinal , experimental , or correlational . What kind of research approach you choose will depend on your topic.

The best way to remember the difference between a research plan and a research proposal is that they have fundamentally different audiences. A research plan helps you, the researcher, organize your thoughts. On the other hand, a dissertation proposal or research proposal aims to convince others (e.g., a supervisor, a funding body, or a dissertation committee) that your research topic is relevant and worthy of being conducted.

Formulating a main research question can be a difficult task. Overall, your question should contribute to solving the problem that you have defined in your problem statement .

However, it should also fulfill criteria in three main areas:

  • Researchability
  • Feasibility and specificity
  • Relevance and originality

Research questions anchor your whole project, so it’s important to spend some time refining them.

In general, they should be:

  • Focused and researchable
  • Answerable using credible sources
  • Complex and arguable
  • Feasible and specific
  • Relevant and original

All research questions should be:

  • Focused on a single problem or issue
  • Researchable using primary and/or secondary sources
  • Feasible to answer within the timeframe and practical constraints
  • Specific enough to answer thoroughly
  • Complex enough to develop the answer over the space of a paper or thesis
  • Relevant to your field of study and/or society more broadly

Writing Strong Research Questions

A research aim is a broad statement indicating the general purpose of your research project. It should appear in your introduction at the end of your problem statement , before your research objectives.

Research objectives are more specific than your research aim. They indicate the specific ways you’ll address the overarching aim.

Once you’ve decided on your research objectives , you need to explain them in your paper, at the end of your problem statement .

Keep your research objectives clear and concise, and use appropriate verbs to accurately convey the work that you will carry out for each one.

I will compare …

Research objectives describe what you intend your research project to accomplish.

They summarize the approach and purpose of the project and help to focus your research.

Your objectives should appear in the introduction of your research paper , at the end of your problem statement .

The main guidelines for formatting a paper in Chicago style are to:

  • Use a standard font like 12 pt Times New Roman
  • Use 1 inch margins or larger
  • Apply double line spacing
  • Indent every new paragraph ½ inch
  • Include a title page
  • Place page numbers in the top right or bottom center
  • Cite your sources with author-date citations or Chicago footnotes
  • Include a bibliography or reference list

To automatically generate accurate Chicago references, you can use Scribbr’s free Chicago reference generator .

The main guidelines for formatting a paper in MLA style are as follows:

  • Use an easily readable font like 12 pt Times New Roman
  • Set 1 inch page margins
  • Include a four-line MLA heading on the first page
  • Center the paper’s title
  • Use title case capitalization for headings
  • Cite your sources with MLA in-text citations
  • List all sources cited on a Works Cited page at the end

To format a paper in APA Style , follow these guidelines:

  • Use a standard font like 12 pt Times New Roman or 11 pt Arial
  • If submitting for publication, insert a running head on every page
  • Apply APA heading styles
  • Cite your sources with APA in-text citations
  • List all sources cited on a reference page at the end

No, it’s not appropriate to present new arguments or evidence in the conclusion . While you might be tempted to save a striking argument for last, research papers follow a more formal structure than this.

All your findings and arguments should be presented in the body of the text (more specifically in the results and discussion sections if you are following a scientific structure). The conclusion is meant to summarize and reflect on the evidence and arguments you have already presented, not introduce new ones.

The conclusion of a research paper has several key elements you should make sure to include:

  • A restatement of the research problem
  • A summary of your key arguments and/or findings
  • A short discussion of the implications of your research

Don’t feel that you have to write the introduction first. The introduction is often one of the last parts of the research paper you’ll write, along with the conclusion.

This is because it can be easier to introduce your paper once you’ve already written the body ; you may not have the clearest idea of your arguments until you’ve written them, and things can change during the writing process .

The way you present your research problem in your introduction varies depending on the nature of your research paper . A research paper that presents a sustained argument will usually encapsulate this argument in a thesis statement .

A research paper designed to present the results of empirical research tends to present a research question that it seeks to answer. It may also include a hypothesis —a prediction that will be confirmed or disproved by your research.

The introduction of a research paper includes several key elements:

  • A hook to catch the reader’s interest
  • Relevant background on the topic
  • Details of your research problem

and your problem statement

  • A thesis statement or research question
  • Sometimes an overview of the paper

Ask our team

Want to contact us directly? No problem.  We  are always here for you.

Support team - Nina

Our team helps students graduate by offering:

  • A world-class citation generator
  • Plagiarism Checker software powered by Turnitin
  • Innovative Citation Checker software
  • Professional proofreading services
  • Over 300 helpful articles about academic writing, citing sources, plagiarism, and more

Scribbr specializes in editing study-related documents . We proofread:

  • PhD dissertations
  • Research proposals
  • Personal statements
  • Admission essays
  • Motivation letters
  • Reflection papers
  • Journal articles
  • Capstone projects

Scribbr’s Plagiarism Checker is powered by elements of Turnitin’s Similarity Checker , namely the plagiarism detection software and the Internet Archive and Premium Scholarly Publications content databases .

The add-on AI detector is powered by Scribbr’s proprietary software.

The Scribbr Citation Generator is developed using the open-source Citation Style Language (CSL) project and Frank Bennett’s citeproc-js . It’s the same technology used by dozens of other popular citation tools, including Mendeley and Zotero.

You can find all the citation styles and locales used in the Scribbr Citation Generator in our publicly accessible repository on Github .

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.53(4); 2010 Aug

Logo of canjsurg

Research questions, hypotheses and objectives

Patricia farrugia.

* Michael G. DeGroote School of Medicine, the

Bradley A. Petrisor

† Division of Orthopaedic Surgery and the

Forough Farrokhyar

‡ Departments of Surgery and

§ Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ont

Mohit Bhandari

There is an increasing familiarity with the principles of evidence-based medicine in the surgical community. As surgeons become more aware of the hierarchy of evidence, grades of recommendations and the principles of critical appraisal, they develop an increasing familiarity with research design. Surgeons and clinicians are looking more and more to the literature and clinical trials to guide their practice; as such, it is becoming a responsibility of the clinical research community to attempt to answer questions that are not only well thought out but also clinically relevant. The development of the research question, including a supportive hypothesis and objectives, is a necessary key step in producing clinically relevant results to be used in evidence-based practice. A well-defined and specific research question is more likely to help guide us in making decisions about study design and population and subsequently what data will be collected and analyzed. 1

Objectives of this article

In this article, we discuss important considerations in the development of a research question and hypothesis and in defining objectives for research. By the end of this article, the reader will be able to appreciate the significance of constructing a good research question and developing hypotheses and research objectives for the successful design of a research study. The following article is divided into 3 sections: research question, research hypothesis and research objectives.

Research question

Interest in a particular topic usually begins the research process, but it is the familiarity with the subject that helps define an appropriate research question for a study. 1 Questions then arise out of a perceived knowledge deficit within a subject area or field of study. 2 Indeed, Haynes suggests that it is important to know “where the boundary between current knowledge and ignorance lies.” 1 The challenge in developing an appropriate research question is in determining which clinical uncertainties could or should be studied and also rationalizing the need for their investigation.

Increasing one’s knowledge about the subject of interest can be accomplished in many ways. Appropriate methods include systematically searching the literature, in-depth interviews and focus groups with patients (and proxies) and interviews with experts in the field. In addition, awareness of current trends and technological advances can assist with the development of research questions. 2 It is imperative to understand what has been studied about a topic to date in order to further the knowledge that has been previously gathered on a topic. Indeed, some granting institutions (e.g., Canadian Institute for Health Research) encourage applicants to conduct a systematic review of the available evidence if a recent review does not already exist and preferably a pilot or feasibility study before applying for a grant for a full trial.

In-depth knowledge about a subject may generate a number of questions. It then becomes necessary to ask whether these questions can be answered through one study or if more than one study needed. 1 Additional research questions can be developed, but several basic principles should be taken into consideration. 1 All questions, primary and secondary, should be developed at the beginning and planning stages of a study. Any additional questions should never compromise the primary question because it is the primary research question that forms the basis of the hypothesis and study objectives. It must be kept in mind that within the scope of one study, the presence of a number of research questions will affect and potentially increase the complexity of both the study design and subsequent statistical analyses, not to mention the actual feasibility of answering every question. 1 A sensible strategy is to establish a single primary research question around which to focus the study plan. 3 In a study, the primary research question should be clearly stated at the end of the introduction of the grant proposal, and it usually specifies the population to be studied, the intervention to be implemented and other circumstantial factors. 4

Hulley and colleagues 2 have suggested the use of the FINER criteria in the development of a good research question ( Box 1 ). The FINER criteria highlight useful points that may increase the chances of developing a successful research project. A good research question should specify the population of interest, be of interest to the scientific community and potentially to the public, have clinical relevance and further current knowledge in the field (and of course be compliant with the standards of ethical boards and national research standards).

FINER criteria for a good research question

Adapted with permission from Wolters Kluwer Health. 2

Whereas the FINER criteria outline the important aspects of the question in general, a useful format to use in the development of a specific research question is the PICO format — consider the population (P) of interest, the intervention (I) being studied, the comparison (C) group (or to what is the intervention being compared) and the outcome of interest (O). 3 , 5 , 6 Often timing (T) is added to PICO ( Box 2 ) — that is, “Over what time frame will the study take place?” 1 The PICOT approach helps generate a question that aids in constructing the framework of the study and subsequently in protocol development by alluding to the inclusion and exclusion criteria and identifying the groups of patients to be included. Knowing the specific population of interest, intervention (and comparator) and outcome of interest may also help the researcher identify an appropriate outcome measurement tool. 7 The more defined the population of interest, and thus the more stringent the inclusion and exclusion criteria, the greater the effect on the interpretation and subsequent applicability and generalizability of the research findings. 1 , 2 A restricted study population (and exclusion criteria) may limit bias and increase the internal validity of the study; however, this approach will limit external validity of the study and, thus, the generalizability of the findings to the practical clinical setting. Conversely, a broadly defined study population and inclusion criteria may be representative of practical clinical practice but may increase bias and reduce the internal validity of the study.

PICOT criteria 1

A poorly devised research question may affect the choice of study design, potentially lead to futile situations and, thus, hamper the chance of determining anything of clinical significance, which will then affect the potential for publication. Without devoting appropriate resources to developing the research question, the quality of the study and subsequent results may be compromised. During the initial stages of any research study, it is therefore imperative to formulate a research question that is both clinically relevant and answerable.

Research hypothesis

The primary research question should be driven by the hypothesis rather than the data. 1 , 2 That is, the research question and hypothesis should be developed before the start of the study. This sounds intuitive; however, if we take, for example, a database of information, it is potentially possible to perform multiple statistical comparisons of groups within the database to find a statistically significant association. This could then lead one to work backward from the data and develop the “question.” This is counterintuitive to the process because the question is asked specifically to then find the answer, thus collecting data along the way (i.e., in a prospective manner). Multiple statistical testing of associations from data previously collected could potentially lead to spuriously positive findings of association through chance alone. 2 Therefore, a good hypothesis must be based on a good research question at the start of a trial and, indeed, drive data collection for the study.

The research or clinical hypothesis is developed from the research question and then the main elements of the study — sampling strategy, intervention (if applicable), comparison and outcome variables — are summarized in a form that establishes the basis for testing, statistical and ultimately clinical significance. 3 For example, in a research study comparing computer-assisted acetabular component insertion versus freehand acetabular component placement in patients in need of total hip arthroplasty, the experimental group would be computer-assisted insertion and the control/conventional group would be free-hand placement. The investigative team would first state a research hypothesis. This could be expressed as a single outcome (e.g., computer-assisted acetabular component placement leads to improved functional outcome) or potentially as a complex/composite outcome; that is, more than one outcome (e.g., computer-assisted acetabular component placement leads to both improved radiographic cup placement and improved functional outcome).

However, when formally testing statistical significance, the hypothesis should be stated as a “null” hypothesis. 2 The purpose of hypothesis testing is to make an inference about the population of interest on the basis of a random sample taken from that population. The null hypothesis for the preceding research hypothesis then would be that there is no difference in mean functional outcome between the computer-assisted insertion and free-hand placement techniques. After forming the null hypothesis, the researchers would form an alternate hypothesis stating the nature of the difference, if it should appear. The alternate hypothesis would be that there is a difference in mean functional outcome between these techniques. At the end of the study, the null hypothesis is then tested statistically. If the findings of the study are not statistically significant (i.e., there is no difference in functional outcome between the groups in a statistical sense), we cannot reject the null hypothesis, whereas if the findings were significant, we can reject the null hypothesis and accept the alternate hypothesis (i.e., there is a difference in mean functional outcome between the study groups), errors in testing notwithstanding. In other words, hypothesis testing confirms or refutes the statement that the observed findings did not occur by chance alone but rather occurred because there was a true difference in outcomes between these surgical procedures. The concept of statistical hypothesis testing is complex, and the details are beyond the scope of this article.

Another important concept inherent in hypothesis testing is whether the hypotheses will be 1-sided or 2-sided. A 2-sided hypothesis states that there is a difference between the experimental group and the control group, but it does not specify in advance the expected direction of the difference. For example, we asked whether there is there an improvement in outcomes with computer-assisted surgery or whether the outcomes worse with computer-assisted surgery. We presented a 2-sided test in the above example because we did not specify the direction of the difference. A 1-sided hypothesis states a specific direction (e.g., there is an improvement in outcomes with computer-assisted surgery). A 2-sided hypothesis should be used unless there is a good justification for using a 1-sided hypothesis. As Bland and Atlman 8 stated, “One-sided hypothesis testing should never be used as a device to make a conventionally nonsignificant difference significant.”

The research hypothesis should be stated at the beginning of the study to guide the objectives for research. Whereas the investigators may state the hypothesis as being 1-sided (there is an improvement with treatment), the study and investigators must adhere to the concept of clinical equipoise. According to this principle, a clinical (or surgical) trial is ethical only if the expert community is uncertain about the relative therapeutic merits of the experimental and control groups being evaluated. 9 It means there must exist an honest and professional disagreement among expert clinicians about the preferred treatment. 9

Designing a research hypothesis is supported by a good research question and will influence the type of research design for the study. Acting on the principles of appropriate hypothesis development, the study can then confidently proceed to the development of the research objective.

Research objective

The primary objective should be coupled with the hypothesis of the study. Study objectives define the specific aims of the study and should be clearly stated in the introduction of the research protocol. 7 From our previous example and using the investigative hypothesis that there is a difference in functional outcomes between computer-assisted acetabular component placement and free-hand placement, the primary objective can be stated as follows: this study will compare the functional outcomes of computer-assisted acetabular component insertion versus free-hand placement in patients undergoing total hip arthroplasty. Note that the study objective is an active statement about how the study is going to answer the specific research question. Objectives can (and often do) state exactly which outcome measures are going to be used within their statements. They are important because they not only help guide the development of the protocol and design of study but also play a role in sample size calculations and determining the power of the study. 7 These concepts will be discussed in other articles in this series.

From the surgeon’s point of view, it is important for the study objectives to be focused on outcomes that are important to patients and clinically relevant. For example, the most methodologically sound randomized controlled trial comparing 2 techniques of distal radial fixation would have little or no clinical impact if the primary objective was to determine the effect of treatment A as compared to treatment B on intraoperative fluoroscopy time. However, if the objective was to determine the effect of treatment A as compared to treatment B on patient functional outcome at 1 year, this would have a much more significant impact on clinical decision-making. Second, more meaningful surgeon–patient discussions could ensue, incorporating patient values and preferences with the results from this study. 6 , 7 It is the precise objective and what the investigator is trying to measure that is of clinical relevance in the practical setting.

The following is an example from the literature about the relation between the research question, hypothesis and study objectives:

Study: Warden SJ, Metcalf BR, Kiss ZS, et al. Low-intensity pulsed ultrasound for chronic patellar tendinopathy: a randomized, double-blind, placebo-controlled trial. Rheumatology 2008;47:467–71.

Research question: How does low-intensity pulsed ultrasound (LIPUS) compare with a placebo device in managing the symptoms of skeletally mature patients with patellar tendinopathy?

Research hypothesis: Pain levels are reduced in patients who receive daily active-LIPUS (treatment) for 12 weeks compared with individuals who receive inactive-LIPUS (placebo).

Objective: To investigate the clinical efficacy of LIPUS in the management of patellar tendinopathy symptoms.

The development of the research question is the most important aspect of a research project. A research project can fail if the objectives and hypothesis are poorly focused and underdeveloped. Useful tips for surgical researchers are provided in Box 3 . Designing and developing an appropriate and relevant research question, hypothesis and objectives can be a difficult task. The critical appraisal of the research question used in a study is vital to the application of the findings to clinical practice. Focusing resources, time and dedication to these 3 very important tasks will help to guide a successful research project, influence interpretation of the results and affect future publication efforts.

Tips for developing research questions, hypotheses and objectives for research studies

  • Perform a systematic literature review (if one has not been done) to increase knowledge and familiarity with the topic and to assist with research development.
  • Learn about current trends and technological advances on the topic.
  • Seek careful input from experts, mentors, colleagues and collaborators to refine your research question as this will aid in developing the research question and guide the research study.
  • Use the FINER criteria in the development of the research question.
  • Ensure that the research question follows PICOT format.
  • Develop a research hypothesis from the research question.
  • Develop clear and well-defined primary and secondary (if needed) objectives.
  • Ensure that the research question and objectives are answerable, feasible and clinically relevant.

FINER = feasible, interesting, novel, ethical, relevant; PICOT = population (patients), intervention (for intervention studies only), comparison group, outcome of interest, time.

Competing interests: No funding was received in preparation of this paper. Dr. Bhandari was funded, in part, by a Canada Research Chair, McMaster University.

  • Privacy Policy

Buy Me a Coffee

Research Method

Home » Purpose of Research – Objectives and Applications

Purpose of Research – Objectives and Applications

Table of Contents

Purpose of Research

Purpose of Research

Definition:

The purpose of research is to systematically investigate and gather information on a particular topic or issue, with the aim of answering questions, solving problems, or advancing knowledge.

The purpose of research can vary depending on the field of study, the research question, and the intended audience. In general, research can be used to:

  • Generate new knowledge and theories
  • Test existing theories or hypotheses
  • Identify trends or patterns
  • Gather information for decision-making
  • Evaluate the effectiveness of programs, policies, or interventions
  • Develop new technologies or products
  • Identify new opportunities or areas for further study.

Objectives of Research

The objectives of research may vary depending on the field of study and the specific research question being investigated. However, some common objectives of research include:

  • To explore and describe a phenomenon: Research can be conducted to describe and understand a phenomenon or situation in greater detail.
  • To test a hypothesis or theory : Research can be used to test a specific hypothesis or theory by collecting and analyzing data.
  • To identify patterns or trends: Research can be conducted to identify patterns or trends in data, which can provide insights into the behavior of a system or population.
  • To evaluate a program or intervention: Research can be used to evaluate the effectiveness of a program or intervention, such as a new drug or educational intervention.
  • To develop new knowledge or technology : Research can be conducted to develop new knowledge or technologies that can be applied to solve practical problems.
  • To inform policy decisions: Research can provide evidence to inform policy decisions and improve public policy.
  • To improve existing knowledge: Research can be conducted to improve existing knowledge and fill gaps in the current understanding of a topic.

Applications of Research

Research has a wide range of applications across various fields and industries. Here are some examples:

  • Medicine : Research is critical in developing new treatments and drugs for diseases. Researchers conduct clinical trials to test the safety and efficacy of new medications and therapies. They also study the underlying causes of diseases to find new ways to prevent or treat them.
  • Technology : Research is crucial in developing new technologies and improving existing ones. Researchers work to develop new software, hardware, and other technological innovations that can be used in various industries such as healthcare, manufacturing, and telecommunications.
  • Education : Research is essential in the field of education to develop new teaching methods and strategies. Researchers conduct studies to determine the effectiveness of various educational approaches and to identify factors that influence student learning.
  • Business : Research is critical in helping businesses make informed decisions. Market research can help businesses understand their target audience and identify trends in the market. Research can also help businesses improve their products and services.
  • Environmental Science : Research is crucial in the field of environmental science to understand the impact of human activities on the environment. Researchers conduct studies to identify ways to reduce pollution, protect natural resources, and mitigate the effects of climate change.

Goal of Research

The ultimate goal of research is to advance our understanding of the world and to contribute to the development of new theories, ideas, and technologies that can be used to improve our lives. Some more common Goals are follows:

  • Explore and discover new knowledge : Research can help uncover new information and insights that were previously unknown.
  • Test hypotheses and theories : Research can be used to test and validate theories and hypotheses, allowing researchers to refine and develop their ideas.
  • Solve practical problems: Research can be used to identify solutions to real-world problems and to inform policy and decision-making.
  • Improve understanding : Research can help improve our understanding of complex phenomena and systems, such as the human body, the natural world, and social systems.
  • Develop new technologies and innovations : Research can lead to the development of new technologies, products, and innovations that can improve our lives and society.
  • Contribute to the development of academic fields : Research can help advance academic fields by expanding our knowledge and understanding of important topics and areas of inquiry.

Importance of Research

The importance of research lies in its ability to generate new knowledge and insights, to test existing theories and ideas, and to solve practical problems.

Some of the key reasons why research is important are:

  • Advancing knowledge: Research is essential for advancing knowledge and understanding in various fields. It enables us to explore and discover new concepts, ideas, and phenomena that can contribute to scientific and technological progress.
  • Solving problems : Research can help identify and solve practical problems and challenges in various domains, such as health care, agriculture, engineering, and social policy.
  • Innovation : Research is a critical driver of innovation, as it enables the development of new products, services, and technologies that can improve people’s lives and contribute to economic growth.
  • Evidence-based decision-making : Research provides evidence and data that can inform decision-making in various fields, such as policy-making, business strategy, and healthcare.
  • Personal and professional development : Engaging in research can also contribute to personal and professional development, as it requires critical thinking, problem-solving, and communication skills.

When to use Research

Research should be used in situations where there is a need to gather new information, test existing theories, or solve problems. Some common scenarios where research is often used include:

  • Scientific inquiry : Research is essential for advancing scientific knowledge and understanding, and for exploring new concepts, theories, and phenomena.
  • Business and market analysis: Research is critical for businesses to gather data and insights about the market, customer preferences, and competition, to inform decision-making and strategy development.
  • Social policy and public administration: Research is often used in social policy and public administration to evaluate the effectiveness of programs and policies, and to identify areas where improvements are needed.
  • Healthcare: Research is essential in healthcare to develop new treatments, improve existing ones, and to understand the causes and mechanisms of diseases.
  • Education : Research is critical in education to evaluate the effectiveness of teaching methods and programs, and to develop new approaches to learning.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

medRxiv

Quality of Care at childbirth during the COVID-19 pandemic: findings of the IMAgiNE EURO study in Belgium

  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Info/History
  • Supplementary material
  • Preview PDF

Objectives To examine quality of maternal and newborn care (QMNC) around childbirth in facilities in Belgium during the COVID-19 pandemic and trends over time. Design A cross-sectional observational study. Setting Data of the IMAgiNE EURO study in Belgium. Participants Women giving birth in a Belgian facility from March 1, 2020, to May 1, 2023, responded a validated online questionnaire based on 40 WHO standards-based quality measures organised in four domains: provision of care, experience of care, availability of resources, and organizational changes related to COVID 19. Primary and secondary outcome measures Quantile regression analysis was performed to assess predictors of QMNC; trends over time were tested with the Mann Kendall test. Results 897 women were included in the analysis, 67%(n=601) with spontaneous vaginal birth, 13.3%(n=119) with instrumental vaginal birth and 19.7%(n=177) with cesarean section. We found high QMNC scores but also specific gaps in all domains of QMNC. On provision of care, 21.0%(n=166) of women who experienced labor and 14.7%(n=26) of women with a cesarean reported inadequate pain relief; 64.7%(n=74) of women with an instrumental birth reported fundal pressure and 72.3% (n=86) reported that forceps or vacuum cup was used without their consent. On experience of care, 31.1%(n=279) reported unclear communication, 32.9%(n=295) reported that they were not involved in choices,11.5%(n=104) stated not being treated with dignity and 8.1%(n=73) experienced abuse. Related to resources, almost half of the women reported an inadequate number of healthcare professionals (46.2%, n=414). The multivariable analyses showed significantly lower QMNC scores for women with an instrumental vaginal birth. Over time there was a significant increase in QMNC score for experience of care and key organizational changes due to COVID-19. Conclusions and relevance Although overall QMNC scores were high, findings also suggest gaps in QMNC. Underlying causes of these gaps should be explored to design appropriate interventions and policies.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This work was supported by the Italian Ministry of Health, through the contribution given to the Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

the IRCCS Burlo Garofolo Trieste (IRB‐BURLO 05/2020 15.07.2020) and the Commision Medical Ethics UZ Ghent (THE-2023-0075)

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Data Availability

All data produced in the present study are available upon reasonable request to the authors

View the discussion thread.

Supplementary Material

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Reddit logo

Citation Manager Formats

  • EndNote (tagged)
  • EndNote 8 (xml)
  • RefWorks Tagged
  • Ref Manager
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Obstetrics and Gynecology
  • Addiction Medicine (313)
  • Allergy and Immunology (616)
  • Anesthesia (158)
  • Cardiovascular Medicine (2249)
  • Dentistry and Oral Medicine (277)
  • Dermatology (199)
  • Emergency Medicine (368)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (793)
  • Epidemiology (11538)
  • Forensic Medicine (10)
  • Gastroenterology (676)
  • Genetic and Genomic Medicine (3536)
  • Geriatric Medicine (336)
  • Health Economics (611)
  • Health Informatics (2280)
  • Health Policy (909)
  • Health Systems and Quality Improvement (858)
  • Hematology (333)
  • HIV/AIDS (741)
  • Infectious Diseases (except HIV/AIDS) (13121)
  • Intensive Care and Critical Care Medicine (749)
  • Medical Education (357)
  • Medical Ethics (100)
  • Nephrology (385)
  • Neurology (3321)
  • Nursing (189)
  • Nutrition (504)
  • Obstetrics and Gynecology (647)
  • Occupational and Environmental Health (643)
  • Oncology (1747)
  • Ophthalmology (520)
  • Orthopedics (208)
  • Otolaryngology (283)
  • Pain Medicine (221)
  • Palliative Medicine (66)
  • Pathology (433)
  • Pediatrics (997)
  • Pharmacology and Therapeutics (418)
  • Primary Care Research (398)
  • Psychiatry and Clinical Psychology (3034)
  • Public and Global Health (5961)
  • Radiology and Imaging (1213)
  • Rehabilitation Medicine and Physical Therapy (711)
  • Respiratory Medicine (805)
  • Rheumatology (366)
  • Sexual and Reproductive Health (345)
  • Sports Medicine (307)
  • Surgery (382)
  • Toxicology (50)
  • Transplantation (169)
  • Urology (142)

Log in using your username and password

  • Search More Search for this keyword Advanced search
  • Latest content
  • Current issue
  • Browse by collection
  • BMJ Journals More You are viewing from: Google Indexer

You are here

  • Online First
  • The role of COVID-19 vaccines in preventing post-COVID-19 thromboembolic and cardiovascular complications
  • Article Text
  • Article info
  • Citation Tools
  • Rapid Responses
  • Article metrics

Download PDF

  • Núria Mercadé-Besora 1 , 2 , 3 ,
  • Xintong Li 1 ,
  • Raivo Kolde 4 ,
  • Nhung TH Trinh 5 ,
  • Maria T Sanchez-Santos 1 ,
  • Wai Yi Man 1 ,
  • Elena Roel 3 ,
  • Carlen Reyes 3 ,
  • http://orcid.org/0000-0003-0388-3403 Antonella Delmestri 1 ,
  • Hedvig M E Nordeng 6 , 7 ,
  • http://orcid.org/0000-0002-4036-3856 Anneli Uusküla 8 ,
  • http://orcid.org/0000-0002-8274-0357 Talita Duarte-Salles 3 , 9 ,
  • Clara Prats 2 ,
  • http://orcid.org/0000-0002-3950-6346 Daniel Prieto-Alhambra 1 , 9 ,
  • http://orcid.org/0000-0002-0000-0110 Annika M Jödicke 1 ,
  • Martí Català 1
  • 1 Pharmaco- and Device Epidemiology Group, Health Data Sciences, Botnar Research Centre, NDORMS , University of Oxford , Oxford , UK
  • 2 Department of Physics , Universitat Politècnica de Catalunya , Barcelona , Spain
  • 3 Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol) , IDIAP Jordi Gol , Barcelona , Catalunya , Spain
  • 4 Institute of Computer Science , University of Tartu , Tartu , Estonia
  • 5 Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, Faculty of Mathematics and Natural Sciences , University of Oslo , Oslo , Norway
  • 6 School of Pharmacy , University of Oslo , Oslo , Norway
  • 7 Division of Mental Health , Norwegian Institute of Public Health , Oslo , Norway
  • 8 Department of Family Medicine and Public Health , University of Tartu , Tartu , Estonia
  • 9 Department of Medical Informatics, Erasmus University Medical Center , Erasmus University Rotterdam , Rotterdam , Zuid-Holland , Netherlands
  • Correspondence to Prof Daniel Prieto-Alhambra, Pharmaco- and Device Epidemiology Group, Health Data Sciences, Botnar Research Centre, NDORMS, University of Oxford, Oxford, UK; daniel.prietoalhambra{at}ndorms.ox.ac.uk

Objective To study the association between COVID-19 vaccination and the risk of post-COVID-19 cardiac and thromboembolic complications.

Methods We conducted a staggered cohort study based on national vaccination campaigns using electronic health records from the UK, Spain and Estonia. Vaccine rollout was grouped into four stages with predefined enrolment periods. Each stage included all individuals eligible for vaccination, with no previous SARS-CoV-2 infection or COVID-19 vaccine at the start date. Vaccination status was used as a time-varying exposure. Outcomes included heart failure (HF), venous thromboembolism (VTE) and arterial thrombosis/thromboembolism (ATE) recorded in four time windows after SARS-CoV-2 infection: 0–30, 31–90, 91–180 and 181–365 days. Propensity score overlap weighting and empirical calibration were used to minimise observed and unobserved confounding, respectively.

Fine-Gray models estimated subdistribution hazard ratios (sHR). Random effect meta-analyses were conducted across staggered cohorts and databases.

Results The study included 10.17 million vaccinated and 10.39 million unvaccinated people. Vaccination was associated with reduced risks of acute (30-day) and post-acute COVID-19 VTE, ATE and HF: for example, meta-analytic sHR of 0.22 (95% CI 0.17 to 0.29), 0.53 (0.44 to 0.63) and 0.45 (0.38 to 0.53), respectively, for 0–30 days after SARS-CoV-2 infection, while in the 91–180 days sHR were 0.53 (0.40 to 0.70), 0.72 (0.58 to 0.88) and 0.61 (0.51 to 0.73), respectively.

Conclusions COVID-19 vaccination reduced the risk of post-COVID-19 cardiac and thromboembolic outcomes. These effects were more pronounced for acute COVID-19 outcomes, consistent with known reductions in disease severity following breakthrough versus unvaccinated SARS-CoV-2 infection.

  • Epidemiology
  • PUBLIC HEALTH
  • Electronic Health Records

Data availability statement

Data may be obtained from a third party and are not publicly available. CPRD: CPRD data were obtained under the CPRD multi-study license held by the University of Oxford after Research Data Governance (RDG) approval. Direct data sharing is not allowed. SIDIAP: In accordance with current European and national law, the data used in this study is only available for the researchers participating in this study. Thus, we are not allowed to distribute or make publicly available the data to other parties. However, researchers from public institutions can request data from SIDIAP if they comply with certain requirements. Further information is available online ( https://www.sidiap.org/index.php/menu-solicitudesen/application-proccedure ) or by contacting SIDIAP ([email protected]). CORIVA: CORIVA data were obtained under the approval of Research Ethics Committee of the University of Tartu and the patient level data sharing is not allowed. All analyses in this study were conducted in a federated manner, where analytical code and aggregated (anonymised) results were shared, but no patient-level data was transferred across the collaborating institutions.

This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See:  https://creativecommons.org/licenses/by/4.0/ .

https://doi.org/10.1136/heartjnl-2023-323483

Statistics from Altmetric.com

Request permissions.

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

WHAT IS ALREADY KNOWN ON THIS TOPIC

COVID-19 vaccines proved to be highly effective in reducing the severity of acute SARS-CoV-2 infection.

While COVID-19 vaccines were associated with increased risk for cardiac and thromboembolic events, such as myocarditis and thrombosis, the risk of complications was substantially higher due to SARS-CoV-2 infection.

WHAT THIS STUDY ADDS

COVID-19 vaccination reduced the risk of heart failure, venous thromboembolism and arterial thrombosis/thromboembolism in the acute (30 days) and post-acute (31 to 365 days) phase following SARS-CoV-2 infection. This effect was stronger in the acute phase.

The overall additive effect of vaccination on the risk of post-vaccine and/or post-COVID thromboembolic and cardiac events needs further research.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY

COVID-19 vaccines proved to be highly effective in reducing the risk of post-COVID cardiovascular and thromboembolic complications.

Introduction

COVID-19 vaccines were approved under emergency authorisation in December 2020 and showed high effectiveness against SARS-CoV-2 infection, COVID-19-related hospitalisation and death. 1 2 However, concerns were raised after spontaneous reports of unusual thromboembolic events following adenovirus-based COVID-19 vaccines, an association that was further assessed in observational studies. 3 4 More recently, mRNA-based vaccines were found to be associated with a risk of rare myocarditis events. 5 6

On the other hand, SARS-CoV-2 infection can trigger cardiac and thromboembolic complications. 7 8 Previous studies showed that, while slowly decreasing over time, the risk for serious complications remain high for up to a year after infection. 9 10 Although acute and post-acute cardiac and thromboembolic complications following COVID-19 are rare, they present a substantial burden to the affected patients, and the absolute number of cases globally could become substantial.

Recent studies suggest that COVID-19 vaccination could protect against cardiac and thromboembolic complications attributable to COVID-19. 11 12 However, most studies did not include long-term complications and were conducted among specific populations.

Evidence is still scarce as to whether the combined effects of COVID-19 vaccines protecting against SARS-CoV-2 infection and reducing post-COVID-19 cardiac and thromboembolic outcomes, outweigh any risks of these complications potentially associated with vaccination.

We therefore used large, representative data sources from three European countries to assess the overall effect of COVID-19 vaccines on the risk of acute and post-acute COVID-19 complications including venous thromboembolism (VTE), arterial thrombosis/thromboembolism (ATE) and other cardiac events. Additionally, we studied the comparative effects of ChAdOx1 versus BNT162b2 on the risk of these same outcomes.

Data sources

We used four routinely collected population-based healthcare datasets from three European countries: the UK, Spain and Estonia.

For the UK, we used data from two primary care databases—namely, Clinical Practice Research Datalink, CPRD Aurum 13 and CPRD Gold. 14 CPRD Aurum currently covers 13 million people from predominantly English practices, while CPRD Gold comprises 3.1 million active participants mostly from GP practices in Wales and Scotland. Spanish data were provided by the Information System for the Development of Research in Primary Care (SIDIAP), 15 which encompasses primary care records from 6 million active patients (around 75% of the population in the region of Catalonia) linked to hospital admissions data (Conjunt Mínim Bàsic de Dades d’Alta Hospitalària). Finally, the CORIVA dataset based on national health claims data from Estonia was used. It contains all COVID-19 cases from the first year of the pandemic and ~440 000 randomly selected controls. CORIVA was linked to the death registry and all COVID-19 testing from the national health information system.

Databases included sociodemographic information, diagnoses, measurements, prescriptions and secondary care referrals and were linked to vaccine registries, including records of all administered vaccines from all healthcare settings. Data availability for CPRD Gold ended in December 2021, CPRD Aurum in January 2022, SIDIAP in June 2022 and CORIVA in December 2022.

All databases were mapped to the Observational Medical Outcomes Partnership Common Data Model (OMOP CDM) 16 to facilitate federated analytics.

Multinational network staggered cohort study: study design and participants

The study design has been published in detail elsewhere. 17 Briefly, we used a staggered cohort design considering vaccination as a time-varying exposure. Four staggered cohorts were designed with each cohort representing a country-specific vaccination rollout phase (eg, dates when people became eligible for vaccination, and eligibility criteria).

The source population comprised all adults registered in the respective database for at least 180 days at the start of the study (4 January 2021 for CPRD Gold and Aurum, 20 February 2021 for SIDIAP and 28 January 2021 for CORIVA). Subsequently, each staggered cohort corresponded to an enrolment period: all people eligible for vaccination during this time were included in the cohort and people with a history of SARS-CoV-2 infection or COVID-19 vaccination before the start of the enrolment period were excluded. Across countries, cohort 1 comprised older age groups, whereas cohort 2 comprised individuals at risk for severe COVID-19. Cohort 3 included people aged ≥40 and cohort 4 enrolled people aged ≥18.

In each cohort, people receiving a first vaccine dose during the enrolment period were allocated to the vaccinated group, with their index date being the date of vaccination. Individuals who did not receive a vaccine dose comprised the unvaccinated group and their index date was assigned within the enrolment period, based on the distribution of index dates in the vaccinated group. People with COVID-19 before the index date were excluded.

Follow-up started from the index date until the earliest of end of available data, death, change in exposure status (first vaccine dose for those unvaccinated) or outcome of interest.

COVID-19 vaccination

All vaccines approved within the study period from January 2021 to July 2021—namely, ChAdOx1 (Oxford/AstraZeneca), BNT162b2 (BioNTech/Pfizer]) Ad26.COV2.S (Janssen) and mRNA-1273 (Moderna), were included for this study.

Post-COVID-19 outcomes of interest

Outcomes of interest were defined as SARS-CoV-2 infection followed by a predefined thromboembolic or cardiac event of interest within a year after infection, and with no record of the same clinical event in the 6 months before COVID-19. Outcome date was set as the corresponding SARS-CoV-2 infection date.

COVID-19 was identified from either a positive SARS-CoV-2 test (polymerase chain reaction (PCR) or antigen), or a clinical COVID-19 diagnosis, with no record of COVID-19 in the previous 6 weeks. This wash-out period was imposed to exclude re-recordings of the same COVID-19 episode.

Post-COVID-19 outcome events were selected based on previous studies. 11–13 Events comprised ischaemic stroke (IS), haemorrhagic stroke (HS), transient ischaemic attack (TIA), ventricular arrhythmia/cardiac arrest (VACA), myocarditis/pericarditis (MP), myocardial infarction (MI), heart failure (HF), pulmonary embolism (PE) and deep vein thrombosis (DVT). We used two composite outcomes: (1) VTE, as an aggregate of PE and DVT and (2) ATE, as a composite of IS, TIA and MI. To avoid re-recording of the same complication we imposed a wash-out period of 90 days between records. Phenotypes for these complications were based on previously published studies. 3 4 8 18

All outcomes were ascertained in four different time periods following SARS-CoV-2 infection: the first period described the acute infection phase—that is, 0–30 days after COVID-19, whereas the later periods - which are 31–90 days, 91–180 days and 181–365 days, illustrate the post-acute phase ( figure 1 ).

  • Download figure
  • Open in new tab
  • Download powerpoint

Study outcome design. Study outcomes of interest are defined as a COVID-19 infection followed by one of the complications in the figure, within a year after infection. Outcomes were ascertained in four different time windows after SARS-CoV-2 infection: 0–30 days (namely the acute phase), 31–90 days, 91–180 days and 181–365 days (these last three comprise the post-acute phase).

Negative control outcomes

Negative control outcomes (NCOs) were used to detect residual confounding. NCOs are outcomes which are not believed to be causally associated with the exposure, but share the same bias structure with the exposure and outcome of interest. Therefore, no significant association between exposure and NCO is to be expected. Our study used 43 different NCOs from previous work assessing vaccine effectiveness. 19

Statistical analysis

Federated network analyses.

A template for an analytical script was developed and subsequently tailored to include the country-specific aspects (eg, dates, priority groups) for the vaccination rollout. Analyses were conducted locally for each database. Only aggregated data were shared and person counts <5 were clouded.

Propensity score weighting

Large-scale propensity scores (PS) were calculated to estimate the likelihood of a person receiving the vaccine based on their demographic and health-related characteristics (eg, conditions, medications) prior to the index date. PS were then used to minimise observed confounding by creating a weighted population (overlap weighting 20 ), in which individuals contributed with a different weight based on their PS and vaccination status.

Prespecified key variables included in the PS comprised age, sex, location, index date, prior observation time in the database, number of previous outpatient visits and previous SARS-CoV-2 PCR/antigen tests. Regional vaccination, testing and COVID-19 incidence rates were also forced into the PS equation for the UK databases 21 and SIDIAP. 22 In addition, least absolute shrinkage and selection operator (LASSO) regression, a technique for variable selection, was used to identify additional variables from all recorded conditions and prescriptions within 0–30 days, 31–180 days and 181-any time (conditions only) before the index date that had a prevalence of >0.5% in the study population.

PS were then separately estimated for each staggered cohort and analysis. We considered covariate balance to be achieved if absolute standardised mean differences (ASMDs) were ≤0.1 after weighting. Baseline characteristics such as demographics and comorbidities were reported.

Effect estimation

To account for the competing risk of death associated with COVID-19, Fine-and-Grey models 23 were used to calculate subdistribution hazard ratios (sHRs). Subsequently, sHRs and confidence intervals were empirically calibrated from NCO estimates 24 to account for unmeasured confounding. To calibrate the estimates, the empirical null distribution was derived from NCO estimates and was used to compute calibrated confidence intervals. For each outcome, sHRs from the four staggered cohorts were pooled using random-effect meta-analysis, both separately for each database and across all four databases.

Sensitivity analysis

Sensitivity analyses comprised 1) censoring follow-up for vaccinated people at the time when they received their second vaccine dose and 2) considering only the first post-COVID-19 outcome within the year after infection ( online supplemental figure S1 ). In addition, comparative effectiveness analyses were conducted for BNT162b2 versus ChAdOx1.

Supplemental material

Data and code availability.

All analytic code for the study is available in GitHub ( https://github.com/oxford-pharmacoepi/vaccineEffectOnPostCovidCardiacThromboembolicEvents ), including code lists for vaccines, COVID-19 tests and diagnoses, cardiac and thromboembolic events, NCO and health conditions to prioritise patients for vaccination in each country. We used R version 4.2.3 and statistical packages survival (3.5–3), Empirical Calibration (3.1.1), glmnet (4.1-7), and Hmisc (5.0–1).

Patient and public involvement

Owing to the nature of the study and the limitations regarding data privacy, the study design, analysis, interpretation of data and revision of the manuscript did not involve any patients or members of the public.

All aggregated results are available in a web application ( https://dpa-pde-oxford.shinyapps.io/PostCovidComplications/ ).

We included over 10.17 million vaccinated individuals (1 618 395 from CPRD Gold; 5 729 800 from CPRD Aurum; 2 744 821 from SIDIAP and 77 603 from CORIVA) and 10.39 million unvaccinated individuals (1 640 371; 5 860 564; 2 588 518 and 302 267, respectively). Online supplemental figures S2-5 illustrate study inclusion for each database.

Adequate covariate balance was achieved after PS weighting in most studies: CORIVA (all cohorts) and SIDIAP (cohorts 1 and 4) did not contribute to ChAdOx1 subanalyses owing to sample size and covariate imbalance. ASMD results are accessible in the web application.

NCO analyses suggested residual bias after PS weighting, with a majority of NCOs associated positively with vaccination. Therefore, calibrated estimates are reported in this manuscript. Uncalibrated effect estimates and NCO analyses are available in the web interface.

Population characteristics

Table 1 presents baseline characteristics for the weighted populations in CPRD Aurum, for illustrative purposes. Online supplemental tables S1-25 summarise baseline characteristics for weighted and unweighted populations for each database and comparison. Across databases and cohorts, populations followed similar patterns: cohort 1 represented an older subpopulation (around 80 years old) with a high proportion of women (57%). Median age was lowest in cohort 4 ranging between 30 and 40 years.

  • View inline

Characteristics of weighted populations in CPRD Aurum database, stratified by staggered cohort and exposure status. Exposure is any COVID-19 vaccine

COVID-19 vaccination and post-COVID-19 complications

Table 2 shows the incidence of post-COVID-19 VTE, ATE and HF, the three most common post-COVID-19 conditions among the studied outcomes. Outcome counts are presented separately for 0–30, 31–90, 91–180 and 181–365 days after SARS-CoV-2 infection. Online supplemental tables S26-36 include all studied complications, also for the sensitivity and subanalyses. Similar pattern for incidences were observed across all databases: higher outcome rates in the older populations (cohort 1) and decreasing frequency with increasing time after infection in all cohorts.

Number of records (and risk per 10 000 individuals) for acute and post-acute COVID-19 cardiac and thromboembolic complications, across cohorts and databases for any COVID-19 vaccination

Forest plots for the effect of COVID-19 vaccines on post-COVID-19 cardiac and thromboembolic complications; meta-analysis across cohorts and databases. Dashed line represents a level of heterogeneity I 2 >0.4. ATE, arterial thrombosis/thromboembolism; CD+HS, cardiac diseases and haemorrhagic stroke; VTE, venous thromboembolism.

Results from calibrated estimates pooled in meta-analysis across cohorts and databases are shown in figure 2 .

Reduced risk associated with vaccination is observed for acute and post-acute VTE, DVT, and PE: acute meta-analytic sHR are 0.22 (95% CI, 0.17–0.29); 0.36 (0.28–0.45); and 0.19 (0.15–0.25), respectively. For VTE in the post-acute phase, sHR estimates are 0.43 (0.34–0.53), 0.53 (0.40–0.70) and 0.50 (0.36–0.70) for 31–90, 91–180, and 181–365 days post COVID-19, respectively. Reduced risk of VTE outcomes was observed in vaccinated across databases and cohorts, see online supplemental figures S14–22 .

Similarly, the risk of ATE, IS and MI in the acute phase after infection was reduced for the vaccinated group, sHR of 0.53 (0.44–0.63), 0.55 (0.43–0.70) and 0.49 (0.38–0.62), respectively. Reduced risk associated with vaccination persisted for post-acute ATE, with sHR of 0.74 (0.60–0.92), 0.72 (0.58–0.88) and 0.62 (0.48–0.80) for 31–90, 91–180 and 181–365 days post-COVID-19, respectively. Risk of post-acute MI remained lower for vaccinated in the 31–90 and 91–180 days after COVID-19, with sHR of 0.64 (0.46–0.87) and 0.64 (0.45–0.90), respectively. Vaccination effect on post-COVID-19 TIA was seen only in the 181–365 days, with sHR of 0.51 (0.31–0.82). Online supplemental figures S23-31 show database-specific and cohort-specific estimates for ATE-related complications.

Risk of post-COVID-19 cardiac complications was reduced in vaccinated individuals. Meta-analytic estimates in the acute phase showed sHR of 0.45 (0.38–0.53) for HF, 0.41 (0.26–0.66) for MP and 0.41 (0.27–0.63) for VACA. Reduced risk persisted for post-acute COVID-19 HF: sHR 0.61 (0.51–0.73) for 31–90 days, 0.61 (0.51–0.73) for 91–180 days and 0.52 (0.43–0.63) for 181–365 days. For post-acute MP, risk was only lowered in the first post-acute window (31–90 days), with sHR of 0.43 (0.21–0.85). Vaccination showed no association with post-COVID-19 HS. Database-specific and cohort-specific results for these cardiac diseases are shown in online supplemental figures S32-40 .

Stratified analyses by vaccine showed similar associations, except for ChAdOx1 which was not associated with reduced VTE and ATE risk in the last post-acute window. Sensitivity analyses were consistent with main results ( online supplemental figures S6-13 ).

Figure 3 shows the results of comparative effects of BNT162b2 versus ChAdOx1, based on UK data. Meta-analytic estimates favoured BNT162b2 (sHR of 0.66 (0.46–0.93)) for VTE in the 0–30 days after infection, but no differences were seen for post-acute VTE or for any of the other outcomes. Results from sensitivity analyses, database-specific and cohort-specific estimates were in line with the main findings ( online supplemental figures S41-51 ).

Forest plots for comparative vaccine effect (BNT162b2 vs ChAdOx1); meta-analysis across cohorts and databases. ATE, arterial thrombosis/thromboembolism; CD+HS, cardiac diseases and haemorrhagic stroke; VTE, venous thromboembolism.

Key findings

Our analyses showed a substantial reduction of risk (45–81%) for thromboembolic and cardiac events in the acute phase of COVID-19 associated with vaccination. This finding was consistent across four databases and three different European countries. Risks for post-acute COVID-19 VTE, ATE and HF were reduced to a lesser extent (24–58%), whereas a reduced risk for post-COVID-19 MP and VACA in vaccinated people was seen only in the acute phase.

Results in context

The relationship between SARS-CoV-2 infection, COVID-19 vaccines and thromboembolic and/or cardiac complications is tangled. Some large studies report an increased risk of VTE and ATE following both ChAdOx1 and BNT162b2 vaccination, 7 whereas other studies have not identified such a risk. 25 Elevated risk of VTE has also been reported among patients with COVID-19 and its occurrence can lead to poor prognosis and mortality. 26 27 Similarly, several observational studies have found an association between COVID-19 mRNA vaccination and a short-term increased risk of myocarditis, particularly among younger male individuals. 5 6 For instance, a self-controlled case series study conducted in England revealed about 30% increased risk of hospital admission due to myocarditis within 28 days following both ChAdOx1 and BNT162b2 vaccines. However, this same study also found a ninefold higher risk for myocarditis following a positive SARS-CoV-2 test, clearly offsetting the observed post-vaccine risk.

COVID-19 vaccines have demonstrated high efficacy and effectiveness in preventing infection and reducing the severity of acute-phase infection. However, with the emergence of newer variants of the virus, such as omicron, and the waning protective effect of the vaccine over time, there is a growing interest in understanding whether the vaccine can also reduce the risk of complications after breakthrough infections. Recent studies suggested that COVID-19 vaccination could potentially protect against acute post-COVID-19 cardiac and thromboembolic events. 11 12 A large prospective cohort study 11 reports risk of VTE after SARS-CoV-2 infection to be substantially reduced in fully vaccinated ambulatory patients. Likewise, Al-Aly et al 12 suggest a reduced risk for post-acute COVID-19 conditions in breakthrough infection versus SARS-CoV-2 infection without prior vaccination. However, the populations were limited to SARS-CoV-2 infected individuals and estimates did not include the effect of the vaccine to prevent COVID-19 in the first place. Other studies on post-acute COVID-19 conditions and symptoms have been conducted, 28 29 but there has been limited reporting on the condition-specific risks associated with COVID-19, even though the prognosis for different complications can vary significantly.

In line with previous studies, our findings suggest a potential benefit of vaccination in reducing the risk of post-COVID-19 thromboembolic and cardiac complications. We included broader populations, estimated the risk in both acute and post-acute infection phases and replicated these using four large independent observational databases. By pooling results across different settings, we provided the most up-to-date and robust evidence on this topic.

Strengths and limitations

The study has several strengths. Our multinational study covering different healthcare systems and settings showed consistent results across all databases, which highlights the robustness and replicability of our findings. All databases had complete recordings of vaccination status (date and vaccine) and are representative of the respective general population. Algorithms to identify study outcomes were used in previous published network studies, including regulatory-funded research. 3 4 8 18 Other strengths are the staggered cohort design which minimises confounding by indication and immortal time bias. PS overlap weighting and NCO empirical calibration have been shown to adequately minimise bias in vaccine effectiveness studies. 19 Furthermore, our estimates include the vaccine effectiveness against COVID-19, which is crucial in the pathway to experience post-COVID-19 complications.

Our study has some limitations. The use of real-world data comes with inherent limitations including data quality concerns and risk of confounding. To deal with these limitations, we employed state-of-the-art methods, including large-scale propensity score weighting and calibration of effect estimates using NCO. 19 24 A recent study 30 has demonstrated that methodologically sound observational studies based on routinely collected data can produce results similar to those of clinical trials. We acknowledge that results from NCO were positively associated with vaccination, and estimates might still be influenced by residual bias despite using calibration. Another limitation is potential under-reporting of post-COVID-19 complications: some asymptomatic and mild COVID-19 infections might have not been recorded. Additionally, post-COVID-19 outcomes of interest might be under-recorded in primary care databases (CPRD Aurum and Gold) without hospital linkage, which represent a large proportion of the data in the study. However, results in SIDIAP and CORIVA, which include secondary care data, were similar. Also, our study included a small number of young men and male teenagers, who were the main population concerned with increased risks of myocarditis/pericarditis following vaccination.

Conclusions

Vaccination against SARS-CoV-2 substantially reduced the risk of acute post-COVID-19 thromboembolic and cardiac complications, probably through a reduction in the risk of SARS-CoV-2 infection and the severity of COVID-19 disease due to vaccine-induced immunity. Reduced risk in vaccinated people lasted for up to 1 year for post-COVID-19 VTE, ATE and HF, but not clearly for other complications. Findings from this study highlight yet another benefit of COVID-19 vaccination. However, further research is needed on the possible waning of the risk reduction over time and on the impact of booster vaccination.

Ethics statements

Patient consent for publication.

Not applicable.

Ethics approval

The study was approved by the CPRD’s Research Data Governance Process, Protocol No 21_000557 and the Clinical Research Ethics committee of Fundació Institut Universitari per a la recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol) (approval number 4R22/133) and the Research Ethics Committee of the University of Tartu (approval No. 330/T-10).

Acknowledgments

This study is based in part on data from the Clinical Practice Research Datalink (CPRD) obtained under licence from the UK Medicines and Healthcare products Regulatory Agency. We thank the patients who provided these data, and the NHS who collected the data as part of their care and support. All interpretations, conclusions and views expressed in this publication are those of the authors alone and not necessarily those of CPRD. We would also like to thank the healthcare professionals in the Catalan healthcare system involved in the management of COVID-19 during these challenging times, from primary care to intensive care units; the Institut de Català de la Salut and the Program d’Analítica de Dades per a la Recerca i la Innovació en Salut for providing access to the different data sources accessible through The System for the Development of Research in Primary Care (SIDIAP).

  • Pritchard E ,
  • Matthews PC ,
  • Stoesser N , et al
  • Lauring AS ,
  • Tenforde MW ,
  • Chappell JD , et al
  • Pistillo A , et al
  • Duarte-Salles T , et al
  • Hansen JV ,
  • Fosbøl E , et al
  • Chen A , et al
  • Hippisley-Cox J ,
  • Mei XW , et al
  • Duarte-Salles T ,
  • Fernandez-Bertolin S , et al
  • Ip S , et al
  • Bowe B , et al
  • Prats-Uribe A ,
  • Feng Q , et al
  • Campbell J , et al
  • Herrett E ,
  • Gallagher AM ,
  • Bhaskaran K , et al
  • Raventós B ,
  • Fernández-Bertolín S ,
  • Aragón M , et al
  • Makadia R ,
  • Matcho A , et al
  • Mercadé-Besora N ,
  • Kolde R , et al
  • Ostropolets A ,
  • Makadia R , et al
  • Rathod-Mistry T , et al
  • Thomas LE ,
  • ↵ Coronavirus (COVID-19) in the UK . 2022 . Available : https://coronavirus.data.gov.uk/
  • Generalitat de Catalunya
  • Schuemie MJ ,
  • Hripcsak G ,
  • Ryan PB , et al
  • Houghton DE ,
  • Wysokinski W ,
  • Casanegra AI , et al
  • Katsoularis I ,
  • Fonseca-Rodríguez O ,
  • Farrington P , et al
  • Jehangir Q ,
  • Li P , et al
  • Byambasuren O ,
  • Stehlik P ,
  • Clark J , et al
  • Brannock MD ,
  • Preiss AJ , et al
  • Schneeweiss S , RCT-DUPLICATE Initiative , et al

Supplementary materials

Supplementary data.

This web only file has been produced by the BMJ Publishing Group from an electronic file supplied by the author(s) and has not been edited for content.

  • Data supplement 1

AMJ and MC are joint senior authors.

Contributors DPA and AMJ led the conceptualisation of the study with contributions from MC and NM-B. AMJ, TD-S, ER, AU and NTHT adapted the study design with respect to the local vaccine rollouts. AD and WYM mapped and curated CPRD data. MC and NM-B developed code with methodological contributions advice from MTS-S and CP. DPA, MC, NTHT, TD-S, HMEN, XL, CR and AMJ clinically interpreted the results. NM-B, XL, AMJ and DPA wrote the first draft of the manuscript, and all authors read, revised and approved the final version. DPA and AMJ obtained the funding for this research. DPA is responsible for the overall content as guarantor: he accepts full responsibility for the work and the conduct of the study, had access to the data, and controlled the decision to publish.

Funding The research was supported by the National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre (BRC). DPA is funded through a NIHR Senior Research Fellowship (Grant number SRF-2018–11-ST2-004). Funding to perform the study in the SIDIAP database was provided by the Real World Epidemiology (RWEpi) research group at IDIAPJGol. Costs of databases mapping to OMOP CDM were covered by the European Health Data and Evidence Network (EHDEN).

Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting or dissemination plans of this research.

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Read the full text or download the PDF:

IMAGES

  1. 21 Research Objectives Examples (Copy and Paste)

    objective of the study in research example

  2. Thesis Objectives Of The Study Sample

    objective of the study in research example

  3. research title objectives examples

    objective of the study in research example

  4. Formulating Research Aims and Objectives

    objective of the study in research example

  5. research title objectives examples

    objective of the study in research example

  6. research title objectives examples

    objective of the study in research example

VIDEO

  1. 16 February 10th Class Math Viral Objective Answere Key 2024 || Math 16 February Ka Objective

  2. Operation Research Example

  3. Operation Research Example

  4. Operation Research Example

  5. coding learn objective study # learn # coding

  6. STEPS TO FOLLOW WHEN WRITING RESEARCH OBJECTIVES

COMMENTS

  1. What Are Research Objectives and How to Write Them (with Examples)

    General objectives are the main goals of the study and are usually fewer in number while specific objectives are more in number because they address several aspects of the research problem. Example (general objective): To investigate the factors influencing the financial performance of firms listed in the New York Stock Exchange market.

  2. Research Objectives

    Example: Research objectives. To assess the relationship between sedentary habits and muscle atrophy among the participants. To determine the impact of dietary factors, particularly protein consumption, on the muscular health of the participants. To determine the effect of physical activity on the participants' muscular health.

  3. 21 Research Objectives Examples (Copy and Paste)

    Examples of Specific Research Objectives: 1. "To examine the effects of rising temperatures on the yield of rice crops during the upcoming growth season.". 2. "To assess changes in rainfall patterns in major agricultural regions over the first decade of the twenty-first century (2000-2010).". 3.

  4. Research Objectives

    Research Objectives. Research objectives refer to the specific goals or aims of a research study. They provide a clear and concise description of what the researcher hopes to achieve by conducting the research.The objectives are typically based on the research questions and hypotheses formulated at the beginning of the study and are used to guide the research process.

  5. Research Questions, Objectives & Aims (+ Examples)

    Research Objectives: Examples ... is a tentative statement or prediction about the relationship between variables or the expected outcome of the study. Research questions are broader and guide the overall study, while hypotheses are specific and testable statements used in quantitative research. Research questions identify the problem, while ...

  6. What is a Research Objective? Definition, Types, Examples and Best

    A research objective is defined as a clear and concise statement of the specific goals and aims of a research study. It outlines what the researcher intends to accomplish and what they hope to learn or discover through their research. Research objectives are crucial for guiding the research process and ensuring that the study stays focused and ...

  7. Writing the Research Objectives: 5 Straightforward Examples

    5 Examples of Research Objectives. The following examples of research objectives based on several published studies on various topics demonstrate how the research objectives are written: This study aims to find out if there is a difference in quiz scores between students exposed to direct instruction and flipped classrooms (Webb and Doman, 2016).

  8. Aims and Objectives

    Summary. One of the most important aspects of a thesis, dissertation or research paper is the correct formulation of the aims and objectives. This is because your aims and objectives will establish the scope, depth and direction that your research will ultimately take. An effective set of aims and objectives will give your research focus and ...

  9. Writing Effective Research Aims and Objectives

    In order to write effective research aims and objectives, researchers should consider all aspects of their proposed work. For example, the sample(s) to be approached for participation in the primary data collection. Identifying research objectives that are SMART is key to ensuring key aspects of the work are considered prior to any data collection.

  10. How to Write Research Objectives

    To develop a set of research objectives, you would then break down the various steps involved in meeting said aim. For example: This study will investigate the link between dehydration and the incidence of urinary tract infections (UTIs) in intensive care patients in Australia. To achieve this, the study objectives w ill include:

  11. Defining Research Objectives: How To Write Them

    For example, with clear research objectives, your study focuses on the specific goals you want to achieve and prevents you from spending time and resources collecting unnecessary data. However, sticking to research objectives isn't always easy, especially in broad or unconventional research.

  12. How to Write Research Objectives

    As a rule, it comes down to three different objectives. If we explore the subject of youth movements in Belgium as a subject, three research objectives examples would be as follows: Research objective 1: The study aims to explore the origins and evolution of the youth movements in the Flemish provinces in Belgium, namely Chiro and KSA. This ...

  13. A Practical Guide to Writing Quantitative and Qualitative Research

    The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. ... and illustrative example based on the study of Higashihara and Horiuchi.16. Open in a separate window.

  14. Purpose Statement

    The purpose statement succinctly explains (on no more than 1 page) the objectives of the research study. These objectives must directly address the problem and help close the stated gap. Expressed as a formula: Good purpose statements: Flow from the problem statement and actually address the proposed problem; Are concise and clear

  15. Objectives of Research

    An in-depth analysis of information creates space for generating new questions, concepts and understandings. The main objective of research is to explore the unknown and unlock new possibilities. It's an essential component of success. Over the years, businesses have started emphasizing the need for research.

  16. How to Write a Research Proposal

    Research proposal examples. Writing a research proposal can be quite challenging, but a good starting point could be to look at some examples. We've included a few for you below. Example research proposal #1: "A Conceptual Framework for Scheduling Constraint Management".

  17. What's an example of a research objective?

    A research aim is a broad statement indicating the general purpose of your research project. It should appear in your introduction at the end of your problem statement, before your research objectives. Research objectives are more specific than your research aim. They indicate the specific ways you'll address the overarching aim.

  18. Research Objectives: Definition and How To Write Them

    Here are three simple steps that you can follow to identify and write your research objectives: 1. Pinpoint the major focus of your research. The first step to writing your research objectives is to pinpoint the major focus of your research project. In this step, make sure to clearly describe what you aim to achieve through your research.

  19. Draft your Purpose of the Study

    The Purpose of the Study illustrates what the study will do, which should reflect the statement of the problem. ... The purpose of a research question is to learn something about a phenomenon, problem, or entity in a refined way. Considering you are likely to research a domain or area that has been researched before, there are multiple points ...

  20. How to Write a Qualitative Research Objective

    You don't want to be too deep into your research plan before realizing the set of participants you recruited aren't the right people for answering the questions you want to answer with your research. I highly recommend writing your qualitative research objective first, and socializing it before beginning any study. Here's a quick guide:

  21. Research Paper Purpose Statement Examples

    A purpose statement clearly defines the objective of your qualitative or quantitative research. Learn how to create one through unique and real-world examples.

  22. Research questions, hypotheses and objectives

    The following is an example from the literature about the relation between the research question, hypothesis and study objectives: Study: Warden SJ, Metcalf BR, Kiss ZS, et al. Low-intensity pulsed ultrasound for chronic patellar tendinopathy: a randomized, double-blind, placebo-controlled trial. Rheumatology 2008;47:467-71.

  23. Purpose of Research

    The purpose of research can vary depending on the field of study, the research question, and the intended audience. In general, research can be used to: Generate new knowledge and theories. Test existing theories or hypotheses. Identify trends or patterns. Gather information for decision-making. Evaluate the effectiveness of programs, policies ...

  24. Quality of Care at childbirth during the COVID-19 pandemic: findings of

    Objectives To examine quality of maternal and newborn care (QMNC) around childbirth in facilities in Belgium during the COVID-19 pandemic and trends over time. Design A cross-sectional observational study. Setting Data of the IMAgiNE EURO study in Belgium. Participants Women giving birth in a Belgian facility from March 1, 2020, to May 1, 2023, responded a validated online questionnaire based ...

  25. The role of COVID-19 vaccines in preventing post-COVID-19 ...

    Objective To study the association between COVID-19 vaccination and the risk of post-COVID-19 cardiac and thromboembolic complications. Methods We conducted a staggered cohort study based on national vaccination campaigns using electronic health records from the UK, Spain and Estonia. Vaccine rollout was grouped into four stages with predefined enrolment periods. Each stage included all ...

  26. A Study on the Efficacy of the Tabletop Roleplaying Game Dungeons

    Purpose: Tabletop gaming has seen a rise in popularity over the past 10 years, with an influx of interest following the Coronavirus pandemic. Limited research has explored the impact of tabletop roleplaying games on mental health and self-concepts such as self-esteem and self-efficacy. This study used a repeated-measures design with four measurement points to quantitatively evaluate the effect ...