Python Enhancement Proposals

  • Python »
  • PEP Index »

PEP 572 – Assignment Expressions

The importance of real code, exceptional cases, scope of the target, relative precedence of :=, change to evaluation order, differences between assignment expressions and assignment statements, specification changes during implementation, _pydecimal.py, datetime.py, sysconfig.py, simplifying list comprehensions, capturing condition values, changing the scope rules for comprehensions, alternative spellings, special-casing conditional statements, special-casing comprehensions, lowering operator precedence, allowing commas to the right, always requiring parentheses, why not just turn existing assignment into an expression, with assignment expressions, why bother with assignment statements, why not use a sublocal scope and prevent namespace pollution, style guide recommendations, acknowledgements, a numeric example, appendix b: rough code translations for comprehensions, appendix c: no changes to scope semantics.

This is a proposal for creating a way to assign to variables within an expression using the notation NAME := expr .

As part of this change, there is also an update to dictionary comprehension evaluation order to ensure key expressions are executed before value expressions (allowing the key to be bound to a name and then re-used as part of calculating the corresponding value).

During discussion of this PEP, the operator became informally known as “the walrus operator”. The construct’s formal name is “Assignment Expressions” (as per the PEP title), but they may also be referred to as “Named Expressions” (e.g. the CPython reference implementation uses that name internally).

Naming the result of an expression is an important part of programming, allowing a descriptive name to be used in place of a longer expression, and permitting reuse. Currently, this feature is available only in statement form, making it unavailable in list comprehensions and other expression contexts.

Additionally, naming sub-parts of a large expression can assist an interactive debugger, providing useful display hooks and partial results. Without a way to capture sub-expressions inline, this would require refactoring of the original code; with assignment expressions, this merely requires the insertion of a few name := markers. Removing the need to refactor reduces the likelihood that the code be inadvertently changed as part of debugging (a common cause of Heisenbugs), and is easier to dictate to another programmer.

During the development of this PEP many people (supporters and critics both) have had a tendency to focus on toy examples on the one hand, and on overly complex examples on the other.

The danger of toy examples is twofold: they are often too abstract to make anyone go “ooh, that’s compelling”, and they are easily refuted with “I would never write it that way anyway”.

The danger of overly complex examples is that they provide a convenient strawman for critics of the proposal to shoot down (“that’s obfuscated”).

Yet there is some use for both extremely simple and extremely complex examples: they are helpful to clarify the intended semantics. Therefore, there will be some of each below.

However, in order to be compelling , examples should be rooted in real code, i.e. code that was written without any thought of this PEP, as part of a useful application, however large or small. Tim Peters has been extremely helpful by going over his own personal code repository and picking examples of code he had written that (in his view) would have been clearer if rewritten with (sparing) use of assignment expressions. His conclusion: the current proposal would have allowed a modest but clear improvement in quite a few bits of code.

Another use of real code is to observe indirectly how much value programmers place on compactness. Guido van Rossum searched through a Dropbox code base and discovered some evidence that programmers value writing fewer lines over shorter lines.

Case in point: Guido found several examples where a programmer repeated a subexpression, slowing down the program, in order to save one line of code, e.g. instead of writing:

they would write:

Another example illustrates that programmers sometimes do more work to save an extra level of indentation:

This code tries to match pattern2 even if pattern1 has a match (in which case the match on pattern2 is never used). The more efficient rewrite would have been:

Syntax and semantics

In most contexts where arbitrary Python expressions can be used, a named expression can appear. This is of the form NAME := expr where expr is any valid Python expression other than an unparenthesized tuple, and NAME is an identifier.

The value of such a named expression is the same as the incorporated expression, with the additional side-effect that the target is assigned that value:

There are a few places where assignment expressions are not allowed, in order to avoid ambiguities or user confusion:

This rule is included to simplify the choice for the user between an assignment statement and an assignment expression – there is no syntactic position where both are valid.

Again, this rule is included to avoid two visually similar ways of saying the same thing.

This rule is included to disallow excessively confusing code, and because parsing keyword arguments is complex enough already.

This rule is included to discourage side effects in a position whose exact semantics are already confusing to many users (cf. the common style recommendation against mutable default values), and also to echo the similar prohibition in calls (the previous bullet).

The reasoning here is similar to the two previous cases; this ungrouped assortment of symbols and operators composed of : and = is hard to read correctly.

This allows lambda to always bind less tightly than := ; having a name binding at the top level inside a lambda function is unlikely to be of value, as there is no way to make use of it. In cases where the name will be used more than once, the expression is likely to need parenthesizing anyway, so this prohibition will rarely affect code.

This shows that what looks like an assignment operator in an f-string is not always an assignment operator. The f-string parser uses : to indicate formatting options. To preserve backwards compatibility, assignment operator usage inside of f-strings must be parenthesized. As noted above, this usage of the assignment operator is not recommended.

An assignment expression does not introduce a new scope. In most cases the scope in which the target will be bound is self-explanatory: it is the current scope. If this scope contains a nonlocal or global declaration for the target, the assignment expression honors that. A lambda (being an explicit, if anonymous, function definition) counts as a scope for this purpose.

There is one special case: an assignment expression occurring in a list, set or dict comprehension or in a generator expression (below collectively referred to as “comprehensions”) binds the target in the containing scope, honoring a nonlocal or global declaration for the target in that scope, if one exists. For the purpose of this rule the containing scope of a nested comprehension is the scope that contains the outermost comprehension. A lambda counts as a containing scope.

The motivation for this special case is twofold. First, it allows us to conveniently capture a “witness” for an any() expression, or a counterexample for all() , for example:

Second, it allows a compact way of updating mutable state from a comprehension, for example:

However, an assignment expression target name cannot be the same as a for -target name appearing in any comprehension containing the assignment expression. The latter names are local to the comprehension in which they appear, so it would be contradictory for a contained use of the same name to refer to the scope containing the outermost comprehension instead.

For example, [i := i+1 for i in range(5)] is invalid: the for i part establishes that i is local to the comprehension, but the i := part insists that i is not local to the comprehension. The same reason makes these examples invalid too:

While it’s technically possible to assign consistent semantics to these cases, it’s difficult to determine whether those semantics actually make sense in the absence of real use cases. Accordingly, the reference implementation [1] will ensure that such cases raise SyntaxError , rather than executing with implementation defined behaviour.

This restriction applies even if the assignment expression is never executed:

For the comprehension body (the part before the first “for” keyword) and the filter expression (the part after “if” and before any nested “for”), this restriction applies solely to target names that are also used as iteration variables in the comprehension. Lambda expressions appearing in these positions introduce a new explicit function scope, and hence may use assignment expressions with no additional restrictions.

Due to design constraints in the reference implementation (the symbol table analyser cannot easily detect when names are re-used between the leftmost comprehension iterable expression and the rest of the comprehension), named expressions are disallowed entirely as part of comprehension iterable expressions (the part after each “in”, and before any subsequent “if” or “for” keyword):

A further exception applies when an assignment expression occurs in a comprehension whose containing scope is a class scope. If the rules above were to result in the target being assigned in that class’s scope, the assignment expression is expressly invalid. This case also raises SyntaxError :

(The reason for the latter exception is the implicit function scope created for comprehensions – there is currently no runtime mechanism for a function to refer to a variable in the containing class scope, and we do not want to add such a mechanism. If this issue ever gets resolved this special case may be removed from the specification of assignment expressions. Note that the problem already exists for using a variable defined in the class scope from a comprehension.)

See Appendix B for some examples of how the rules for targets in comprehensions translate to equivalent code.

The := operator groups more tightly than a comma in all syntactic positions where it is legal, but less tightly than all other operators, including or , and , not , and conditional expressions ( A if C else B ). As follows from section “Exceptional cases” above, it is never allowed at the same level as = . In case a different grouping is desired, parentheses should be used.

The := operator may be used directly in a positional function call argument; however it is invalid directly in a keyword argument.

Some examples to clarify what’s technically valid or invalid:

Most of the “valid” examples above are not recommended, since human readers of Python source code who are quickly glancing at some code may miss the distinction. But simple cases are not objectionable:

This PEP recommends always putting spaces around := , similar to PEP 8 ’s recommendation for = when used for assignment, whereas the latter disallows spaces around = used for keyword arguments.)

In order to have precisely defined semantics, the proposal requires evaluation order to be well-defined. This is technically not a new requirement, as function calls may already have side effects. Python already has a rule that subexpressions are generally evaluated from left to right. However, assignment expressions make these side effects more visible, and we propose a single change to the current evaluation order:

  • In a dict comprehension {X: Y for ...} , Y is currently evaluated before X . We propose to change this so that X is evaluated before Y . (In a dict display like {X: Y} this is already the case, and also in dict((X, Y) for ...) which should clearly be equivalent to the dict comprehension.)

Most importantly, since := is an expression, it can be used in contexts where statements are illegal, including lambda functions and comprehensions.

Conversely, assignment expressions don’t support the advanced features found in assignment statements:

  • Multiple targets are not directly supported: x = y = z = 0 # Equivalent: (z := (y := (x := 0)))
  • Single assignment targets other than a single NAME are not supported: # No equivalent a [ i ] = x self . rest = []
  • Priority around commas is different: x = 1 , 2 # Sets x to (1, 2) ( x := 1 , 2 ) # Sets x to 1
  • Iterable packing and unpacking (both regular or extended forms) are not supported: # Equivalent needs extra parentheses loc = x , y # Use (loc := (x, y)) info = name , phone , * rest # Use (info := (name, phone, *rest)) # No equivalent px , py , pz = position name , phone , email , * other_info = contact
  • Inline type annotations are not supported: # Closest equivalent is "p: Optional[int]" as a separate declaration p : Optional [ int ] = None
  • Augmented assignment is not supported: total += tax # Equivalent: (total := total + tax)

The following changes have been made based on implementation experience and additional review after the PEP was first accepted and before Python 3.8 was released:

  • for consistency with other similar exceptions, and to avoid locking in an exception name that is not necessarily going to improve clarity for end users, the originally proposed TargetScopeError subclass of SyntaxError was dropped in favour of just raising SyntaxError directly. [3]
  • due to a limitation in CPython’s symbol table analysis process, the reference implementation raises SyntaxError for all uses of named expressions inside comprehension iterable expressions, rather than only raising them when the named expression target conflicts with one of the iteration variables in the comprehension. This could be revisited given sufficiently compelling examples, but the extra complexity needed to implement the more selective restriction doesn’t seem worthwhile for purely hypothetical use cases.

Examples from the Python standard library

env_base is only used on these lines, putting its assignment on the if moves it as the “header” of the block.

  • Current: env_base = os . environ . get ( "PYTHONUSERBASE" , None ) if env_base : return env_base
  • Improved: if env_base := os . environ . get ( "PYTHONUSERBASE" , None ): return env_base

Avoid nested if and remove one indentation level.

  • Current: if self . _is_special : ans = self . _check_nans ( context = context ) if ans : return ans
  • Improved: if self . _is_special and ( ans := self . _check_nans ( context = context )): return ans

Code looks more regular and avoid multiple nested if. (See Appendix A for the origin of this example.)

  • Current: reductor = dispatch_table . get ( cls ) if reductor : rv = reductor ( x ) else : reductor = getattr ( x , "__reduce_ex__" , None ) if reductor : rv = reductor ( 4 ) else : reductor = getattr ( x , "__reduce__" , None ) if reductor : rv = reductor () else : raise Error ( "un(deep)copyable object of type %s " % cls )
  • Improved: if reductor := dispatch_table . get ( cls ): rv = reductor ( x ) elif reductor := getattr ( x , "__reduce_ex__" , None ): rv = reductor ( 4 ) elif reductor := getattr ( x , "__reduce__" , None ): rv = reductor () else : raise Error ( "un(deep)copyable object of type %s " % cls )

tz is only used for s += tz , moving its assignment inside the if helps to show its scope.

  • Current: s = _format_time ( self . _hour , self . _minute , self . _second , self . _microsecond , timespec ) tz = self . _tzstr () if tz : s += tz return s
  • Improved: s = _format_time ( self . _hour , self . _minute , self . _second , self . _microsecond , timespec ) if tz := self . _tzstr (): s += tz return s

Calling fp.readline() in the while condition and calling .match() on the if lines make the code more compact without making it harder to understand.

  • Current: while True : line = fp . readline () if not line : break m = define_rx . match ( line ) if m : n , v = m . group ( 1 , 2 ) try : v = int ( v ) except ValueError : pass vars [ n ] = v else : m = undef_rx . match ( line ) if m : vars [ m . group ( 1 )] = 0
  • Improved: while line := fp . readline (): if m := define_rx . match ( line ): n , v = m . group ( 1 , 2 ) try : v = int ( v ) except ValueError : pass vars [ n ] = v elif m := undef_rx . match ( line ): vars [ m . group ( 1 )] = 0

A list comprehension can map and filter efficiently by capturing the condition:

Similarly, a subexpression can be reused within the main expression, by giving it a name on first use:

Note that in both cases the variable y is bound in the containing scope (i.e. at the same level as results or stuff ).

Assignment expressions can be used to good effect in the header of an if or while statement:

Particularly with the while loop, this can remove the need to have an infinite loop, an assignment, and a condition. It also creates a smooth parallel between a loop which simply uses a function call as its condition, and one which uses that as its condition but also uses the actual value.

An example from the low-level UNIX world:

Rejected alternative proposals

Proposals broadly similar to this one have come up frequently on python-ideas. Below are a number of alternative syntaxes, some of them specific to comprehensions, which have been rejected in favour of the one given above.

A previous version of this PEP proposed subtle changes to the scope rules for comprehensions, to make them more usable in class scope and to unify the scope of the “outermost iterable” and the rest of the comprehension. However, this part of the proposal would have caused backwards incompatibilities, and has been withdrawn so the PEP can focus on assignment expressions.

Broadly the same semantics as the current proposal, but spelled differently.

Since EXPR as NAME already has meaning in import , except and with statements (with different semantics), this would create unnecessary confusion or require special-casing (e.g. to forbid assignment within the headers of these statements).

(Note that with EXPR as VAR does not simply assign the value of EXPR to VAR – it calls EXPR.__enter__() and assigns the result of that to VAR .)

Additional reasons to prefer := over this spelling include:

  • In if f(x) as y the assignment target doesn’t jump out at you – it just reads like if f x blah blah and it is too similar visually to if f(x) and y .
  • import foo as bar
  • except Exc as var
  • with ctxmgr() as var

To the contrary, the assignment expression does not belong to the if or while that starts the line, and we intentionally allow assignment expressions in other contexts as well.

  • NAME = EXPR
  • if NAME := EXPR

reinforces the visual recognition of assignment expressions.

This syntax is inspired by languages such as R and Haskell, and some programmable calculators. (Note that a left-facing arrow y <- f(x) is not possible in Python, as it would be interpreted as less-than and unary minus.) This syntax has a slight advantage over ‘as’ in that it does not conflict with with , except and import , but otherwise is equivalent. But it is entirely unrelated to Python’s other use of -> (function return type annotations), and compared to := (which dates back to Algol-58) it has a much weaker tradition.

This has the advantage that leaked usage can be readily detected, removing some forms of syntactic ambiguity. However, this would be the only place in Python where a variable’s scope is encoded into its name, making refactoring harder.

Execution order is inverted (the indented body is performed first, followed by the “header”). This requires a new keyword, unless an existing keyword is repurposed (most likely with: ). See PEP 3150 for prior discussion on this subject (with the proposed keyword being given: ).

This syntax has fewer conflicts than as does (conflicting only with the raise Exc from Exc notation), but is otherwise comparable to it. Instead of paralleling with expr as target: (which can be useful but can also be confusing), this has no parallels, but is evocative.

One of the most popular use-cases is if and while statements. Instead of a more general solution, this proposal enhances the syntax of these two statements to add a means of capturing the compared value:

This works beautifully if and ONLY if the desired condition is based on the truthiness of the captured value. It is thus effective for specific use-cases (regex matches, socket reads that return '' when done), and completely useless in more complicated cases (e.g. where the condition is f(x) < 0 and you want to capture the value of f(x) ). It also has no benefit to list comprehensions.

Advantages: No syntactic ambiguities. Disadvantages: Answers only a fraction of possible use-cases, even in if / while statements.

Another common use-case is comprehensions (list/set/dict, and genexps). As above, proposals have been made for comprehension-specific solutions.

This brings the subexpression to a location in between the ‘for’ loop and the expression. It introduces an additional language keyword, which creates conflicts. Of the three, where reads the most cleanly, but also has the greatest potential for conflict (e.g. SQLAlchemy and numpy have where methods, as does tkinter.dnd.Icon in the standard library).

As above, but reusing the with keyword. Doesn’t read too badly, and needs no additional language keyword. Is restricted to comprehensions, though, and cannot as easily be transformed into “longhand” for-loop syntax. Has the C problem that an equals sign in an expression can now create a name binding, rather than performing a comparison. Would raise the question of why “with NAME = EXPR:” cannot be used as a statement on its own.

As per option 2, but using as rather than an equals sign. Aligns syntactically with other uses of as for name binding, but a simple transformation to for-loop longhand would create drastically different semantics; the meaning of with inside a comprehension would be completely different from the meaning as a stand-alone statement, while retaining identical syntax.

Regardless of the spelling chosen, this introduces a stark difference between comprehensions and the equivalent unrolled long-hand form of the loop. It is no longer possible to unwrap the loop into statement form without reworking any name bindings. The only keyword that can be repurposed to this task is with , thus giving it sneakily different semantics in a comprehension than in a statement; alternatively, a new keyword is needed, with all the costs therein.

There are two logical precedences for the := operator. Either it should bind as loosely as possible, as does statement-assignment; or it should bind more tightly than comparison operators. Placing its precedence between the comparison and arithmetic operators (to be precise: just lower than bitwise OR) allows most uses inside while and if conditions to be spelled without parentheses, as it is most likely that you wish to capture the value of something, then perform a comparison on it:

Once find() returns -1, the loop terminates. If := binds as loosely as = does, this would capture the result of the comparison (generally either True or False ), which is less useful.

While this behaviour would be convenient in many situations, it is also harder to explain than “the := operator behaves just like the assignment statement”, and as such, the precedence for := has been made as close as possible to that of = (with the exception that it binds tighter than comma).

Some critics have claimed that the assignment expressions should allow unparenthesized tuples on the right, so that these two would be equivalent:

(With the current version of the proposal, the latter would be equivalent to ((point := x), y) .)

However, adopting this stance would logically lead to the conclusion that when used in a function call, assignment expressions also bind less tight than comma, so we’d have the following confusing equivalence:

The less confusing option is to make := bind more tightly than comma.

It’s been proposed to just always require parentheses around an assignment expression. This would resolve many ambiguities, and indeed parentheses will frequently be needed to extract the desired subexpression. But in the following cases the extra parentheses feel redundant:

Frequently Raised Objections

C and its derivatives define the = operator as an expression, rather than a statement as is Python’s way. This allows assignments in more contexts, including contexts where comparisons are more common. The syntactic similarity between if (x == y) and if (x = y) belies their drastically different semantics. Thus this proposal uses := to clarify the distinction.

The two forms have different flexibilities. The := operator can be used inside a larger expression; the = statement can be augmented to += and its friends, can be chained, and can assign to attributes and subscripts.

Previous revisions of this proposal involved sublocal scope (restricted to a single statement), preventing name leakage and namespace pollution. While a definite advantage in a number of situations, this increases complexity in many others, and the costs are not justified by the benefits. In the interests of language simplicity, the name bindings created here are exactly equivalent to any other name bindings, including that usage at class or module scope will create externally-visible names. This is no different from for loops or other constructs, and can be solved the same way: del the name once it is no longer needed, or prefix it with an underscore.

(The author wishes to thank Guido van Rossum and Christoph Groth for their suggestions to move the proposal in this direction. [2] )

As expression assignments can sometimes be used equivalently to statement assignments, the question of which should be preferred will arise. For the benefit of style guides such as PEP 8 , two recommendations are suggested.

  • If either assignment statements or assignment expressions can be used, prefer statements; they are a clear declaration of intent.
  • If using assignment expressions would lead to ambiguity about execution order, restructure it to use statements instead.

The authors wish to thank Alyssa Coghlan and Steven D’Aprano for their considerable contributions to this proposal, and members of the core-mentorship mailing list for assistance with implementation.

Appendix A: Tim Peters’s findings

Here’s a brief essay Tim Peters wrote on the topic.

I dislike “busy” lines of code, and also dislike putting conceptually unrelated logic on a single line. So, for example, instead of:

instead. So I suspected I’d find few places I’d want to use assignment expressions. I didn’t even consider them for lines already stretching halfway across the screen. In other cases, “unrelated” ruled:

is a vast improvement over the briefer:

The original two statements are doing entirely different conceptual things, and slamming them together is conceptually insane.

In other cases, combining related logic made it harder to understand, such as rewriting:

as the briefer:

The while test there is too subtle, crucially relying on strict left-to-right evaluation in a non-short-circuiting or method-chaining context. My brain isn’t wired that way.

But cases like that were rare. Name binding is very frequent, and “sparse is better than dense” does not mean “almost empty is better than sparse”. For example, I have many functions that return None or 0 to communicate “I have nothing useful to return in this case, but since that’s expected often I’m not going to annoy you with an exception”. This is essentially the same as regular expression search functions returning None when there is no match. So there was lots of code of the form:

I find that clearer, and certainly a bit less typing and pattern-matching reading, as:

It’s also nice to trade away a small amount of horizontal whitespace to get another _line_ of surrounding code on screen. I didn’t give much weight to this at first, but it was so very frequent it added up, and I soon enough became annoyed that I couldn’t actually run the briefer code. That surprised me!

There are other cases where assignment expressions really shine. Rather than pick another from my code, Kirill Balunov gave a lovely example from the standard library’s copy() function in copy.py :

The ever-increasing indentation is semantically misleading: the logic is conceptually flat, “the first test that succeeds wins”:

Using easy assignment expressions allows the visual structure of the code to emphasize the conceptual flatness of the logic; ever-increasing indentation obscured it.

A smaller example from my code delighted me, both allowing to put inherently related logic in a single line, and allowing to remove an annoying “artificial” indentation level:

That if is about as long as I want my lines to get, but remains easy to follow.

So, in all, in most lines binding a name, I wouldn’t use assignment expressions, but because that construct is so very frequent, that leaves many places I would. In most of the latter, I found a small win that adds up due to how often it occurs, and in the rest I found a moderate to major win. I’d certainly use it more often than ternary if , but significantly less often than augmented assignment.

I have another example that quite impressed me at the time.

Where all variables are positive integers, and a is at least as large as the n’th root of x, this algorithm returns the floor of the n’th root of x (and roughly doubling the number of accurate bits per iteration):

It’s not obvious why that works, but is no more obvious in the “loop and a half” form. It’s hard to prove correctness without building on the right insight (the “arithmetic mean - geometric mean inequality”), and knowing some non-trivial things about how nested floor functions behave. That is, the challenges are in the math, not really in the coding.

If you do know all that, then the assignment-expression form is easily read as “while the current guess is too large, get a smaller guess”, where the “too large?” test and the new guess share an expensive sub-expression.

To my eyes, the original form is harder to understand:

This appendix attempts to clarify (though not specify) the rules when a target occurs in a comprehension or in a generator expression. For a number of illustrative examples we show the original code, containing a comprehension, and the translation, where the comprehension has been replaced by an equivalent generator function plus some scaffolding.

Since [x for ...] is equivalent to list(x for ...) these examples all use list comprehensions without loss of generality. And since these examples are meant to clarify edge cases of the rules, they aren’t trying to look like real code.

Note: comprehensions are already implemented via synthesizing nested generator functions like those in this appendix. The new part is adding appropriate declarations to establish the intended scope of assignment expression targets (the same scope they resolve to as if the assignment were performed in the block containing the outermost comprehension). For type inference purposes, these illustrative expansions do not imply that assignment expression targets are always Optional (but they do indicate the target binding scope).

Let’s start with a reminder of what code is generated for a generator expression without assignment expression.

  • Original code (EXPR usually references VAR): def f (): a = [ EXPR for VAR in ITERABLE ]
  • Translation (let’s not worry about name conflicts): def f (): def genexpr ( iterator ): for VAR in iterator : yield EXPR a = list ( genexpr ( iter ( ITERABLE )))

Let’s add a simple assignment expression.

  • Original code: def f (): a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def f (): if False : TARGET = None # Dead code to ensure TARGET is a local variable def genexpr ( iterator ): nonlocal TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Let’s add a global TARGET declaration in f() .

  • Original code: def f (): global TARGET a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def f (): global TARGET def genexpr ( iterator ): global TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Or instead let’s add a nonlocal TARGET declaration in f() .

  • Original code: def g (): TARGET = ... def f (): nonlocal TARGET a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def g (): TARGET = ... def f (): nonlocal TARGET def genexpr ( iterator ): nonlocal TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Finally, let’s nest two comprehensions.

  • Original code: def f (): a = [[ TARGET := i for i in range ( 3 )] for j in range ( 2 )] # I.e., a = [[0, 1, 2], [0, 1, 2]] print ( TARGET ) # prints 2
  • Translation: def f (): if False : TARGET = None def outer_genexpr ( outer_iterator ): nonlocal TARGET def inner_generator ( inner_iterator ): nonlocal TARGET for i in inner_iterator : TARGET = i yield i for j in outer_iterator : yield list ( inner_generator ( range ( 3 ))) a = list ( outer_genexpr ( range ( 2 ))) print ( TARGET )

Because it has been a point of confusion, note that nothing about Python’s scoping semantics is changed. Function-local scopes continue to be resolved at compile time, and to have indefinite temporal extent at run time (“full closures”). Example:

This document has been placed in the public domain.

Source: https://github.com/python/peps/blob/main/peps/pep-0572.rst

Last modified: 2023-10-11 12:05:51 GMT

Javatpoint Logo

  • Interview Q

C++ Tutorial

C++ control statement, c++ functions, c++ pointers, c++ object class, c++ inheritance, c++ polymorphism, c++ abstraction, c++ namespaces, c++ strings, c++ exceptions, c++ templates, signal handling, c++ file & stream, c++ stl tutorial, c++ iterators, c++ programs, interview question.

JavaTpoint

Let's see a simple program containing constant expression:

In the above code, we have first declared the 'x' variable of integer type. After declaration, we assign the simple constant expression to the 'x' variable.

Integral Expressions

An integer expression is an expression that produces the integer value as output after performing all the explicit and implicit conversions.

Following are the examples of integral expression:

Let's see a simple example of integral expression:

In the above code, we have declared three variables, i.e., x, y, and z. After declaration, we take the user input for the values of 'x' and 'y'. Then, we add the values of 'x' and 'y' and stores their result in 'z' variable.

Let's see another example of integral expression.

In the above code, we declare two variables, i.e., x and y. We store the value of expression (y+int(10.0)) in a 'x' variable.

Float Expressions

A float expression is an expression that produces floating-point value as output after performing all the explicit and implicit conversions.

The following are the examples of float expressions:

Let's understand through an example.

Let's see another example of float expression.

In the above code, we have declared two variables, i.e., x and y. After declaration, we store the value of expression (x+float(10)) in variable 'y'.

Pointer Expressions

A pointer expression is an expression that produces address value as an output.

The following are the examples of pointer expression:

In the above code, we declare the array and a pointer ptr. We assign the base address to the variable 'ptr'. After assigning the address, we increment the value of pointer 'ptr'. When pointer is incremented then 'ptr' will be pointing to the second element of the array.

Relational Expressions

A relational expression is an expression that produces a value of type bool, which can be either true or false. It is also known as a boolean expression. When arithmetic expressions are used on both sides of the relational operator, arithmetic expressions are evaluated first, and then their results are compared.

The following are the examples of the relational expression:

Let's understand through an example

In the above code, we have declared two variables, i.e., 'a' and 'b'. After declaration, we have applied the relational operator between the variables to check whether 'a' is greater than 'b' or not.

Let's see another example.

In the above code, we have declared four variables, i.e., 'a', 'b', 'x' and 'y'. Then, we apply the relational operator (>=) between these variables.

Logical Expressions

A logical expression is an expression that combines two or more relational expressions and produces a bool type value. The logical operators are '&&' and '||' that combines two or more relational expressions.

The following are some examples of logical expressions:

Let's see a simple example of logical expression.

Bitwise Expressions

A bitwise expression is an expression which is used to manipulate the data at a bit level. They are basically used to shift the bits.

For example:

x>>3 // This statement means that we are shifting the three-bit position to the right.

In the above example, the value of 'x' is 3 and its binary value is 0011. We are shifting the value of 'x' by three-bit position to the right. Let's understand through the diagrammatic representation.

C++ Expression

Let's see a simple example.

In the above code, we have declared a variable 'x'. After declaration, we applied the bitwise operator, i.e., right shift operator to shift one-bit position to right.

Let's look at another example.

In the above code, we have declared a variable 'x'. After declaration, we applied the left shift operator to variable 'x' to shift the three-bit position to the left.

Special Assignment Expressions

Special assignment expressions are the expressions which can be further classified depending upon the value assigned to the variable.

  • Chained Assignment

Chained assignment expression is an expression in which the same value is assigned to more than one variable by using single statement.

In the above code, we have declared two variables, i.e., 'a' and 'b'. Then, we have assigned the same value to both the variables using chained assignment expression.

Note: Using chained assignment expression, the value cannot be assigned to the variable at the time of declaration. For example, int a=b=c=90 is an invalid statement.

  • Embedded Assignment Expression

An embedded assignment expression is an assignment expression in which assignment expression is enclosed within another assignment expression.

In the above code, we have declared two variables, i.e., 'a' and 'b'. Then, we applied embedded assignment expression (a=10+(b=90)).

  • Compound Assignment

A compound assignment expression is an expression which is a combination of an assignment operator and binary operator.

For example,

In the above statement, 'a' is a variable and '+=' is a compound statement.

In the above code, we have declared a variable 'a' and assigns 10 value to this variable. Then, we applied compound assignment operator (+=) to 'a' variable, i.e., a+=10 which is equal to (a=a+10). This statement increments the value of 'a' by 10.

Youtube

  • Send your Feedback to [email protected]

Help Others, Please Share

facebook

Learn Latest Tutorials

Splunk tutorial

Transact-SQL

Tumblr tutorial

Reinforcement Learning

R Programming tutorial

R Programming

RxJS tutorial

React Native

Python Design Patterns

Python Design Patterns

Python Pillow tutorial

Python Pillow

Python Turtle tutorial

Python Turtle

Keras tutorial

Preparation

Aptitude

Verbal Ability

Interview Questions

Interview Questions

Company Interview Questions

Company Questions

Trending Technologies

Artificial Intelligence

Artificial Intelligence

AWS Tutorial

Cloud Computing

Hadoop tutorial

Data Science

Angular 7 Tutorial

Machine Learning

DevOps Tutorial

B.Tech / MCA

DBMS tutorial

Data Structures

DAA tutorial

Operating System

Computer Network tutorial

Computer Network

Compiler Design tutorial

Compiler Design

Computer Organization and Architecture

Computer Organization

Discrete Mathematics Tutorial

Discrete Mathematics

Ethical Hacking

Ethical Hacking

Computer Graphics Tutorial

Computer Graphics

Software Engineering

Software Engineering

html tutorial

Web Technology

Cyber Security tutorial

Cyber Security

Automata Tutorial

C Programming

C++ tutorial

Control System

Data Mining Tutorial

Data Mining

Data Warehouse Tutorial

Data Warehouse

RSS Feed

cppreference.com

Assignment operators.

Assignment operators modify the value of the object.

[ edit ] Definitions

Copy assignment replaces the contents of the object a with a copy of the contents of b ( b is not modified). For class types, this is performed in a special member function, described in copy assignment operator .

For non-class types, copy and move assignment are indistinguishable and are referred to as direct assignment .

Compound assignment replace the contents of the object a with the result of a binary operation between the previous value of a and the value of b .

[ edit ] Assignment operator syntax

The assignment expressions have the form

  • ↑ target-expr must have higher precedence than an assignment expression.
  • ↑ new-value cannot be a comma expression, because its precedence is lower.

[ edit ] Built-in simple assignment operator

For the built-in simple assignment, the object referred to by target-expr is modified by replacing its value with the result of new-value . target-expr must be a modifiable lvalue.

The result of a built-in simple assignment is an lvalue of the type of target-expr , referring to target-expr . If target-expr is a bit-field , the result is also a bit-field.

[ edit ] Assignment from an expression

If new-value is an expression, it is implicitly converted to the cv-unqualified type of target-expr . When target-expr is a bit-field that cannot represent the value of the expression, the resulting value of the bit-field is implementation-defined.

If target-expr and new-value identify overlapping objects, the behavior is undefined (unless the overlap is exact and the type is the same).

In overload resolution against user-defined operators , for every type T , the following function signatures participate in overload resolution:

For every enumeration or pointer to member type T , optionally volatile-qualified, the following function signature participates in overload resolution:

For every pair A1 and A2 , where A1 is an arithmetic type (optionally volatile-qualified) and A2 is a promoted arithmetic type, the following function signature participates in overload resolution:

[ edit ] Built-in compound assignment operator

The behavior of every built-in compound-assignment expression target-expr   op   =   new-value is exactly the same as the behavior of the expression target-expr   =   target-expr   op   new-value , except that target-expr is evaluated only once.

The requirements on target-expr and new-value of built-in simple assignment operators also apply. Furthermore:

  • For + = and - = , the type of target-expr must be an arithmetic type or a pointer to a (possibly cv-qualified) completely-defined object type .
  • For all other compound assignment operators, the type of target-expr must be an arithmetic type.

In overload resolution against user-defined operators , for every pair A1 and A2 , where A1 is an arithmetic type (optionally volatile-qualified) and A2 is a promoted arithmetic type, the following function signatures participate in overload resolution:

For every pair I1 and I2 , where I1 is an integral type (optionally volatile-qualified) and I2 is a promoted integral type, the following function signatures participate in overload resolution:

For every optionally cv-qualified object type T , the following function signatures participate in overload resolution:

[ edit ] Example

Possible output:

[ edit ] Defect reports

The following behavior-changing defect reports were applied retroactively to previously published C++ standards.

[ edit ] See also

Operator precedence

Operator overloading

  • Recent changes
  • Offline version
  • What links here
  • Related changes
  • Upload file
  • Special pages
  • Printable version
  • Permanent link
  • Page information
  • In other languages
  • This page was last modified on 25 January 2024, at 22:41.
  • This page has been accessed 410,142 times.
  • Privacy policy
  • About cppreference.com
  • Disclaimers

Powered by MediaWiki

Expressions in C++

Statements and Expressions thumbnail

Expression is the combination of the constants, variables, and operators, which are arranged according to the syntax of C++ language and, after computation, return some values that may be a boolean, an integer, or any other data type of C++. An expression can be a combination of other expressions; while computation, first inner expressions are calculated, then the overall expression. A function call that returns some value could be part of an expression.

Examples of C++ Expression

There are many types of C++ expressions. Let's see some examples. Then further, we will see them in detail.

Constant Expressions

Consist of numeric or fixed values only.

Integral Expressions

Returns integral value after computation.

Float Expressions

Returns float value after computation.

Pointer Expressions

Returns the address of any defined variable of code.

Relational Expressions

Defines the relation between two numerics or arithmetic values.

Logical Expressions

Return logical relation of two relational expressions or arithmetic values.

Bitwise Expression

Applies the operation on the bit level.

Special Assignment Expressions

Assigns the values in the chain

Types of Expressions in C++

Types of expression in C++ are given below:

Constant expressions

Constant expressions are expressions that are made up of only constant values(values that are fixed, like numeric values). This expression value is either fixed means consisting of only one numeric value/constant value or determined at compile time means consisting of some numeric values and operators. Still, these expressions are judged or evaluated at run time only.

We can also use the extern and static keywords with constant values in a constant expression.

Usages of Constant Expressions:

  • To define the fixed size of an array at the time of declaration of the size of an array.
  • In switch statements as selector case statements.
  • While defining bit field size.

Let's see the constant expression in the code:

In the above code, first, we declare a variable a . After that, we assign simple constant expressions to it, then simplify printed the value of variable 'a'. Learn more about Constants in C++ .

Integral expressions are those expressions that produce integer value in the result after executing all the automatic/ implicit (when operands have different data types , the compiler automatically converts smaller data type into a larger data type) and by user/explicit (when user converting a data type into another data type by using (type) operator) type conversion in expression.

Let's see the Integral expression in the code:

In the above code, first, we declared variables a, b, and c . Then we take input values of a and b from the user. After that, we assign (int)a+b (an integral expression) to c . It is an explicit conversion. Then we print the value of c .

To explain implicit conversion in integral expression further, we declare two variables one is x , integer type, and another is y , char type. Then we take input, the value of y from the user, and assign it to the x . It is an implicit conversion in which the compiler recognizes by itself that x is an integer type, and we assign a char value to x so it gives the decimal value of char to the x . Then we print the value of x .

Float expressions produce float values in the result after executing all the automatic/ implicit and user/explicit type conversions in the expression.

Let's see the float expression in the code:

In the above code, first, we declared variables a , b , and c . ‘ a ’ and ‘ c ’ variables are float type, and the b variable is an integer type value. After that, we assign the a+(float)b value (a floating expression) to c . It is an explicit conversion. Here, we use the '(float)' type operator to convert the overall value in float. Then we print the value of c .

To further explain implicit conversion in floating expression, we declare two variables: ' x , float type, and y , char type. After that, we add y to the x . It is an implicit conversion in which the compiler recognizes by itself that x is a float type, and we added a char value to x so it gives the decimal value of char to the x in a result, we get a floating expression as ' x+y '. Then we print the value of x`.

Pointer expressions produce address value as a result which may be in the hexadecimal form most of the time.

Let's see the Pointer expression in the code:

In the above code, we first declared an array ' arr ' of size 5 and a pointer. After that, assign the base address of the array(a pointer expression) to the pointer ptr . Then increment pointer ptr by 3 ; print the pointer's value. Now pointer represents the fourth value of the array.

Relational expressions are those expressions that produce a bool value in the result. A bool value means the answer is either true or false. Due to this, relational expressions are also known as boolean expressions. Relational expressions are like this: (arithmetic expression) (operator) (arithmetic expression) . Here the result of this expression is the relation between both arithmetic expressions. Also, when an arithmetic expression is used on both sides of the relation expression, the first arithmetic expressions are solved, and their result is compared.

Let's see the Relational expression in the code:

In the above code, first, we declare three variables; two of them ' a ', and ' b ' are integer types, and one ' x ' is a boolean type. Assigned value to a and b and assigned a relational expression b>a to x . Then print the value of x . Then we assign another relational expression to x . Here the values of arithmetic expressions are computed by the compiler, then compares both sides and assigns the result to x . After that, print the new value of x .

Logical expressions combine two or more relational expressions with the help of logical operators to produce a bool value. Some examples of logical operators are:-

  • OR " || " operator
  • AND " && " operator

In the 'OR' operator, if any condition is true, the whole expression's result is true, and if all conditions are false, the result is false. In the 'and' operator, if any condition is false, the whole expression's result is false, and if all conditions are true, then the result is true.

Let's see the Logical expression in the code:

In the above code, first, we declare five variables. Four of them ' a ', ' b ', ' x ' and ' y ' are integer types and one ' z ' is a boolean type. Assigned value to variables and then assigned a logical expression (b > a)||(x>y) using OR operator to z . Again do the same thing using the " and " operator.

Bitwise Expressions

The expressions in which we apply some operations on bits or bit level. It is used to shift the bits of variables on either left or right side. Some examples of bitwise operators are:-

  • Left shift ' << ' : The left shift is similar to multiplying by 2. In this, we add an unset bit(0) to the right side of our number.
  • Right shift ' >> ' The right shift is similar to dividing by 2, which means we remove the rightmost bit in this.

Let's see the Bitwise expression in the code:

In the above code, first, we declared two variables, x and y are integer types and assigned value 4 to both variables. Then applied, the right shift operator on x by 1 bit and the left shift operator on y by 1 bit. After that, print the result. Here x >> 1 and y << 1 are bitwise expressions.

In special assignment expressions, we have three types. They are-

  • Chained Assignment Expression

Embedded Assignment Expression

Compound assignment expression, chained assignment.

Chained Assignment expressions are those expressions in which we assign the same value to more than one variable in a single expression or statement.

Let's see the Chain Assignment expression in the code:

In the above code, first, we declare two variables, x and y . Then we assign values to x and y using the Chained assignment expression x = y = 4 here first y gets its value and then x . Print the value of x and y .

Embedded Assignment expressions are those made up of assignment expressions enclosed by another assignment expression.

Let's see the Embedded Assignment Expression in code:

In the above code, first, we declared three variables x , y , and z . Then we assign value to the variable ' z ' by embedded assignment expression. In the end, print the value of z .

Compound Assignment Expressions are those expressions that consist of assignment expressions and binary expressions together.

Let's see the Compound Assignment Expression in the code:

In the above code, first, we declared three variables x , y , and z . Then we assign value to the variable ' z '. After that, we assign values to x and y by compound assignment expression. After that, print the value of z .

  • Expression is the combination of the constants, variables, and operators, which after computation, returns some value.
  • Expression can be of many types depending on the operator, variable type, and arrangement.
  • One expression can consist of nested expressions also, and while computation, first, the nested ones are computed, then the outer ones.
  • There the three special types of expressions for assignment chained, embedded, and compound assignment expressions.
  • Python »
  • 3.12.2 Documentation »
  • The Python Language Reference »
  • 6. Expressions
  • Theme Auto Light Dark |

6. Expressions ¶

This chapter explains the meaning of the elements of expressions in Python.

Syntax Notes: In this and the following chapters, extended BNF notation will be used to describe syntax, not lexical analysis. When (one alternative of) a syntax rule has the form

and no semantics are given, the semantics of this form of name are the same as for othername .

6.1. Arithmetic conversions ¶

When a description of an arithmetic operator below uses the phrase “the numeric arguments are converted to a common type”, this means that the operator implementation for built-in types works as follows:

If either argument is a complex number, the other is converted to complex;

otherwise, if either argument is a floating point number, the other is converted to floating point;

otherwise, both must be integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g., a string as a left argument to the ‘%’ operator). Extensions must define their own conversion behavior.

6.2. Atoms ¶

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms enclosed in parentheses, brackets or braces are also categorized syntactically as atoms. The syntax for atoms is:

6.2.1. Identifiers (Names) ¶

An identifier occurring as an atom is a name. See section Identifiers and keywords for lexical definition and section Naming and binding for documentation of naming and binding.

When the name is bound to an object, evaluation of the atom yields that object. When a name is not bound, an attempt to evaluate it raises a NameError exception.

Private name mangling: When an identifier that textually occurs in a class definition begins with two or more underscore characters and does not end in two or more underscores, it is considered a private name of that class. Private names are transformed to a longer form before code is generated for them. The transformation inserts the class name, with leading underscores removed and a single underscore inserted, in front of the name. For example, the identifier __spam occurring in a class named Ham will be transformed to _Ham__spam . This transformation is independent of the syntactical context in which the identifier is used. If the transformed name is extremely long (longer than 255 characters), implementation defined truncation may happen. If the class name consists only of underscores, no transformation is done.

6.2.2. Literals ¶

Python supports string and bytes literals and various numeric literals:

Evaluation of a literal yields an object of the given type (string, bytes, integer, floating point number, complex number) with the given value. The value may be approximated in the case of floating point and imaginary (complex) literals. See section Literals for details.

All literals correspond to immutable data types, and hence the object’s identity is less important than its value. Multiple evaluations of literals with the same value (either the same occurrence in the program text or a different occurrence) may obtain the same object or a different object with the same value.

6.2.3. Parenthesized forms ¶

A parenthesized form is an optional expression list enclosed in parentheses:

A parenthesized expression list yields whatever that expression list yields: if the list contains at least one comma, it yields a tuple; otherwise, it yields the single expression that makes up the expression list.

An empty pair of parentheses yields an empty tuple object. Since tuples are immutable, the same rules as for literals apply (i.e., two occurrences of the empty tuple may or may not yield the same object).

Note that tuples are not formed by the parentheses, but rather by use of the comma. The exception is the empty tuple, for which parentheses are required — allowing unparenthesized “nothing” in expressions would cause ambiguities and allow common typos to pass uncaught.

6.2.4. Displays for lists, sets and dictionaries ¶

For constructing a list, a set or a dictionary Python provides special syntax called “displays”, each of them in two flavors:

either the container contents are listed explicitly, or

they are computed via a set of looping and filtering instructions, called a comprehension .

Common syntax elements for comprehensions are:

The comprehension consists of a single expression followed by at least one for clause and zero or more for or if clauses. In this case, the elements of the new container are those that would be produced by considering each of the for or if clauses a block, nesting from left to right, and evaluating the expression to produce an element each time the innermost block is reached.

However, aside from the iterable expression in the leftmost for clause, the comprehension is executed in a separate implicitly nested scope. This ensures that names assigned to in the target list don’t “leak” into the enclosing scope.

The iterable expression in the leftmost for clause is evaluated directly in the enclosing scope and then passed as an argument to the implicitly nested scope. Subsequent for clauses and any filter condition in the leftmost for clause cannot be evaluated in the enclosing scope as they may depend on the values obtained from the leftmost iterable. For example: [x*y for x in range(10) for y in range(x, x+10)] .

To ensure the comprehension always results in a container of the appropriate type, yield and yield from expressions are prohibited in the implicitly nested scope.

Since Python 3.6, in an async def function, an async for clause may be used to iterate over a asynchronous iterator . A comprehension in an async def function may consist of either a for or async for clause following the leading expression, may contain additional for or async for clauses, and may also use await expressions. If a comprehension contains either async for clauses or await expressions or other asynchronous comprehensions it is called an asynchronous comprehension . An asynchronous comprehension may suspend the execution of the coroutine function in which it appears. See also PEP 530 .

New in version 3.6: Asynchronous comprehensions were introduced.

Changed in version 3.8: yield and yield from prohibited in the implicitly nested scope.

Changed in version 3.11: Asynchronous comprehensions are now allowed inside comprehensions in asynchronous functions. Outer comprehensions implicitly become asynchronous.

6.2.5. List displays ¶

A list display is a possibly empty series of expressions enclosed in square brackets:

A list display yields a new list object, the contents being specified by either a list of expressions or a comprehension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to right and placed into the list object in that order. When a comprehension is supplied, the list is constructed from the elements resulting from the comprehension.

6.2.6. Set displays ¶

A set display is denoted by curly braces and distinguishable from dictionary displays by the lack of colons separating keys and values:

A set display yields a new mutable set object, the contents being specified by either a sequence of expressions or a comprehension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to right and added to the set object. When a comprehension is supplied, the set is constructed from the elements resulting from the comprehension.

An empty set cannot be constructed with {} ; this literal constructs an empty dictionary.

6.2.7. Dictionary displays ¶

A dictionary display is a possibly empty series of dict items (key/value pairs) enclosed in curly braces:

A dictionary display yields a new dictionary object.

If a comma-separated sequence of dict items is given, they are evaluated from left to right to define the entries of the dictionary: each key object is used as a key into the dictionary to store the corresponding value. This means that you can specify the same key multiple times in the dict item list, and the final dictionary’s value for that key will be the last one given.

A double asterisk ** denotes dictionary unpacking . Its operand must be a mapping . Each mapping item is added to the new dictionary. Later values replace values already set by earlier dict items and earlier dictionary unpackings.

New in version 3.5: Unpacking into dictionary displays, originally proposed by PEP 448 .

A dict comprehension, in contrast to list and set comprehensions, needs two expressions separated with a colon followed by the usual “for” and “if” clauses. When the comprehension is run, the resulting key and value elements are inserted in the new dictionary in the order they are produced.

Restrictions on the types of the key values are listed earlier in section The standard type hierarchy . (To summarize, the key type should be hashable , which excludes all mutable objects.) Clashes between duplicate keys are not detected; the last value (textually rightmost in the display) stored for a given key value prevails.

Changed in version 3.8: Prior to Python 3.8, in dict comprehensions, the evaluation order of key and value was not well-defined. In CPython, the value was evaluated before the key. Starting with 3.8, the key is evaluated before the value, as proposed by PEP 572 .

6.2.8. Generator expressions ¶

A generator expression is a compact generator notation in parentheses:

A generator expression yields a new generator object. Its syntax is the same as for comprehensions, except that it is enclosed in parentheses instead of brackets or curly braces.

Variables used in the generator expression are evaluated lazily when the __next__() method is called for the generator object (in the same fashion as normal generators). However, the iterable expression in the leftmost for clause is immediately evaluated, so that an error produced by it will be emitted at the point where the generator expression is defined, rather than at the point where the first value is retrieved. Subsequent for clauses and any filter condition in the leftmost for clause cannot be evaluated in the enclosing scope as they may depend on the values obtained from the leftmost iterable. For example: (x*y for x in range(10) for y in range(x, x+10)) .

The parentheses can be omitted on calls with only one argument. See section Calls for details.

To avoid interfering with the expected operation of the generator expression itself, yield and yield from expressions are prohibited in the implicitly defined generator.

If a generator expression contains either async for clauses or await expressions it is called an asynchronous generator expression . An asynchronous generator expression returns a new asynchronous generator object, which is an asynchronous iterator (see Asynchronous Iterators ).

New in version 3.6: Asynchronous generator expressions were introduced.

Changed in version 3.7: Prior to Python 3.7, asynchronous generator expressions could only appear in async def coroutines. Starting with 3.7, any function can use asynchronous generator expressions.

6.2.9. Yield expressions ¶

The yield expression is used when defining a generator function or an asynchronous generator function and thus can only be used in the body of a function definition. Using a yield expression in a function’s body causes that function to be a generator function, and using it in an async def function’s body causes that coroutine function to be an asynchronous generator function. For example:

Due to their side effects on the containing scope, yield expressions are not permitted as part of the implicitly defined scopes used to implement comprehensions and generator expressions.

Changed in version 3.8: Yield expressions prohibited in the implicitly nested scopes used to implement comprehensions and generator expressions.

Generator functions are described below, while asynchronous generator functions are described separately in section Asynchronous generator functions .

When a generator function is called, it returns an iterator known as a generator. That generator then controls the execution of the generator function. The execution starts when one of the generator’s methods is called. At that time, the execution proceeds to the first yield expression, where it is suspended again, returning the value of expression_list to the generator’s caller, or None if expression_list is omitted. By suspended, we mean that all local state is retained, including the current bindings of local variables, the instruction pointer, the internal evaluation stack, and the state of any exception handling. When the execution is resumed by calling one of the generator’s methods, the function can proceed exactly as if the yield expression were just another external call. The value of the yield expression after resuming depends on the method which resumed the execution. If __next__() is used (typically via either a for or the next() builtin) then the result is None . Otherwise, if send() is used, then the result will be the value passed in to that method.

All of this makes generator functions quite similar to coroutines; they yield multiple times, they have more than one entry point and their execution can be suspended. The only difference is that a generator function cannot control where the execution should continue after it yields; the control is always transferred to the generator’s caller.

Yield expressions are allowed anywhere in a try construct. If the generator is not resumed before it is finalized (by reaching a zero reference count or by being garbage collected), the generator-iterator’s close() method will be called, allowing any pending finally clauses to execute.

When yield from <expr> is used, the supplied expression must be an iterable. The values produced by iterating that iterable are passed directly to the caller of the current generator’s methods. Any values passed in with send() and any exceptions passed in with throw() are passed to the underlying iterator if it has the appropriate methods. If this is not the case, then send() will raise AttributeError or TypeError , while throw() will just raise the passed in exception immediately.

When the underlying iterator is complete, the value attribute of the raised StopIteration instance becomes the value of the yield expression. It can be either set explicitly when raising StopIteration , or automatically when the subiterator is a generator (by returning a value from the subgenerator).

Changed in version 3.3: Added yield from <expr> to delegate control flow to a subiterator.

The parentheses may be omitted when the yield expression is the sole expression on the right hand side of an assignment statement.

The proposal for adding generators and the yield statement to Python.

The proposal to enhance the API and syntax of generators, making them usable as simple coroutines.

The proposal to introduce the yield_from syntax, making delegation to subgenerators easy.

The proposal that expanded on PEP 492 by adding generator capabilities to coroutine functions.

6.2.9.1. Generator-iterator methods ¶

This subsection describes the methods of a generator iterator. They can be used to control the execution of a generator function.

Note that calling any of the generator methods below when the generator is already executing raises a ValueError exception.

Starts the execution of a generator function or resumes it at the last executed yield expression. When a generator function is resumed with a __next__() method, the current yield expression always evaluates to None . The execution then continues to the next yield expression, where the generator is suspended again, and the value of the expression_list is returned to __next__() ’s caller. If the generator exits without yielding another value, a StopIteration exception is raised.

This method is normally called implicitly, e.g. by a for loop, or by the built-in next() function.

Resumes the execution and “sends” a value into the generator function. The value argument becomes the result of the current yield expression. The send() method returns the next value yielded by the generator, or raises StopIteration if the generator exits without yielding another value. When send() is called to start the generator, it must be called with None as the argument, because there is no yield expression that could receive the value.

Raises an exception at the point where the generator was paused, and returns the next value yielded by the generator function. If the generator exits without yielding another value, a StopIteration exception is raised. If the generator function does not catch the passed-in exception, or raises a different exception, then that exception propagates to the caller.

In typical use, this is called with a single exception instance similar to the way the raise keyword is used.

For backwards compatibility, however, the second signature is supported, following a convention from older versions of Python. The type argument should be an exception class, and value should be an exception instance. If the value is not provided, the type constructor is called to get an instance. If traceback is provided, it is set on the exception, otherwise any existing __traceback__ attribute stored in value may be cleared.

Changed in version 3.12: The second signature (type[, value[, traceback]]) is deprecated and may be removed in a future version of Python.

Raises a GeneratorExit at the point where the generator function was paused. If the generator function then exits gracefully, is already closed, or raises GeneratorExit (by not catching the exception), close returns to its caller. If the generator yields a value, a RuntimeError is raised. If the generator raises any other exception, it is propagated to the caller. close() does nothing if the generator has already exited due to an exception or normal exit.

6.2.9.2. Examples ¶

Here is a simple example that demonstrates the behavior of generators and generator functions:

For examples using yield from , see PEP 380: Syntax for Delegating to a Subgenerator in “What’s New in Python.”

6.2.9.3. Asynchronous generator functions ¶

The presence of a yield expression in a function or method defined using async def further defines the function as an asynchronous generator function.

When an asynchronous generator function is called, it returns an asynchronous iterator known as an asynchronous generator object. That object then controls the execution of the generator function. An asynchronous generator object is typically used in an async for statement in a coroutine function analogously to how a generator object would be used in a for statement.

Calling one of the asynchronous generator’s methods returns an awaitable object, and the execution starts when this object is awaited on. At that time, the execution proceeds to the first yield expression, where it is suspended again, returning the value of expression_list to the awaiting coroutine. As with a generator, suspension means that all local state is retained, including the current bindings of local variables, the instruction pointer, the internal evaluation stack, and the state of any exception handling. When the execution is resumed by awaiting on the next object returned by the asynchronous generator’s methods, the function can proceed exactly as if the yield expression were just another external call. The value of the yield expression after resuming depends on the method which resumed the execution. If __anext__() is used then the result is None . Otherwise, if asend() is used, then the result will be the value passed in to that method.

If an asynchronous generator happens to exit early by break , the caller task being cancelled, or other exceptions, the generator’s async cleanup code will run and possibly raise exceptions or access context variables in an unexpected context–perhaps after the lifetime of tasks it depends, or during the event loop shutdown when the async-generator garbage collection hook is called. To prevent this, the caller must explicitly close the async generator by calling aclose() method to finalize the generator and ultimately detach it from the event loop.

In an asynchronous generator function, yield expressions are allowed anywhere in a try construct. However, if an asynchronous generator is not resumed before it is finalized (by reaching a zero reference count or by being garbage collected), then a yield expression within a try construct could result in a failure to execute pending finally clauses. In this case, it is the responsibility of the event loop or scheduler running the asynchronous generator to call the asynchronous generator-iterator’s aclose() method and run the resulting coroutine object, thus allowing any pending finally clauses to execute.

To take care of finalization upon event loop termination, an event loop should define a finalizer function which takes an asynchronous generator-iterator and presumably calls aclose() and executes the coroutine. This finalizer may be registered by calling sys.set_asyncgen_hooks() . When first iterated over, an asynchronous generator-iterator will store the registered finalizer to be called upon finalization. For a reference example of a finalizer method see the implementation of asyncio.Loop.shutdown_asyncgens in Lib/asyncio/base_events.py .

The expression yield from <expr> is a syntax error when used in an asynchronous generator function.

6.2.9.4. Asynchronous generator-iterator methods ¶

This subsection describes the methods of an asynchronous generator iterator, which are used to control the execution of a generator function.

Returns an awaitable which when run starts to execute the asynchronous generator or resumes it at the last executed yield expression. When an asynchronous generator function is resumed with an __anext__() method, the current yield expression always evaluates to None in the returned awaitable, which when run will continue to the next yield expression. The value of the expression_list of the yield expression is the value of the StopIteration exception raised by the completing coroutine. If the asynchronous generator exits without yielding another value, the awaitable instead raises a StopAsyncIteration exception, signalling that the asynchronous iteration has completed.

This method is normally called implicitly by a async for loop.

Returns an awaitable which when run resumes the execution of the asynchronous generator. As with the send() method for a generator, this “sends” a value into the asynchronous generator function, and the value argument becomes the result of the current yield expression. The awaitable returned by the asend() method will return the next value yielded by the generator as the value of the raised StopIteration , or raises StopAsyncIteration if the asynchronous generator exits without yielding another value. When asend() is called to start the asynchronous generator, it must be called with None as the argument, because there is no yield expression that could receive the value.

Returns an awaitable that raises an exception of type type at the point where the asynchronous generator was paused, and returns the next value yielded by the generator function as the value of the raised StopIteration exception. If the asynchronous generator exits without yielding another value, a StopAsyncIteration exception is raised by the awaitable. If the generator function does not catch the passed-in exception, or raises a different exception, then when the awaitable is run that exception propagates to the caller of the awaitable.

Returns an awaitable that when run will throw a GeneratorExit into the asynchronous generator function at the point where it was paused. If the asynchronous generator function then exits gracefully, is already closed, or raises GeneratorExit (by not catching the exception), then the returned awaitable will raise a StopIteration exception. Any further awaitables returned by subsequent calls to the asynchronous generator will raise a StopAsyncIteration exception. If the asynchronous generator yields a value, a RuntimeError is raised by the awaitable. If the asynchronous generator raises any other exception, it is propagated to the caller of the awaitable. If the asynchronous generator has already exited due to an exception or normal exit, then further calls to aclose() will return an awaitable that does nothing.

6.3. Primaries ¶

Primaries represent the most tightly bound operations of the language. Their syntax is:

6.3.1. Attribute references ¶

An attribute reference is a primary followed by a period and a name:

The primary must evaluate to an object of a type that supports attribute references, which most objects do. This object is then asked to produce the attribute whose name is the identifier. The type and value produced is determined by the object. Multiple evaluations of the same attribute reference may yield different objects.

This production can be customized by overriding the __getattribute__() method or the __getattr__() method. The __getattribute__() method is called first and either returns a value or raises AttributeError if the attribute is not available.

If an AttributeError is raised and the object has a __getattr__() method, that method is called as a fallback.

6.3.2. Subscriptions ¶

The subscription of an instance of a container class will generally select an element from the container. The subscription of a generic class will generally return a GenericAlias object.

When an object is subscripted, the interpreter will evaluate the primary and the expression list.

The primary must evaluate to an object that supports subscription. An object may support subscription through defining one or both of __getitem__() and __class_getitem__() . When the primary is subscripted, the evaluated result of the expression list will be passed to one of these methods. For more details on when __class_getitem__ is called instead of __getitem__ , see __class_getitem__ versus __getitem__ .

If the expression list contains at least one comma, it will evaluate to a tuple containing the items of the expression list. Otherwise, the expression list will evaluate to the value of the list’s sole member.

For built-in objects, there are two types of objects that support subscription via __getitem__() :

Mappings. If the primary is a mapping , the expression list must evaluate to an object whose value is one of the keys of the mapping, and the subscription selects the value in the mapping that corresponds to that key. An example of a builtin mapping class is the dict class.

Sequences. If the primary is a sequence , the expression list must evaluate to an int or a slice (as discussed in the following section). Examples of builtin sequence classes include the str , list and tuple classes.

The formal syntax makes no special provision for negative indices in sequences . However, built-in sequences all provide a __getitem__() method that interprets negative indices by adding the length of the sequence to the index so that, for example, x[-1] selects the last item of x . The resulting value must be a nonnegative integer less than the number of items in the sequence, and the subscription selects the item whose index is that value (counting from zero). Since the support for negative indices and slicing occurs in the object’s __getitem__() method, subclasses overriding this method will need to explicitly add that support.

A string is a special kind of sequence whose items are characters . A character is not a separate data type but a string of exactly one character.

6.3.3. Slicings ¶

A slicing selects a range of items in a sequence object (e.g., a string, tuple or list). Slicings may be used as expressions or as targets in assignment or del statements. The syntax for a slicing:

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a slice list, so any subscription can be interpreted as a slicing. Rather than further complicating the syntax, this is disambiguated by defining that in this case the interpretation as a subscription takes priority over the interpretation as a slicing (this is the case if the slice list contains no proper slice).

The semantics for a slicing are as follows. The primary is indexed (using the same __getitem__() method as normal subscription) with a key that is constructed from the slice list, as follows. If the slice list contains at least one comma, the key is a tuple containing the conversion of the slice items; otherwise, the conversion of the lone slice item is the key. The conversion of a slice item that is an expression is that expression. The conversion of a proper slice is a slice object (see section The standard type hierarchy ) whose start , stop and step attributes are the values of the expressions given as lower bound, upper bound and stride, respectively, substituting None for missing expressions.

6.3.4. Calls ¶

A call calls a callable object (e.g., a function ) with a possibly empty series of arguments :

An optional trailing comma may be present after the positional and keyword arguments but does not affect the semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of built-in objects, class objects, methods of class instances, and all objects having a __call__() method are callable). All argument expressions are evaluated before the call is attempted. Please refer to section Function definitions for the syntax of formal parameter lists.

If keyword arguments are present, they are first converted to positional arguments, as follows. First, a list of unfilled slots is created for the formal parameters. If there are N positional arguments, they are placed in the first N slots. Next, for each keyword argument, the identifier is used to determine the corresponding slot (if the identifier is the same as the first formal parameter name, the first slot is used, and so on). If the slot is already filled, a TypeError exception is raised. Otherwise, the argument is placed in the slot, filling it (even if the expression is None , it fills the slot). When all arguments have been processed, the slots that are still unfilled are filled with the corresponding default value from the function definition. (Default values are calculated, once, when the function is defined; thus, a mutable object such as a list or dictionary used as default value will be shared by all calls that don’t specify an argument value for the corresponding slot; this should usually be avoided.) If there are any unfilled slots for which no default value is specified, a TypeError exception is raised. Otherwise, the list of filled slots is used as the argument list for the call.

CPython implementation detail: An implementation may provide built-in functions whose positional parameters do not have names, even if they are ‘named’ for the purpose of documentation, and which therefore cannot be supplied by keyword. In CPython, this is the case for functions implemented in C that use PyArg_ParseTuple() to parse their arguments.

If there are more positional arguments than there are formal parameter slots, a TypeError exception is raised, unless a formal parameter using the syntax *identifier is present; in this case, that formal parameter receives a tuple containing the excess positional arguments (or an empty tuple if there were no excess positional arguments).

If any keyword argument does not correspond to a formal parameter name, a TypeError exception is raised, unless a formal parameter using the syntax **identifier is present; in this case, that formal parameter receives a dictionary containing the excess keyword arguments (using the keywords as keys and the argument values as corresponding values), or a (new) empty dictionary if there were no excess keyword arguments.

If the syntax *expression appears in the function call, expression must evaluate to an iterable . Elements from these iterables are treated as if they were additional positional arguments. For the call f(x1, x2, *y, x3, x4) , if y evaluates to a sequence y1 , …, yM , this is equivalent to a call with M+4 positional arguments x1 , x2 , y1 , …, yM , x3 , x4 .

A consequence of this is that although the *expression syntax may appear after explicit keyword arguments, it is processed before the keyword arguments (and any **expression arguments – see below). So:

It is unusual for both keyword arguments and the *expression syntax to be used in the same call, so in practice this confusion does not often arise.

If the syntax **expression appears in the function call, expression must evaluate to a mapping , the contents of which are treated as additional keyword arguments. If a parameter matching a key has already been given a value (by an explicit keyword argument, or from another unpacking), a TypeError exception is raised.

When **expression is used, each key in this mapping must be a string. Each value from the mapping is assigned to the first formal parameter eligible for keyword assignment whose name is equal to the key. A key need not be a Python identifier (e.g. "max-temp °F" is acceptable, although it will not match any formal parameter that could be declared). If there is no match to a formal parameter the key-value pair is collected by the ** parameter, if there is one, or if there is not, a TypeError exception is raised.

Formal parameters using the syntax *identifier or **identifier cannot be used as positional argument slots or as keyword argument names.

Changed in version 3.5: Function calls accept any number of * and ** unpackings, positional arguments may follow iterable unpackings ( * ), and keyword arguments may follow dictionary unpackings ( ** ). Originally proposed by PEP 448 .

A call always returns some value, possibly None , unless it raises an exception. How this value is computed depends on the type of the callable object.

The code block for the function is executed, passing it the argument list. The first thing the code block will do is bind the formal parameters to the arguments; this is described in section Function definitions . When the code block executes a return statement, this specifies the return value of the function call.

The result is up to the interpreter; see Built-in Functions for the descriptions of built-in functions and methods.

A new instance of that class is returned.

The corresponding user-defined function is called, with an argument list that is one longer than the argument list of the call: the instance becomes the first argument.

The class must define a __call__() method; the effect is then the same as if that method was called.

6.4. Await expression ¶

Suspend the execution of coroutine on an awaitable object. Can only be used inside a coroutine function .

New in version 3.5.

6.5. The power operator ¶

The power operator binds more tightly than unary operators on its left; it binds less tightly than unary operators on its right. The syntax is:

Thus, in an unparenthesized sequence of power and unary operators, the operators are evaluated from right to left (this does not constrain the evaluation order for the operands): -1**2 results in -1 .

The power operator has the same semantics as the built-in pow() function, when called with two arguments: it yields its left argument raised to the power of its right argument. The numeric arguments are first converted to a common type, and the result is of that type.

For int operands, the result has the same type as the operands unless the second argument is negative; in that case, all arguments are converted to float and a float result is delivered. For example, 10**2 returns 100 , but 10**-2 returns 0.01 .

Raising 0.0 to a negative power results in a ZeroDivisionError . Raising a negative number to a fractional power results in a complex number. (In earlier versions it raised a ValueError .)

This operation can be customized using the special __pow__() method.

6.6. Unary arithmetic and bitwise operations ¶

All unary arithmetic and bitwise operations have the same priority:

The unary - (minus) operator yields the negation of its numeric argument; the operation can be overridden with the __neg__() special method.

The unary + (plus) operator yields its numeric argument unchanged; the operation can be overridden with the __pos__() special method.

The unary ~ (invert) operator yields the bitwise inversion of its integer argument. The bitwise inversion of x is defined as -(x+1) . It only applies to integral numbers or to custom objects that override the __invert__() special method.

In all three cases, if the argument does not have the proper type, a TypeError exception is raised.

6.7. Binary arithmetic operations ¶

The binary arithmetic operations have the conventional priority levels. Note that some of these operations also apply to certain non-numeric types. Apart from the power operator, there are only two levels, one for multiplicative operators and one for additive operators:

The * (multiplication) operator yields the product of its arguments. The arguments must either both be numbers, or one argument must be an integer and the other must be a sequence. In the former case, the numbers are converted to a common type and then multiplied together. In the latter case, sequence repetition is performed; a negative repetition factor yields an empty sequence.

This operation can be customized using the special __mul__() and __rmul__() methods.

The @ (at) operator is intended to be used for matrix multiplication. No builtin Python types implement this operator.

The / (division) and // (floor division) operators yield the quotient of their arguments. The numeric arguments are first converted to a common type. Division of integers yields a float, while floor division of integers results in an integer; the result is that of mathematical division with the ‘floor’ function applied to the result. Division by zero raises the ZeroDivisionError exception.

This operation can be customized using the special __truediv__() and __floordiv__() methods.

The % (modulo) operator yields the remainder from the division of the first argument by the second. The numeric arguments are first converted to a common type. A zero right argument raises the ZeroDivisionError exception. The arguments may be floating point numbers, e.g., 3.14%0.7 equals 0.34 (since 3.14 equals 4*0.7 + 0.34 .) The modulo operator always yields a result with the same sign as its second operand (or zero); the absolute value of the result is strictly smaller than the absolute value of the second operand [ 1 ] .

The floor division and modulo operators are connected by the following identity: x == (x//y)*y + (x%y) . Floor division and modulo are also connected with the built-in function divmod() : divmod(x, y) == (x//y, x%y) . [ 2 ] .

In addition to performing the modulo operation on numbers, the % operator is also overloaded by string objects to perform old-style string formatting (also known as interpolation). The syntax for string formatting is described in the Python Library Reference, section printf-style String Formatting .

The modulo operation can be customized using the special __mod__() method.

The floor division operator, the modulo operator, and the divmod() function are not defined for complex numbers. Instead, convert to a floating point number using the abs() function if appropriate.

The + (addition) operator yields the sum of its arguments. The arguments must either both be numbers or both be sequences of the same type. In the former case, the numbers are converted to a common type and then added together. In the latter case, the sequences are concatenated.

This operation can be customized using the special __add__() and __radd__() methods.

The - (subtraction) operator yields the difference of its arguments. The numeric arguments are first converted to a common type.

This operation can be customized using the special __sub__() method.

6.8. Shifting operations ¶

The shifting operations have lower priority than the arithmetic operations:

These operators accept integers as arguments. They shift the first argument to the left or right by the number of bits given by the second argument.

This operation can be customized using the special __lshift__() and __rshift__() methods.

A right shift by n bits is defined as floor division by pow(2,n) . A left shift by n bits is defined as multiplication with pow(2,n) .

6.9. Binary bitwise operations ¶

Each of the three bitwise operations has a different priority level:

The & operator yields the bitwise AND of its arguments, which must be integers or one of them must be a custom object overriding __and__() or __rand__() special methods.

The ^ operator yields the bitwise XOR (exclusive OR) of its arguments, which must be integers or one of them must be a custom object overriding __xor__() or __rxor__() special methods.

The | operator yields the bitwise (inclusive) OR of its arguments, which must be integers or one of them must be a custom object overriding __or__() or __ror__() special methods.

6.10. Comparisons ¶

Unlike C, all comparison operations in Python have the same priority, which is lower than that of any arithmetic, shifting or bitwise operation. Also unlike C, expressions like a < b < c have the interpretation that is conventional in mathematics:

Comparisons yield boolean values: True or False . Custom rich comparison methods may return non-boolean values. In this case Python will call bool() on such value in boolean contexts.

Comparisons can be chained arbitrarily, e.g., x < y <= z is equivalent to x < y and y <= z , except that y is evaluated only once (but in both cases z is not evaluated at all when x < y is found to be false).

Formally, if a , b , c , …, y , z are expressions and op1 , op2 , …, opN are comparison operators, then a op1 b op2 c ... y opN z is equivalent to a op1 b and b op2 c and ... y opN z , except that each expression is evaluated at most once.

Note that a op1 b op2 c doesn’t imply any kind of comparison between a and c , so that, e.g., x < y > z is perfectly legal (though perhaps not pretty).

6.10.1. Value comparisons ¶

The operators < , > , == , >= , <= , and != compare the values of two objects. The objects do not need to have the same type.

Chapter Objects, values and types states that objects have a value (in addition to type and identity). The value of an object is a rather abstract notion in Python: For example, there is no canonical access method for an object’s value. Also, there is no requirement that the value of an object should be constructed in a particular way, e.g. comprised of all its data attributes. Comparison operators implement a particular notion of what the value of an object is. One can think of them as defining the value of an object indirectly, by means of their comparison implementation.

Because all types are (direct or indirect) subtypes of object , they inherit the default comparison behavior from object . Types can customize their comparison behavior by implementing rich comparison methods like __lt__() , described in Basic customization .

The default behavior for equality comparison ( == and != ) is based on the identity of the objects. Hence, equality comparison of instances with the same identity results in equality, and equality comparison of instances with different identities results in inequality. A motivation for this default behavior is the desire that all objects should be reflexive (i.e. x is y implies x == y ).

A default order comparison ( < , > , <= , and >= ) is not provided; an attempt raises TypeError . A motivation for this default behavior is the lack of a similar invariant as for equality.

The behavior of the default equality comparison, that instances with different identities are always unequal, may be in contrast to what types will need that have a sensible definition of object value and value-based equality. Such types will need to customize their comparison behavior, and in fact, a number of built-in types have done that.

The following list describes the comparison behavior of the most important built-in types.

Numbers of built-in numeric types ( Numeric Types — int, float, complex ) and of the standard library types fractions.Fraction and decimal.Decimal can be compared within and across their types, with the restriction that complex numbers do not support order comparison. Within the limits of the types involved, they compare mathematically (algorithmically) correct without loss of precision.

The not-a-number values float('NaN') and decimal.Decimal('NaN') are special. Any ordered comparison of a number to a not-a-number value is false. A counter-intuitive implication is that not-a-number values are not equal to themselves. For example, if x = float('NaN') , 3 < x , x < 3 and x == x are all false, while x != x is true. This behavior is compliant with IEEE 754.

None and NotImplemented are singletons. PEP 8 advises that comparisons for singletons should always be done with is or is not , never the equality operators.

Binary sequences (instances of bytes or bytearray ) can be compared within and across their types. They compare lexicographically using the numeric values of their elements.

Strings (instances of str ) compare lexicographically using the numerical Unicode code points (the result of the built-in function ord() ) of their characters. [ 3 ]

Strings and binary sequences cannot be directly compared.

Sequences (instances of tuple , list , or range ) can be compared only within each of their types, with the restriction that ranges do not support order comparison. Equality comparison across these types results in inequality, and ordering comparison across these types raises TypeError .

Sequences compare lexicographically using comparison of corresponding elements. The built-in containers typically assume identical objects are equal to themselves. That lets them bypass equality tests for identical objects to improve performance and to maintain their internal invariants.

Lexicographical comparison between built-in collections works as follows:

For two collections to compare equal, they must be of the same type, have the same length, and each pair of corresponding elements must compare equal (for example, [1,2] == (1,2) is false because the type is not the same).

Collections that support order comparison are ordered the same as their first unequal elements (for example, [1,2,x] <= [1,2,y] has the same value as x <= y ). If a corresponding element does not exist, the shorter collection is ordered first (for example, [1,2] < [1,2,3] is true).

Mappings (instances of dict ) compare equal if and only if they have equal (key, value) pairs. Equality comparison of the keys and values enforces reflexivity.

Order comparisons ( < , > , <= , and >= ) raise TypeError .

Sets (instances of set or frozenset ) can be compared within and across their types.

They define order comparison operators to mean subset and superset tests. Those relations do not define total orderings (for example, the two sets {1,2} and {2,3} are not equal, nor subsets of one another, nor supersets of one another). Accordingly, sets are not appropriate arguments for functions which depend on total ordering (for example, min() , max() , and sorted() produce undefined results given a list of sets as inputs).

Comparison of sets enforces reflexivity of its elements.

Most other built-in types have no comparison methods implemented, so they inherit the default comparison behavior.

User-defined classes that customize their comparison behavior should follow some consistency rules, if possible:

Equality comparison should be reflexive. In other words, identical objects should compare equal:

x is y implies x == y

Comparison should be symmetric. In other words, the following expressions should have the same result:

x == y and y == x x != y and y != x x < y and y > x x <= y and y >= x

Comparison should be transitive. The following (non-exhaustive) examples illustrate that:

x > y and y > z implies x > z x < y and y <= z implies x < z

Inverse comparison should result in the boolean negation. In other words, the following expressions should have the same result:

x == y and not x != y x < y and not x >= y (for total ordering) x > y and not x <= y (for total ordering)

The last two expressions apply to totally ordered collections (e.g. to sequences, but not to sets or mappings). See also the total_ordering() decorator.

The hash() result should be consistent with equality. Objects that are equal should either have the same hash value, or be marked as unhashable.

Python does not enforce these consistency rules. In fact, the not-a-number values are an example for not following these rules.

6.10.2. Membership test operations ¶

The operators in and not in test for membership. x in s evaluates to True if x is a member of s , and False otherwise. x not in s returns the negation of x in s . All built-in sequences and set types support this as well as dictionary, for which in tests whether the dictionary has a given key. For container types such as list, tuple, set, frozenset, dict, or collections.deque, the expression x in y is equivalent to any(x is e or x == e for e in y) .

For the string and bytes types, x in y is True if and only if x is a substring of y . An equivalent test is y.find(x) != -1 . Empty strings are always considered to be a substring of any other string, so "" in "abc" will return True .

For user-defined classes which define the __contains__() method, x in y returns True if y.__contains__(x) returns a true value, and False otherwise.

For user-defined classes which do not define __contains__() but do define __iter__() , x in y is True if some value z , for which the expression x is z or x == z is true, is produced while iterating over y . If an exception is raised during the iteration, it is as if in raised that exception.

Lastly, the old-style iteration protocol is tried: if a class defines __getitem__() , x in y is True if and only if there is a non-negative integer index i such that x is y[i] or x == y[i] , and no lower integer index raises the IndexError exception. (If any other exception is raised, it is as if in raised that exception).

The operator not in is defined to have the inverse truth value of in .

6.10.3. Identity comparisons ¶

The operators is and is not test for an object’s identity: x is y is true if and only if x and y are the same object. An Object’s identity is determined using the id() function. x is not y yields the inverse truth value. [ 4 ]

6.11. Boolean operations ¶

In the context of Boolean operations, and also when expressions are used by control flow statements, the following values are interpreted as false: False , None , numeric zero of all types, and empty strings and containers (including strings, tuples, lists, dictionaries, sets and frozensets). All other values are interpreted as true. User-defined objects can customize their truth value by providing a __bool__() method.

The operator not yields True if its argument is false, False otherwise.

The expression x and y first evaluates x ; if x is false, its value is returned; otherwise, y is evaluated and the resulting value is returned.

The expression x or y first evaluates x ; if x is true, its value is returned; otherwise, y is evaluated and the resulting value is returned.

Note that neither and nor or restrict the value and type they return to False and True , but rather return the last evaluated argument. This is sometimes useful, e.g., if s is a string that should be replaced by a default value if it is empty, the expression s or 'foo' yields the desired value. Because not has to create a new value, it returns a boolean value regardless of the type of its argument (for example, not 'foo' produces False rather than '' .)

6.12. Assignment expressions ¶

An assignment expression (sometimes also called a “named expression” or “walrus”) assigns an expression to an identifier , while also returning the value of the expression .

One common use case is when handling matched regular expressions:

Or, when processing a file stream in chunks:

Assignment expressions must be surrounded by parentheses when used as expression statements and when used as sub-expressions in slicing, conditional, lambda, keyword-argument, and comprehension-if expressions and in assert , with , and assignment statements. In all other places where they can be used, parentheses are not required, including in if and while statements.

New in version 3.8: See PEP 572 for more details about assignment expressions.

6.13. Conditional expressions ¶

Conditional expressions (sometimes called a “ternary operator”) have the lowest priority of all Python operations.

The expression x if C else y first evaluates the condition, C rather than x . If C is true, x is evaluated and its value is returned; otherwise, y is evaluated and its value is returned.

See PEP 308 for more details about conditional expressions.

6.14. Lambdas ¶

Lambda expressions (sometimes called lambda forms) are used to create anonymous functions. The expression lambda parameters: expression yields a function object. The unnamed object behaves like a function object defined with:

See section Function definitions for the syntax of parameter lists. Note that functions created with lambda expressions cannot contain statements or annotations.

6.15. Expression lists ¶

Except when part of a list or set display, an expression list containing at least one comma yields a tuple. The length of the tuple is the number of expressions in the list. The expressions are evaluated from left to right.

An asterisk * denotes iterable unpacking . Its operand must be an iterable . The iterable is expanded into a sequence of items, which are included in the new tuple, list, or set, at the site of the unpacking.

New in version 3.5: Iterable unpacking in expression lists, originally proposed by PEP 448 .

A trailing comma is required only to create a one-item tuple, such as 1, ; it is optional in all other cases. A single expression without a trailing comma doesn’t create a tuple, but rather yields the value of that expression. (To create an empty tuple, use an empty pair of parentheses: () .)

6.16. Evaluation order ¶

Python evaluates expressions from left to right. Notice that while evaluating an assignment, the right-hand side is evaluated before the left-hand side.

In the following lines, expressions will be evaluated in the arithmetic order of their suffixes:

6.17. Operator precedence ¶

The following table summarizes the operator precedence in Python, from highest precedence (most binding) to lowest precedence (least binding). Operators in the same box have the same precedence. Unless the syntax is explicitly given, operators are binary. Operators in the same box group left to right (except for exponentiation and conditional expressions, which group from right to left).

Note that comparisons, membership tests, and identity tests, all have the same precedence and have a left-to-right chaining feature as described in the Comparisons section.

Table of Contents

  • 6.1. Arithmetic conversions
  • 6.2.1. Identifiers (Names)
  • 6.2.2. Literals
  • 6.2.3. Parenthesized forms
  • 6.2.4. Displays for lists, sets and dictionaries
  • 6.2.5. List displays
  • 6.2.6. Set displays
  • 6.2.7. Dictionary displays
  • 6.2.8. Generator expressions
  • 6.2.9.1. Generator-iterator methods
  • 6.2.9.2. Examples
  • 6.2.9.3. Asynchronous generator functions
  • 6.2.9.4. Asynchronous generator-iterator methods
  • 6.3.1. Attribute references
  • 6.3.2. Subscriptions
  • 6.3.3. Slicings
  • 6.3.4. Calls
  • 6.4. Await expression
  • 6.5. The power operator
  • 6.6. Unary arithmetic and bitwise operations
  • 6.7. Binary arithmetic operations
  • 6.8. Shifting operations
  • 6.9. Binary bitwise operations
  • 6.10.1. Value comparisons
  • 6.10.2. Membership test operations
  • 6.10.3. Identity comparisons
  • 6.11. Boolean operations
  • 6.12. Assignment expressions
  • 6.13. Conditional expressions
  • 6.14. Lambdas
  • 6.15. Expression lists
  • 6.16. Evaluation order
  • 6.17. Operator precedence

Previous topic

5. The import system

7. Simple statements

  • Report a Bug
  • Show Source

Assignment expressions in Python

special assignment expression

A new version of Python just came out (Python 3.8), and that means we get some new toys to play with . One of the interesting new features to come with Python 3.8 was assignment expressions, and the much debated "walrus operator" ( := ). In this post we're going to talk about what assignment expressions are, and how to use them.

Assignment expressions were proposed in PEP 572 , which was a hugely controversial proposal. I actually think assignment expressions are a great addition to the language; however, before we show off what they can do, I can't stress enough that they are really easy to abuse. Just pay extra care that you're not making your code harder to read by using them.

So, what exactly is all this fuss about?

Here is a piece of code from our Complete Python Course , from an exercise where we practice basic loops combined with conditionals:

The code above is fairly simple. We have this while loop which keeps asking the user to press p or q , and if the user pressed p , we print this cheerful little "Hello!" message. If the user presses q , on the other hand, the loop ends. For any other input, we do nothing.

While this code is okay, we do have this annoying bit of duplication, because we have to start up the loop by defining user_input . If we don't, user_input is undefined during the first iteration of the loop.

Now here is the same code using an assignment expression:

As you can see we now have our cute little walrus next to user_input when we define the loop condition, but there's actually quite a lot going on here, so let's break it down.

First of all, what does the := actually do? It's essentially a special type of assignment operator. As usual, we assign some value to a variable name, but the key difference is that the assignment is treated as an expression.

Expressions evaluate to something , and in the case of assignment expressions, the value they evaluate to is the value after the assignment operator, := .

The fact that the assignment is an treated as an expression is why we can use != 'q' directly after it: the assignment expression represents an actual value. This is different from the assignment statements we're used to in Python, which don't represent any value at all.

As you can see in the example above, we have an expression which forms the condition for our while loop which looks like this:

It reads something like, " user_input is not equal to the string 'q' , where user_input is the return value of the function call input('Enter p or q: ') ".

In the case of our while loop, this expression, including the assignment, is evaluated for every iteration of the loop. This means that for every iteration of the loop, we're going to ask the user to enter a value, and that value will be assigned to the variable user_input , and compared against the string 'q' .

Since user_input is just a normal loop variable, we can still use it inside the loop as well, which is why the if statement isn't complaining.

One important part of the syntax here is that the assignment is wrapped in parentheses. This is a requirement in basically all cases where an assignment expression is likely, but you can read more about it in this section of the PEP .

In addition to trimming off a few lines here and there, assignment expressions can also be used to improve the efficiency of our programs by preventing the repetition of costly operations. I think this is most effective in structures like list comprehensions:

Here we're concerned with the values generated by this costly_function when we pass it values from some iterable called data . Instead of calculating the results twice - once when performing the comparison, and once when adding the value to the results list - we now just assign the result to a variable and reference the variable.

The alternative would be something like this:

It's quite a lot more verbose, but perhaps that verbosity is worth it for the kind of clarity we get with the traditional for loop. It's really up to you to decide whether or not the assignment expressions are readable enough to justify the reduction in code length.

I'd really recommend taking a look at some of the examples in the PEP, in addition to their advice on using the syntax well. It's really not worth putting assignment expressions all over the place, as it's only going to harm the readability of your code. It's an effective but quite niche tool that we all need to be very careful with.

Wrapping up

That's it for this post on assignment expressions! We'd love to know what you think of the new syntax, so get in touch with us on Twitter , or join us over on Discord .

We'll be adding plenty of content to our blog in the near future covering interesting additions that came with Python 3.8, so make sure you stay up to date with all our content by signing up to our mailing list below. We'll also be adding new lectures to our Complete Python Course as well, so stay tuned!

Next: Execution Control Expressions , Previous: Arithmetic , Up: Top   [ Contents ][ Index ]

7 Assignment Expressions

As a general concept in programming, an assignment is a construct that stores a new value into a place where values can be stored—for instance, in a variable. Such places are called lvalues (see Lvalues ) because they are locations that hold a value.

An assignment in C is an expression because it has a value; we call it an assignment expression . A simple assignment looks like

We say it assigns the value of the expression value-to-store to the location lvalue , or that it stores value-to-store there. You can think of the “l” in “lvalue” as standing for “left,” since that’s what you put on the left side of the assignment operator.

However, that’s not the only way to use an lvalue, and not all lvalues can be assigned to. To use the lvalue in the left side of an assignment, it has to be modifiable . In C, that means it was not declared with the type qualifier const (see const ).

The value of the assignment expression is that of lvalue after the new value is stored in it. This means you can use an assignment inside other expressions. Assignment operators are right-associative so that

is equivalent to

This is the only useful way for them to associate; the other way,

would be invalid since an assignment expression such as x = y is not valid as an lvalue.

Warning: Write parentheses around an assignment if you nest it inside another expression, unless that is a conditional expression, or comma-separated series, or another assignment.

Share this post

Welcome to codeclerks.

By joining, you agree to CodeClerks Terms of Service , Privacy Policy , as well as to receive emails.

Welcome Back!

Recover password.

Buy and Sell PHP Scripts, Code, ASP, C#, Javascript, Java, CSS and more

Special Assignment Expressions

  • Community Discussion

special assignment expression

Write the reason you're deleting this FAQ

ChainedAssignment x = (y = 10); or x = y = 10; First10 is assigned to y and then to x. A chained statement can not be used to initialize variables at the time of declaration. For instance, the statement float a = b = 12.34; // wrong is illegal. This may be written as float a = 12.34, b = 12.34 // correct EmbeddedAssignment X = (y = 50) + 10; (y= 50) is an assignment expression known as embedded assignment. Here, the value 50 is assigned to y and then the result 50+10 = 60 is assigned to x. This statement is identical to x = 50; x = y + 10; Compound Assignment LikeC, C++ supports a compound assignment operator which is a combination of the assignment operator with a binary arithmetic operator. For example, the simple assignment statement x = x +10; maybe written as x + = 10; Theoperator += is known as compound assignment operator or short-hand assignment operator. The general form of the compound assignment operator is: variable1 op= variable2; Whereop is a binary arithmetic operator. This means that Variable1 = variable1 op variable2;

Please login or sign up to leave a comment

Live Training, Prepare for Interviews, and Get Hired

01 Career Opportunities

  • Top 50 Mostly Asked C++ Interview Questions and Answers

02 Beginner

  • A Beginner's Guide to C++ Language
  • First C++ Program and Its Syntax
  • What are Keywords in C++ | List of all keywords in C++ ( Full Explanation )
  • Identifiers in C++: Differences between keywords and identifiers
  • Data Types in C++: Primitive, Derived and User-defined Types
  • Variables in C++ Programming
  • Operators in C++: Arithmetic, Relational, Logical, and More..

What is Expressions in C++ | Types of Expressions in C++ ( With Examples )

  • Conditional Statements in C++: if , if..else, if-else-if and nested if
  • Switch Statement in C++: Implementation with Examples
  • Loop in C++: A Detailed Discussion with Examples
  • Understanding While Loop in C++
  • Understanding Do...While Loop in C++
  • Jump statements in C++: break statement
  • Continue statement in C++: Difference between break and continue statement
  • Goto and Return Statements in C++
  • Functions in C++: Declaration, Types and Function Call
  • What is Arrays in C++ | Types of Arrays in C++ ( With Examples )

03 Intermediate

  • Strings in C++: String Functions In C++ With Example
  • Understanding Boxing and Unboxing in C#
  • Pointers in C++: Declaration, Initialization and Advantages
  • Call by Value and Call by Reference in C++ ( With Examples )
  • Function Overloading in C++ (Using Different Parameters)
  • What is Recursion in C++ | Types of Recursion in C++ ( With Examples )
  • Storage Classes in C++: Types of Storage Classes with Examples
  • Multidimensional Arrays in C++

04 Advanced

  • Object Oriented Programming (OOPs) Concepts in C++
  • Access Modifiers in C++: Public, Private and Protected
  • Constructors and Destructors in C ++
  • Inheritance in C++ with Modifiers
  • Polymorphism in C++: Types of Polymorphism
  • Function Overriding in C++: (Function Overloading vs. Overriding)
  • Virtual Functions in C++
  • Interfaces and Data Abstraction in C++ ( With Examples )
  • Exception Handling in C++: Try, Catch and Throw Keywords

05 Training Programs

  • Java Programming Course
  • C++ Programming Course
  • C# Programming Course
  • C Programming Course
  • What Is Expressions In C+..

What is Expressions in C++ | Types of Expressions in C++ ( With Examples )

C++ Programming For Beginners

Expressions in c++ programming: an overview.

Do you want to learn a programming language that can help build user-friendly projects? C++ is an excellent choice because it's a powerful, flexible language - and with the right instruction through C++ online training , it can be easier to learn than you think! Expression in programming is a value that executes in a way that ends up being another value. A value is one of the unique features of programming. It is basically a syntactic entity that determines the value of that program.

What is Expression in C++ Programming?

C++ Expression is a particular entity that contains constants, operators, and variables and arranges them according to the rules of the C++ language. If the question is what is an expression in C++ then it can be answered that the c++ expression contains function calls that return values. Every expression generates some values that are assigned to that particular variable with the help of the assignment operator.

What is Expression in C++ Programming

Example of what is an expression in C++:

  • 4a2 - 5b +c
  • (a+b) / (x+y)

Read More - C++ Interview Interview Questions and Answers

Different types of expressions in C++

There are different types of expression in C++ programming language is generated, which are:

  • Constant expressions
  • Integral expressions
  • Float expressions
  • Pointer expressions
  • Relational expressions
  • Logical expressions
  • Bitwise expressions
  • Special assignment expressions

Different types of expressions in C++

1.) Constant Expression in C++

What is constant in C++ programming language can be explained as this is an expression that contains only constant values. The value of this expression is determined in compile time but it is evaluated in run time. Constant definition in C++ can be composed of integer, floating point, character, and enumeration constants.

  • A constant can be used in the following situations,
  • It can be used in the declarator of the subscript for describing the array bound.
  • It can be used after the keyword , case in the switch statement.
  • It can be used as a numeric value in an “enum”
  • It helps to specify a bit-field width.
  • It is used as the pre-processor in the if statement

Example in C++ Editor

2.) integral expression in c++.

An integral expression is a type of expression in C++ that helps to produce the integer as output after doing all the implicit and explicit conversions.

Example of integral expression in C++

3.) float expression in c++.

Float expressions produce floating point values as an output of a program after doing all the explicit and implicit conversions.

Example of float expression in C++

4.) pointer expression in c++.

This particular pointer expression in C++ produces an address value as an output of the program.

Example of pointer expression in C++

5.) relational expression in c++.

This Relational expression produces a particular type of value that can be either true or false which is also known as a boolean expression. If any arithmetic expressions are used on both sides of the Relational operator then the arithmetical expression will evaluate first then it will compare the results.

Example of relational expression in C++

6.) logical expression in c++.

Logical expression in C++ combines two or more relational expressions to produce a Boolean type of value.

Example of logical expression in C++ Online Compiler

7.) bitwise expression in c++.

Bitwise expressions are used to manipulate data at a bit level for shifting it to bits.

Example of bitwise expression in C++

8.) special assignment expression in c++.

Special assignments in C++ can be classified depending on the value of the variable that is assigned

  • Chained assignment expressions- in chained assignment expression assigns the same values more than once by using only one statement
  • Embedded assignment expressions- In this embedded assignment expression one expression is enclosed within another assignment expressions

9.) Compound assignment expressions-

This particular assignment operator combines the assignment operator and binary operator.

Example of compound assignment expressions in C++ Online Compiler

This article contains what an expression is in the C++ programming language, including different types of expressions in the C++ language with examples. With these expressions, you can make your C++ programming more efficient and concise, which can be beneficial when obtaining a C++ certification . We hope you have enjoyed learning about expressions in C++ programming. If you would like to learn more about this topic, please check out our other blog posts or contact us for more information.

About Author

Author image

We use cookies to make interactions with our websites and services easy and meaningful. Please read our Privacy Policy for more details.

  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Skip to footer

Computer Notes

  • Computer Fundamental
  • Computer Memory
  • DBMS Tutorial
  • Operating System
  • Computer Networking
  • C Programming
  • C++ Programming
  • Java Programming
  • C# Programming
  • SQL Tutorial
  • Management Tutorial
  • Computer Graphics
  • Compiler Design
  • Style Sheet
  • JavaScript Tutorial
  • Html Tutorial
  • Wordpress Tutorial
  • Python Tutorial
  • PHP Tutorial
  • JSP Tutorial
  • AngularJS Tutorial
  • Data Structures
  • E Commerce Tutorial
  • Visual Basic
  • Structs2 Tutorial
  • Digital Electronics
  • Internet Terms
  • Servlet Tutorial
  • Software Engineering
  • Interviews Questions
  • Basic Terms
  • Troubleshooting

Header Right

What is expressions in c++.

By Dinesh Thakur

A combination of variables, constants and operators that represents a computation forms an expression. Depending upon the type of operands involved in an expression or the result obtained after evaluating expression, there are different categories of an expression. These categories of an expression are discussed here.

• Constant expressions: The expressions that comprise only constant values are called constant expressions. Some examples of constant expressions are 20, ‘ a ‘ and 2/5+30 .

• Integral expressions: The expressions that produce an integer value as output after performing all types of conversions are called integral expressions. For example, x, 6*x-y and 10 +int (5.0) are integral expressions. Here, x and yare variables of type into

• Float expressions: The expressions that produce floating-point value as output after performing all types of conversions are called float expressions. For example, 9.25, x-y and 9+ float (7) are float expressions. Here, x ‘and yare variables of type float.

• Relational or Boolean expressions: The expressions that produce a bool type value, that is, either true or false are called relational or Boolean expressions. For example, x + y<100, m + n==a-b and a>=b + c .are relational expressions.

• Logical expressions: The expressions that produce a bool type value after combining two or more relational expressions are called logical expressions. For example, x==5 &&m==5 and y>x I I m<=n are logical expressions.

• Bitwise expressions: The expressions which manipulate data at bit level are called bitwise expressions. For example, a >> 4 and b<< 2 are bitwise expressions.

• Pointer expressions: The expressions that give address values as output are called pointer expressions. For example, &x, ptr and -ptr are pointer expressions. Here, x is a variable of any type and ptr is a pointer.

• Special assignment expressions: An expression can be categorized further depending upon the way the values are assigned to the variables.

• Chained assignment: Chained assignment is an assignment expression in which the same value is assigned to more than one variable, using a single statement. For example, consider these statements.

   a = (b=20); or a=b=20;

In these statements, value 20 is assigned to variable b and then to variable a. Note that variables cannot be initialized at the time of declaration using chained assignment. For example, consider these statements.

   int a=b=30; // illegal

   int a=30, int b=30; //valid

• Embedded assignment: Embedded assignment is an assignment expression, which is enclosed within another assignment expression. For example, consider this statement

   a=20+(b=30);   //equivalent to b=30; a=20+30;

In this statement, the value 30 is assigned to variable b and then the result of (20+ 30) that is, 50 is assigned to variable a. Note that the expression (b=30) is an embedded assignment.

Compound Assignment: Compound Assignment is an assignment expression, which uses a compound assignment operator that is a combination of the assignment operator with a binary arithmetic operator. For example, consider this statement.

  a + =20; //equivalent to a=a+20;

In this statement, the operator += is a compound assignment operator, also known as short-hand assignment operator.

We’ll be covering the following topics in this tutorial:

Type Conversion

An expression· may involve variables and constants either of same data type or of different data types. However, when an expression consists of mixed data types then they are converted to the same type while evaluation, to avoid compatibility issues. This is accomplished by type conversion, which is defined as the process of converting one predefined data type into another. Type conversions are of two types, namely, implicit conversions and explicit conversions also known as typecasting.

Implicit Conversions

Implicit conversion, also known as automatic type conversion refers to the type conversion that is automatically performed by the compiler. Whenever compiler confronts a mixed type expression, first of all char and short int values are converted to int. This conversion is known as integral promotion. After applying this conversion, all the other operands are converted to the type of the largest operand and the result is of the type of the largest operand. Table 3.8 illustrates the implicit conversion of data type starting from the smallest to largest data type. For example, in expression 5 + 4.25, the compiler converts the int into float as float is larger than int and then performs the addition.

Order of Data Type

Typecasting

Typecasting refers to the type conversion that is performed explicitly using type cast operator. In C++, typecasting can be performed by using two different forms which are given here.

     data_type (expression) //expression in parentheses

     (data_type)expression //data type in parentheses

data_type = data type (also known as cast operator) to which the expression is to be converted.

To understand typecasting, consider this example.

     float (num)+ 3.5; //num is of int type

In this example, float () acts as a conversion function which converts int to float. However, this form of conversion cannot be used in some situations. For example, consider this statement.

     ptr=int * (x) ;

In such cases, conversion can be done using the second form of typecasting (which is basically C-style typecasting) as shown here.

    ptr=(int*)x;

You’ll also like:

  • Arithmetic Expressions in C
  • What is Expressions ? Type of Expression

Dinesh Thakur

Dinesh Thakur is a Freelance Writer who helps different clients from all over the globe. Dinesh has written over 500+ blogs, 30+ eBooks, and 10000+ Posts for all types of clients.

For any type of query or something that you think is missing, please feel free to Contact us .

Basic Course

  • Database System
  • Management System
  • Electronic Commerce

Programming

  • Structured Query (SQL)
  • Java Servlet

World Wide Web

  • Java Script
  • HTML Language
  • Cascading Style Sheet
  • Java Server Pages
  • Navigating the Ever Changing Social Media Landscape: Adaptations for Modern Digital Marketing Strategies
  • Unleashing the Power of Emerging Technologies: AI, Machine Learning and Automation in Digital Marketing Strategies
  • What is Artificial General Intelligence AGI?
  • Top 5 dropshipping tools for TikTok
  • How to find winning products on TikTok

Logic To Program

All About Programming Tutorials

C++ Expressions

C++ Expressions are the combination of one or more operands and operators that are involved in the computation. Every expression produces a result that can be stored in a variable.

cpp expression

Below are a few examples of expression

There are many types of c++ expressions depending on the type of operator used.

  • Constant Expressions
  • Integral Expressions
  • Float Expressions
  • Pointer Expressions
  • Relational Expressions
  • Logical Expressions
  • Bitwise Expression
  • Special Assignment Expressions

Let’s discuss one by one with examples

1. Constant Expressions

As its name indicated that the expression having only constant values is called constant expression. Below are some examples.

Example: Constant expression program

2. integral expression.

Integral expression produces only integer value as a result after computation.

Below are some examples of integral expressions.

Example: Integral expression program

3. float expression.

It’s clear from its name that float expressions produce floating-point results while computing.

Below are a few examples

Example: Float expression program

4. pointer expression.

Pointer expression produces address values during computation.

Below are some examples

Example: Pointer expression program

5. relational expression.

Relational expression produces true or false results during computation. These are also called Boolean expressions.

Example: Relational expression program

6. logical expression.

Logical Expression involves logical operators (“&&”,”||” and “!”) to produce a Boolean result true or false.

Example: Logical expression in C++

7. bitwise expression.

Bitwise expression is used to compute data at the bit level. It is required to move bits ether left and right using left shift “<<” and right shift “>>”.

Example: Bitwise Expression

7. special assignment expressions.

Special Assignment Expressions further divided into three more types

Chained Assignment Expression

Embedded assignment expression, compound assignment expression.

In this type, we can assign one value to the multiple variables in a single statement.

In this type, the assignment expression encloses with another assignment expression.

In this type of assignment expression and the binary expression are used simultaneously.

C++ program to find the largest of two numbers

C++ program to find the smallest of two numbers, related posts.

install jupyter notebook using pip

How to install Jupyter notebook using pip in windows

Python constants.

python identifiers

Python identifiers an Introduction

CodeDixa

C++ Expressions with easy Explanation

C++ expressions.

In C++, Expression consists of operators, constants, and variables which are arranged according to the rules of the language. It can also contain function calls which return values. An expression can consist of one or more operands, zero or more operators to compute a value. Every expression produces some value which is assigned to the variable with the help of an assignment operator.

An expression can be of following Types:

Constant expressions.

  • Integral expressions
  • Float expressions
  • Pointer expressions
  • Relational expressions
  • Logical expressions
  • Bitwise expressions
  • Special assignment expressions

A constant expression is an expression that consists of only constant values. It is an expression whose value is determined at the compile-time but evaluated at the run-time. It can be composed of integer, character, floating-point, and enumeration constants.

Constants are used in the following situations:

  • It is used in the subscript declarator to describe the array bound.
  • It is used after the case keyword in the switch statement.
  • It is used as a numeric value in an  enum
  • It specifies a bit-field width.
  • It is used in the pre-processor  #if

In the above scenarios, the constant expression can have integer, character, and enumeration constants. We can use the static and extern keyword with the constants to define the function-scope.

The following table shows the expression containing constant value:

Let’s see a simple program containing constant expression:

Integral Expressions

An integer expression is an expression that produces the integer value as output after performing all the explicit and implicit conversions.

Following are the examples of integral expression:

Let’s see a simple example of integral expression:

Let’s see another example of integral expression.

Float Expressions

A float expression is an expression that produces floating-point value as output after performing all the explicit and implicit conversions.

The following are the examples of float expressions:

Let’s understand through an example.

Let’s see another example of float expression.

Pointer Expressions

A pointer expression is an expression that produces address value as an output.

The following are the examples of pointer expression:

Relational Expressions

A relational expression is an expression that produces a value of type bool, which can be either true or false. It is also known as a boolean expression. When arithmetic expressions are used on both sides of the relational operator, arithmetic expressions are evaluated first, and then their results are compared.

The following are the examples of the relational expression:

Let’s understand through an example

Let’s see another example.

Logical Expressions

A logical expression is an expression that combines two or more relational expressions and produces a bool type value. The logical operators are ‘&&’ and ‘||’ that combines two or more relational expressions.

The following are some examples of logical expressions:   

Let’s see a simple example of logical expression.

Bitwise Expressions

A bitwise expression is an expression which is used to manipulate the data at a bit level. They are basically used to shift the bits.

For example:

Let’s see a simple example.

Let’s look at another example.

Special Assignment Expressions

Special assignment expressions are the expressions which can be further classified depending upon the value assigned to the variable.

  • Chained Assignment

Chained assignment expression is an expression in which the same value is assigned to more than one variable by using single statement.

For example :

Note: Using chained assignment expression, the value cannot be assigned to the variable at the time of declaration. For example, int a=b=c=90 is an invalid statement.

Embedded assignment expression.

An embedded assignment expression is an assignment expression in which assignment expression is enclosed within another assignment expression.

Compound Assignment

A compound assignment expression is an expression which is a combination of an assignment operator and binary operator.

For example,

special assignment expression

About Post Author

Gaurav dixit, average rating, one thought on “ c++ expressions with easy explanation ”.

Some really interesting information, well written and broadly speaking user genial.

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

  • Skip to main content
  • Skip to search
  • Skip to select language
  • Sign up for free
  • English (US)

Assignment (=)

The assignment ( = ) operator is used to assign a value to a variable or property. The assignment expression itself has a value, which is the assigned value. This allows multiple assignments to be chained in order to assign a single value to multiple variables.

A valid assignment target, including an identifier or a property accessor . It can also be a destructuring assignment pattern .

An expression specifying the value to be assigned to x .

Return value

The value of y .

Thrown in strict mode if assigning to an identifier that is not declared in the scope.

Thrown in strict mode if assigning to a property that is not modifiable .

Description

The assignment operator is completely different from the equals ( = ) sign used as syntactic separators in other locations, which include:

  • Initializers of var , let , and const declarations
  • Default values of destructuring
  • Default parameters
  • Initializers of class fields

All these places accept an assignment expression on the right-hand side of the = , so if you have multiple equals signs chained together:

This is equivalent to:

Which means y must be a pre-existing variable, and x is a newly declared const variable. y is assigned the value 5 , and x is initialized with the value of the y = 5 expression, which is also 5 . If y is not a pre-existing variable, a global variable y is implicitly created in non-strict mode , or a ReferenceError is thrown in strict mode. To declare two variables within the same declaration, use:

Simple assignment and chaining

Value of assignment expressions.

The assignment expression itself evaluates to the value of the right-hand side, so you can log the value and assign to a variable at the same time.

Unqualified identifier assignment

The global object sits at the top of the scope chain. When attempting to resolve a name to a value, the scope chain is searched. This means that properties on the global object are conveniently visible from every scope, without having to qualify the names with globalThis. or window. or global. .

Because the global object has a String property ( Object.hasOwn(globalThis, "String") ), you can use the following code:

So the global object will ultimately be searched for unqualified identifiers. You don't have to type globalThis.String ; you can just type the unqualified String . To make this feature more conceptually consistent, assignment to unqualified identifiers will assume you want to create a property with that name on the global object (with globalThis. omitted), if there is no variable of the same name declared in the scope chain.

In strict mode , assignment to an unqualified identifier in strict mode will result in a ReferenceError , to avoid the accidental creation of properties on the global object.

Note that the implication of the above is that, contrary to popular misinformation, JavaScript does not have implicit or undeclared variables. It just conflates the global object with the global scope and allows omitting the global object qualifier during property creation.

Assignment with destructuring

The left-hand side of can also be an assignment pattern. This allows assigning to multiple variables at once.

For more information, see Destructuring assignment .

Specifications

Browser compatibility.

BCD tables only load in the browser with JavaScript enabled. Enable JavaScript to view data.

  • Assignment operators in the JS guide
  • Destructuring assignment

COMMENTS

  1. PEP 572

    There is one special case: an assignment expression occurring in a list, set or dict comprehension or in a generator expression (below collectively referred to as "comprehensions") binds the target in the containing scope, honoring a nonlocal or global declaration for the target in that scope, if one exists. For the purpose of this rule the ...

  2. Python's Assignment Operator: Write Robust Assignments

    This new statement is known as an assignment expression or named expression. Note: Expressions are a special type of statement in Python. Their distinguishing characteristic is that expressions always have a return value, which isn't the case with all types of statements. ... For a deep dive into this special type of assignment, check out The ...

  3. C++ Expression

    Special assignment expressions; If the expression is a combination of the above expressions, such expressions are known as compound expressions. Constant expressions. A constant expression is an expression that consists of only constant values. It is an expression whose value is determined at the compile-time but evaluated at the run-time.

  4. Assignment operators

    for assignments to class type objects, the right operand could be an initializer list only when the assignment is defined by a user-defined assignment operator. removed user-defined assignment constraint. CWG 1538. C++11. E1 ={E2} was equivalent to E1 = T(E2) ( T is the type of E1 ), this introduced a C-style cast. it is equivalent to E1 = T{E2}

  5. python

    This is of the form name := expr where expr is any valid Python expression, and name is an identifier. The value of such a named expression is the same as the incorporated expression, with the additional side-effect that the target is assigned that value. Differences from regular assignment statements

  6. Operators and Expressions in Python

    The assignment operator is a special operator that doesn't create an expression but a statement. Note: Since version 3.8, Python also has what it calls assignment expressions. These are special types of assignments that do return a value.

  7. Expressions in C++

    In special assignment expressions, we have three types. They are-Chained Assignment Expression; Embedded Assignment Expression; Compound Assignment Expression; Chained Assignment. Chained Assignment expressions are those expressions in which we assign the same value to more than one variable in a single expression or statement.

  8. 6. Expressions

    A string is a special kind of sequence whose items are characters. A character is not a separate data type but a string of exactly one character. ... assignment_expression::= [identifier ":="] expression. An assignment expression (sometimes also called a "named expression" or "walrus") assigns an expression to an identifier, while also ...

  9. How To Use Assignment Expressions in Python

    The author selected the COVID-19 Relief Fund to receive a donation as part of the Write for DOnations program.. Introduction. Python 3.8, released in October 2019, adds assignment expressions to Python via the := syntax. The assignment expression syntax is also sometimes called "the walrus operator" because := vaguely resembles a walrus with tusks. ...

  10. Assignment expressions in Python

    It's essentially a special type of assignment operator. As usual, we assign some value to a variable name, but the key difference is that the assignment is treated as an expression. Expressions evaluate to something, and in the case of assignment expressions, the value they evaluate to is the value after the assignment operator, :=.

  11. Assignment Expressions (GNU C Language Manual)

    7 Assignment Expressions. As a general concept in programming, an assignment is a construct that stores a new value into a place where values can be stored—for instance, in a variable. Such places are called lvalues (see Lvalues) because they are locations that hold a value. An assignment in C is an expression because it has a value; we call it an assignment expression.

  12. Special Assignment Expressions

    Special Assignment Expressions. ChainedAssignment x = (y = 10); or x = y = 10; First10 is assigned to y and then to x. A chained statement can not be used to initialize variables at the time of declaration. For instance, the statement float a = b = 12.34; // wrong is illegal. This may be written as float a = 12.34, b = 12.34 // correct EmbeddedAssignment X = (y = 50) + 10; (y= 50) is an ...

  13. Types of Expressions in C++ ( With Examples )

    Special assignment expressions; 1.) Constant Expression in C++ What is constant in C++ programming language can be explained as this is an expression that contains only constant values. The value of this expression is determined in compile time but it is evaluated in run time. Constant definition in C++ can be composed of integer, floating ...

  14. What is Expressions in C++?

    • Special assignment expressions: An expression can be categorized further depending upon the way the values are assigned to the variables. • Chained assignment: Chained assignment is an assignment expression in which the same value is assigned to more than one variable, using a single statement. For example, consider these statements.

  15. What is the difference between an expression and a statement in Python

    Statements are made up of one or more expressions. An expression is any reference to a variable or value, or a set of variable(s) and value(s) combined with operators. For example: a = b * 2; This statement has four expressions in it: 2 is a literal value expression. b is a variable expression, which means to retrieve its current value.

  16. What are the pros and cons of having assignment expressions?

    Some languages (for example C and C++) have assignment expressions, which means the assignment statement as a whole returns a value of the object specified by the left operand after the assignment. So for example in C++, this snippet: int a; std::cout << (a = 1); will print 1.

  17. Expressions and operators

    An assignment operator assigns a value to its left operand based on the value of its right operand. The simple assignment operator is equal (=), which assigns the value of its right operand to its left operand.That is, x = f() is an assignment expression that assigns the value of f() to x. There are also compound assignment operators that are shorthand for the operations listed in the ...

  18. C++ Expressions

    Special Assignment Expressions; Let's discuss one by one with examples. 1. Constant Expressions. As its name indicated that the expression having only constant values is called constant expression. Below are some examples. A=5+7; C=67 X=8/2 Example: Constant expression program

  19. Special Assignment operators

    Special assignment operators ( +=, -=, := ) are used to change the value of a variable. They may not be used with dynamic arrays. No space is allowed between the two signs that make up each special assignment operator. The form for addition assignment is: variable += expression This statement is equivalent to: variable = variable + expression

  20. C++ Expressions with easy Explanation

    Special assignment expressions; Constant expressions. A constant expression is an expression that consists of only constant values. It is an expression whose value is determined at the compile-time but evaluated at the run-time. It can be composed of integer, character, floating-point, and enumeration constants. ...

  21. Is variable assignment a statement or expression?

    defines the variable named x and initialises it with the expression 5. 5 is a literal value. If x has been previously declared, x = 5; is a simple expression statement - its sole purpose is evaluating an assignment expression. The 5, again, is a literal with value 5. x = 5 is therefore an expression, which assigns x to have the value 5.

  22. Assignment (=)

    The assignment operator is completely different from the equals (=) sign used as syntactic separators in other locations, which include:Initializers of var, let, and const declarations; Default values of destructuring; Default parameters; Initializers of class fields; All these places accept an assignment expression on the right-hand side of the =, so if you have multiple equals signs chained ...

  23. Special Assignment Expression in C++ #27

    #LingarajTechhubSpecial assignment expressions are the expressions which can be further classified depending upon the value assigned to the variable. Chained...