Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • How to Write a Strong Hypothesis | Steps & Examples

How to Write a Strong Hypothesis | Steps & Examples

Published on May 6, 2022 by Shona McCombes . Revised on November 20, 2023.

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection .

Example: Hypothesis

Daily apple consumption leads to fewer doctor’s visits.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, other interesting articles, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more types of variables .

  • An independent variable is something the researcher changes or controls.
  • A dependent variable is something the researcher observes and measures.

If there are any control variables , extraneous variables , or confounding variables , be sure to jot those down as you go to minimize the chances that research bias  will affect your results.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism. Run a free check.

Step 1. ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2. Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to ensure that you’re embarking on a relevant topic . This can also help you identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalize more complex constructs.

Step 3. Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

4. Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

5. Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in  if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis . The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

  • H 0 : The number of lectures attended by first-year students has no effect on their final exam scores.
  • H 1 : The number of lectures attended by first-year students has a positive effect on their final exam scores.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). How to Write a Strong Hypothesis | Steps & Examples. Scribbr. Retrieved April 15, 2024, from https://www.scribbr.com/methodology/hypothesis/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, construct validity | definition, types, & examples, what is a conceptual framework | tips & examples, operationalization | a guide with examples, pros & cons, what is your plagiarism score.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • How to Write a Strong Hypothesis | Guide & Examples

How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 15 April 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

The Craft of Writing a Strong Hypothesis

Deeptanshu D

Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

Different Types of Hypotheses‌

Types-of-hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good  alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

  • Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
  • Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher  the statement after assessing a group of women who take iron tablets and charting the findings.

7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

  • A research hypothesis has to be simple yet clear to look justifiable enough.
  • It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
  • It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
  • A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
  • If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
  • A hypothesis must keep and reflect the scope for further investigations and experiments.

Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

Finally, How to Write a Hypothesis

Quick-tips-on-how-to-write-a-hypothesis

Quick tips on writing a hypothesis

1.  Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

what to put in hypothesis in research

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing - Quick Guide (2024)

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

what to put in hypothesis in research

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

what to put in hypothesis in research

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis, operational definitions, types of hypotheses, hypotheses examples.

  • Collecting Data

Frequently Asked Questions

A hypothesis is a tentative statement about the relationship between two or more  variables. It is a specific, testable prediction about what you expect to happen in a study.

One hypothesis example would be a study designed to look at the relationship between sleep deprivation and test performance might have a hypothesis that states: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. It is only at this point that researchers begin to develop a testable hypothesis. Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore a number of factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk wisdom that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis.   In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in a number of different ways. One of the basic principles of any type of scientific research is that the results must be replicable.   By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. How would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

In order to measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming other people. In this situation, the researcher might utilize a simulated task to measure aggressiveness.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests that there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type of hypothesis suggests a relationship between three or more variables, such as two independent variables and a dependent variable.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative sample of the population and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • Complex hypothesis: "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "Children who receive a new reading intervention will have scores different than students who do not receive the intervention."
  • "There will be no difference in scores on a memory recall task between children and adults."

Examples of an alternative hypothesis:

  • "Children who receive a new reading intervention will perform better than students who did not receive the intervention."
  • "Adults will perform better on a memory task than children." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when it would be impossible or difficult to  conduct an experiment . These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a correlational study can then be used to look at how the variables are related. This type of research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

A Word From Verywell

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Some examples of how to write a hypothesis include:

  • "Staying up late will lead to worse test performance the next day."
  • "People who consume one apple each day will visit the doctor fewer times each year."
  • "Breaking study sessions up into three 20-minute sessions will lead to better test results than a single 60-minute study session."

The four parts of a hypothesis are:

  • The research question
  • The independent variable (IV)
  • The dependent variable (DV)
  • The proposed relationship between the IV and DV

Castillo M. The scientific method: a need for something better? . AJNR Am J Neuroradiol. 2013;34(9):1669-71. doi:10.3174/ajnr.A3401

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Elsevier QRcode Wechat

  • Manuscript Preparation

What is and How to Write a Good Hypothesis in Research?

  • 4 minute read
  • 295.7K views

Table of Contents

One of the most important aspects of conducting research is constructing a strong hypothesis. But what makes a hypothesis in research effective? In this article, we’ll look at the difference between a hypothesis and a research question, as well as the elements of a good hypothesis in research. We’ll also include some examples of effective hypotheses, and what pitfalls to avoid.

What is a Hypothesis in Research?

Simply put, a hypothesis is a research question that also includes the predicted or expected result of the research. Without a hypothesis, there can be no basis for a scientific or research experiment. As such, it is critical that you carefully construct your hypothesis by being deliberate and thorough, even before you set pen to paper. Unless your hypothesis is clearly and carefully constructed, any flaw can have an adverse, and even grave, effect on the quality of your experiment and its subsequent results.

Research Question vs Hypothesis

It’s easy to confuse research questions with hypotheses, and vice versa. While they’re both critical to the Scientific Method, they have very specific differences. Primarily, a research question, just like a hypothesis, is focused and concise. But a hypothesis includes a prediction based on the proposed research, and is designed to forecast the relationship of and between two (or more) variables. Research questions are open-ended, and invite debate and discussion, while hypotheses are closed, e.g. “The relationship between A and B will be C.”

A hypothesis is generally used if your research topic is fairly well established, and you are relatively certain about the relationship between the variables that will be presented in your research. Since a hypothesis is ideally suited for experimental studies, it will, by its very existence, affect the design of your experiment. The research question is typically used for new topics that have not yet been researched extensively. Here, the relationship between different variables is less known. There is no prediction made, but there may be variables explored. The research question can be casual in nature, simply trying to understand if a relationship even exists, descriptive or comparative.

How to Write Hypothesis in Research

Writing an effective hypothesis starts before you even begin to type. Like any task, preparation is key, so you start first by conducting research yourself, and reading all you can about the topic that you plan to research. From there, you’ll gain the knowledge you need to understand where your focus within the topic will lie.

Remember that a hypothesis is a prediction of the relationship that exists between two or more variables. Your job is to write a hypothesis, and design the research, to “prove” whether or not your prediction is correct. A common pitfall is to use judgments that are subjective and inappropriate for the construction of a hypothesis. It’s important to keep the focus and language of your hypothesis objective.

An effective hypothesis in research is clearly and concisely written, and any terms or definitions clarified and defined. Specific language must also be used to avoid any generalities or assumptions.

Use the following points as a checklist to evaluate the effectiveness of your research hypothesis:

  • Predicts the relationship and outcome
  • Simple and concise – avoid wordiness
  • Clear with no ambiguity or assumptions about the readers’ knowledge
  • Observable and testable results
  • Relevant and specific to the research question or problem

Research Hypothesis Example

Perhaps the best way to evaluate whether or not your hypothesis is effective is to compare it to those of your colleagues in the field. There is no need to reinvent the wheel when it comes to writing a powerful research hypothesis. As you’re reading and preparing your hypothesis, you’ll also read other hypotheses. These can help guide you on what works, and what doesn’t, when it comes to writing a strong research hypothesis.

Here are a few generic examples to get you started.

Eating an apple each day, after the age of 60, will result in a reduction of frequency of physician visits.

Budget airlines are more likely to receive more customer complaints. A budget airline is defined as an airline that offers lower fares and fewer amenities than a traditional full-service airline. (Note that the term “budget airline” is included in the hypothesis.

Workplaces that offer flexible working hours report higher levels of employee job satisfaction than workplaces with fixed hours.

Each of the above examples are specific, observable and measurable, and the statement of prediction can be verified or shown to be false by utilizing standard experimental practices. It should be noted, however, that often your hypothesis will change as your research progresses.

Language Editing Plus

Elsevier’s Language Editing Plus service can help ensure that your research hypothesis is well-designed, and articulates your research and conclusions. Our most comprehensive editing package, you can count on a thorough language review by native-English speakers who are PhDs or PhD candidates. We’ll check for effective logic and flow of your manuscript, as well as document formatting for your chosen journal, reference checks, and much more.

Systematic Literature Review or Literature Review

  • Research Process

Systematic Literature Review or Literature Review?

What is a Problem Statement

What is a Problem Statement? [with examples]

You may also like.

impactful introduction section

Make Hook, Line, and Sinker: The Art of Crafting Engaging Introductions

Limitations of a Research

Can Describing Study Limitations Improve the Quality of Your Paper?

Guide to Crafting Impactful Sentences

A Guide to Crafting Shorter, Impactful Sentences in Academic Writing

Write an Excellent Discussion in Your Manuscript

6 Steps to Write an Excellent Discussion in Your Manuscript

How to Write Clear Civil Engineering Papers

How to Write Clear and Crisp Civil Engineering Papers? Here are 5 Key Tips to Consider

what to put in hypothesis in research

The Clear Path to An Impactful Paper: ②

Essentials of Writing to Communicate Research in Medicine

The Essentials of Writing to Communicate Research in Medicine

There are some recognizable elements and patterns often used for framing engaging sentences in English. Find here the sentence patterns in Academic Writing

Changing Lines: Sentence Patterns in Academic Writing

Input your search keywords and press Enter.

what to put in hypothesis in research

How to Write a Hypothesis: A Step-by-Step Guide

what to put in hypothesis in research

Introduction

An overview of the research hypothesis, different types of hypotheses, variables in a hypothesis, how to formulate an effective research hypothesis, designing a study around your hypothesis.

The scientific method can derive and test predictions as hypotheses. Empirical research can then provide support (or lack thereof) for the hypotheses. Even failure to find support for a hypothesis still represents a valuable contribution to scientific knowledge. Let's look more closely at the idea of the hypothesis and the role it plays in research.

what to put in hypothesis in research

As much as the term exists in everyday language, there is a detailed development that informs the word "hypothesis" when applied to research. A good research hypothesis is informed by prior research and guides research design and data analysis , so it is important to understand how a hypothesis is defined and understood by researchers.

What is the simple definition of a hypothesis?

A hypothesis is a testable prediction about an outcome between two or more variables . It functions as a navigational tool in the research process, directing what you aim to predict and how.

What is the hypothesis for in research?

In research, a hypothesis serves as the cornerstone for your empirical study. It not only lays out what you aim to investigate but also provides a structured approach for your data collection and analysis.

Essentially, it bridges the gap between the theoretical and the empirical, guiding your investigation throughout its course.

what to put in hypothesis in research

What is an example of a hypothesis?

If you are studying the relationship between physical exercise and mental health, a suitable hypothesis could be: "Regular physical exercise leads to improved mental well-being among adults."

This statement constitutes a specific and testable hypothesis that directly relates to the variables you are investigating.

What makes a good hypothesis?

A good hypothesis possesses several key characteristics. Firstly, it must be testable, allowing you to analyze data through empirical means, such as observation or experimentation, to assess if there is significant support for the hypothesis. Secondly, a hypothesis should be specific and unambiguous, giving a clear understanding of the expected relationship between variables. Lastly, it should be grounded in existing research or theoretical frameworks , ensuring its relevance and applicability.

Understanding the types of hypotheses can greatly enhance how you construct and work with hypotheses. While all hypotheses serve the essential function of guiding your study, there are varying purposes among the types of hypotheses. In addition, all hypotheses stand in contrast to the null hypothesis, or the assumption that there is no significant relationship between the variables .

Here, we explore various kinds of hypotheses to provide you with the tools needed to craft effective hypotheses for your specific research needs. Bear in mind that many of these hypothesis types may overlap with one another, and the specific type that is typically used will likely depend on the area of research and methodology you are following.

Null hypothesis

The null hypothesis is a statement that there is no effect or relationship between the variables being studied. In statistical terms, it serves as the default assumption that any observed differences are due to random chance.

For example, if you're studying the effect of a drug on blood pressure, the null hypothesis might state that the drug has no effect.

Alternative hypothesis

Contrary to the null hypothesis, the alternative hypothesis suggests that there is a significant relationship or effect between variables.

Using the drug example, the alternative hypothesis would posit that the drug does indeed affect blood pressure. This is what researchers aim to prove.

what to put in hypothesis in research

Simple hypothesis

A simple hypothesis makes a prediction about the relationship between two variables, and only two variables.

For example, "Increased study time results in better exam scores." Here, "study time" and "exam scores" are the only variables involved.

Complex hypothesis

A complex hypothesis, as the name suggests, involves more than two variables. For instance, "Increased study time and access to resources result in better exam scores." Here, "study time," "access to resources," and "exam scores" are all variables.

This hypothesis refers to multiple potential mediating variables. Other hypotheses could also include predictions about variables that moderate the relationship between the independent variable and dependent variable .

Directional hypothesis

A directional hypothesis specifies the direction of the expected relationship between variables. For example, "Eating more fruits and vegetables leads to a decrease in heart disease."

Here, the direction of heart disease is explicitly predicted to decrease, due to effects from eating more fruits and vegetables. All hypotheses typically specify the expected direction of the relationship between the independent and dependent variable, such that researchers can test if this prediction holds in their data analysis .

what to put in hypothesis in research

Statistical hypothesis

A statistical hypothesis is one that is testable through statistical methods, providing a numerical value that can be analyzed. This is commonly seen in quantitative research .

For example, "There is a statistically significant difference in test scores between students who study for one hour and those who study for two."

Empirical hypothesis

An empirical hypothesis is derived from observations and is tested through empirical methods, often through experimentation or survey data . Empirical hypotheses may also be assessed with statistical analyses.

For example, "Regular exercise is correlated with a lower incidence of depression," could be tested through surveys that measure exercise frequency and depression levels.

Causal hypothesis

A causal hypothesis proposes that one variable causes a change in another. This type of hypothesis is often tested through controlled experiments.

For example, "Smoking causes lung cancer," assumes a direct causal relationship.

Associative hypothesis

Unlike causal hypotheses, associative hypotheses suggest a relationship between variables but do not imply causation.

For instance, "People who smoke are more likely to get lung cancer," notes an association but doesn't claim that smoking causes lung cancer directly.

Relational hypothesis

A relational hypothesis explores the relationship between two or more variables but doesn't specify the nature of the relationship.

For example, "There is a relationship between diet and heart health," leaves the nature of the relationship (causal, associative, etc.) open to interpretation.

Logical hypothesis

A logical hypothesis is based on sound reasoning and logical principles. It's often used in theoretical research to explore abstract concepts, rather than being based on empirical data.

For example, "If all men are mortal and Socrates is a man, then Socrates is mortal," employs logical reasoning to make its point.

what to put in hypothesis in research

Let ATLAS.ti take you from research question to key insights

Get started with a free trial and see how ATLAS.ti can make the most of your data.

In any research hypothesis, variables play a critical role. These are the elements or factors that the researcher manipulates, controls, or measures. Understanding variables is essential for crafting a clear, testable hypothesis and for the stages of research that follow, such as data collection and analysis.

In the realm of hypotheses, there are generally two types of variables to consider: independent and dependent. Independent variables are what you, as the researcher, manipulate or change in your study. It's considered the cause in the relationship you're investigating. For instance, in a study examining the impact of sleep duration on academic performance, the independent variable would be the amount of sleep participants get.

Conversely, the dependent variable is the outcome you measure to gauge the effect of your manipulation. It's the effect in the cause-and-effect relationship. The dependent variable thus refers to the main outcome of interest in your study. In the same sleep study example, the academic performance, perhaps measured by exam scores or GPA, would be the dependent variable.

Beyond these two primary types, you might also encounter control variables. These are variables that could potentially influence the outcome and are therefore kept constant to isolate the relationship between the independent and dependent variables . For example, in the sleep and academic performance study, control variables could include age, diet, or even the subject of study.

By clearly identifying and understanding the roles of these variables in your hypothesis, you set the stage for a methodologically sound research project. It helps you develop focused research questions, design appropriate experiments or observations, and carry out meaningful data analysis . It's a step that lays the groundwork for the success of your entire study.

what to put in hypothesis in research

Crafting a strong, testable hypothesis is crucial for the success of any research project. It sets the stage for everything from your study design to data collection and analysis . Below are some key considerations to keep in mind when formulating your hypothesis:

  • Be specific : A vague hypothesis can lead to ambiguous results and interpretations . Clearly define your variables and the expected relationship between them.
  • Ensure testability : A good hypothesis should be testable through empirical means, whether by observation , experimentation, or other forms of data analysis.
  • Ground in literature : Before creating your hypothesis, consult existing research and theories. This not only helps you identify gaps in current knowledge but also gives you valuable context and credibility for crafting your hypothesis.
  • Use simple language : While your hypothesis should be conceptually sound, it doesn't have to be complicated. Aim for clarity and simplicity in your wording.
  • State direction, if applicable : If your hypothesis involves a directional outcome (e.g., "increase" or "decrease"), make sure to specify this. You also need to think about how you will measure whether or not the outcome moved in the direction you predicted.
  • Keep it focused : One of the common pitfalls in hypothesis formulation is trying to answer too many questions at once. Keep your hypothesis focused on a specific issue or relationship.
  • Account for control variables : Identify any variables that could potentially impact the outcome and consider how you will control for them in your study.
  • Be ethical : Make sure your hypothesis and the methods for testing it comply with ethical standards , particularly if your research involves human or animal subjects.

what to put in hypothesis in research

Designing your study involves multiple key phases that help ensure the rigor and validity of your research. Here we discuss these crucial components in more detail.

Literature review

Starting with a comprehensive literature review is essential. This step allows you to understand the existing body of knowledge related to your hypothesis and helps you identify gaps that your research could fill. Your research should aim to contribute some novel understanding to existing literature, and your hypotheses can reflect this. A literature review also provides valuable insights into how similar research projects were executed, thereby helping you fine-tune your own approach.

what to put in hypothesis in research

Research methods

Choosing the right research methods is critical. Whether it's a survey, an experiment, or observational study, the methodology should be the most appropriate for testing your hypothesis. Your choice of methods will also depend on whether your research is quantitative, qualitative, or mixed-methods. Make sure the chosen methods align well with the variables you are studying and the type of data you need.

Preliminary research

Before diving into a full-scale study, it’s often beneficial to conduct preliminary research or a pilot study . This allows you to test your research methods on a smaller scale, refine your tools, and identify any potential issues. For instance, a pilot survey can help you determine if your questions are clear and if the survey effectively captures the data you need. This step can save you both time and resources in the long run.

Data analysis

Finally, planning your data analysis in advance is crucial for a successful study. Decide which statistical or analytical tools are most suited for your data type and research questions . For quantitative research, you might opt for t-tests, ANOVA, or regression analyses. For qualitative research , thematic analysis or grounded theory may be more appropriate. This phase is integral for interpreting your results and drawing meaningful conclusions in relation to your research question.

what to put in hypothesis in research

Turn data into evidence for insights with ATLAS.ti

Powerful analysis for your research paper or presentation is at your fingertips starting with a free trial.

what to put in hypothesis in research

Enago Academy

How to Develop a Good Research Hypothesis

' src=

The story of a research study begins by asking a question. Researchers all around the globe are asking curious questions and formulating research hypothesis. However, whether the research study provides an effective conclusion depends on how well one develops a good research hypothesis. Research hypothesis examples could help researchers get an idea as to how to write a good research hypothesis.

This blog will help you understand what is a research hypothesis, its characteristics and, how to formulate a research hypothesis

Table of Contents

What is Hypothesis?

Hypothesis is an assumption or an idea proposed for the sake of argument so that it can be tested. It is a precise, testable statement of what the researchers predict will be outcome of the study.  Hypothesis usually involves proposing a relationship between two variables: the independent variable (what the researchers change) and the dependent variable (what the research measures).

What is a Research Hypothesis?

Research hypothesis is a statement that introduces a research question and proposes an expected result. It is an integral part of the scientific method that forms the basis of scientific experiments. Therefore, you need to be careful and thorough when building your research hypothesis. A minor flaw in the construction of your hypothesis could have an adverse effect on your experiment. In research, there is a convention that the hypothesis is written in two forms, the null hypothesis, and the alternative hypothesis (called the experimental hypothesis when the method of investigation is an experiment).

Characteristics of a Good Research Hypothesis

As the hypothesis is specific, there is a testable prediction about what you expect to happen in a study. You may consider drawing hypothesis from previously published research based on the theory.

A good research hypothesis involves more effort than just a guess. In particular, your hypothesis may begin with a question that could be further explored through background research.

To help you formulate a promising research hypothesis, you should ask yourself the following questions:

  • Is the language clear and focused?
  • What is the relationship between your hypothesis and your research topic?
  • Is your hypothesis testable? If yes, then how?
  • What are the possible explanations that you might want to explore?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate your variables without hampering the ethical standards?
  • Does your research predict the relationship and outcome?
  • Is your research simple and concise (avoids wordiness)?
  • Is it clear with no ambiguity or assumptions about the readers’ knowledge
  • Is your research observable and testable results?
  • Is it relevant and specific to the research question or problem?

research hypothesis example

The questions listed above can be used as a checklist to make sure your hypothesis is based on a solid foundation. Furthermore, it can help you identify weaknesses in your hypothesis and revise it if necessary.

Source: Educational Hub

How to formulate a research hypothesis.

A testable hypothesis is not a simple statement. It is rather an intricate statement that needs to offer a clear introduction to a scientific experiment, its intentions, and the possible outcomes. However, there are some important things to consider when building a compelling hypothesis.

1. State the problem that you are trying to solve.

Make sure that the hypothesis clearly defines the topic and the focus of the experiment.

2. Try to write the hypothesis as an if-then statement.

Follow this template: If a specific action is taken, then a certain outcome is expected.

3. Define the variables

Independent variables are the ones that are manipulated, controlled, or changed. Independent variables are isolated from other factors of the study.

Dependent variables , as the name suggests are dependent on other factors of the study. They are influenced by the change in independent variable.

4. Scrutinize the hypothesis

Evaluate assumptions, predictions, and evidence rigorously to refine your understanding.

Types of Research Hypothesis

The types of research hypothesis are stated below:

1. Simple Hypothesis

It predicts the relationship between a single dependent variable and a single independent variable.

2. Complex Hypothesis

It predicts the relationship between two or more independent and dependent variables.

3. Directional Hypothesis

It specifies the expected direction to be followed to determine the relationship between variables and is derived from theory. Furthermore, it implies the researcher’s intellectual commitment to a particular outcome.

4. Non-directional Hypothesis

It does not predict the exact direction or nature of the relationship between the two variables. The non-directional hypothesis is used when there is no theory involved or when findings contradict previous research.

5. Associative and Causal Hypothesis

The associative hypothesis defines interdependency between variables. A change in one variable results in the change of the other variable. On the other hand, the causal hypothesis proposes an effect on the dependent due to manipulation of the independent variable.

6. Null Hypothesis

Null hypothesis states a negative statement to support the researcher’s findings that there is no relationship between two variables. There will be no changes in the dependent variable due the manipulation of the independent variable. Furthermore, it states results are due to chance and are not significant in terms of supporting the idea being investigated.

7. Alternative Hypothesis

It states that there is a relationship between the two variables of the study and that the results are significant to the research topic. An experimental hypothesis predicts what changes will take place in the dependent variable when the independent variable is manipulated. Also, it states that the results are not due to chance and that they are significant in terms of supporting the theory being investigated.

Research Hypothesis Examples of Independent and Dependent Variables

Research Hypothesis Example 1 The greater number of coal plants in a region (independent variable) increases water pollution (dependent variable). If you change the independent variable (building more coal factories), it will change the dependent variable (amount of water pollution).
Research Hypothesis Example 2 What is the effect of diet or regular soda (independent variable) on blood sugar levels (dependent variable)? If you change the independent variable (the type of soda you consume), it will change the dependent variable (blood sugar levels)

You should not ignore the importance of the above steps. The validity of your experiment and its results rely on a robust testable hypothesis. Developing a strong testable hypothesis has few advantages, it compels us to think intensely and specifically about the outcomes of a study. Consequently, it enables us to understand the implication of the question and the different variables involved in the study. Furthermore, it helps us to make precise predictions based on prior research. Hence, forming a hypothesis would be of great value to the research. Here are some good examples of testable hypotheses.

More importantly, you need to build a robust testable research hypothesis for your scientific experiments. A testable hypothesis is a hypothesis that can be proved or disproved as a result of experimentation.

Importance of a Testable Hypothesis

To devise and perform an experiment using scientific method, you need to make sure that your hypothesis is testable. To be considered testable, some essential criteria must be met:

  • There must be a possibility to prove that the hypothesis is true.
  • There must be a possibility to prove that the hypothesis is false.
  • The results of the hypothesis must be reproducible.

Without these criteria, the hypothesis and the results will be vague. As a result, the experiment will not prove or disprove anything significant.

What are your experiences with building hypotheses for scientific experiments? What challenges did you face? How did you overcome these challenges? Please share your thoughts with us in the comments section.

Frequently Asked Questions

The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a ‘if-then’ structure. 3. Defining the variables: Define the variables as Dependent or Independent based on their dependency to other factors. 4. Scrutinizing the hypothesis: Identify the type of your hypothesis

Hypothesis testing is a statistical tool which is used to make inferences about a population data to draw conclusions for a particular hypothesis.

Hypothesis in statistics is a formal statement about the nature of a population within a structured framework of a statistical model. It is used to test an existing hypothesis by studying a population.

Research hypothesis is a statement that introduces a research question and proposes an expected result. It forms the basis of scientific experiments.

The different types of hypothesis in research are: • Null hypothesis: Null hypothesis is a negative statement to support the researcher’s findings that there is no relationship between two variables. • Alternate hypothesis: Alternate hypothesis predicts the relationship between the two variables of the study. • Directional hypothesis: Directional hypothesis specifies the expected direction to be followed to determine the relationship between variables. • Non-directional hypothesis: Non-directional hypothesis does not predict the exact direction or nature of the relationship between the two variables. • Simple hypothesis: Simple hypothesis predicts the relationship between a single dependent variable and a single independent variable. • Complex hypothesis: Complex hypothesis predicts the relationship between two or more independent and dependent variables. • Associative and casual hypothesis: Associative and casual hypothesis predicts the relationship between two or more independent and dependent variables. • Empirical hypothesis: Empirical hypothesis can be tested via experiments and observation. • Statistical hypothesis: A statistical hypothesis utilizes statistical models to draw conclusions about broader populations.

' src=

Wow! You really simplified your explanation that even dummies would find it easy to comprehend. Thank you so much.

Thanks a lot for your valuable guidance.

I enjoy reading the post. Hypotheses are actually an intrinsic part in a study. It bridges the research question and the methodology of the study.

Useful piece!

This is awesome.Wow.

It very interesting to read the topic, can you guide me any specific example of hypothesis process establish throw the Demand and supply of the specific product in market

Nicely explained

It is really a useful for me Kindly give some examples of hypothesis

It was a well explained content ,can you please give me an example with the null and alternative hypothesis illustrated

clear and concise. thanks.

So Good so Amazing

Good to learn

Thanks a lot for explaining to my level of understanding

Explained well and in simple terms. Quick read! Thank you

It awesome. It has really positioned me in my research project

Rate this article Cancel Reply

Your email address will not be published.

what to put in hypothesis in research

Enago Academy's Most Popular Articles

Content Analysis vs Thematic Analysis: What's the difference?

  • Reporting Research

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for data interpretation

In research, choosing the right approach to understand data is crucial for deriving meaningful insights.…

Cross-sectional and Longitudinal Study Design

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right approach

The process of choosing the right research design can put ourselves at the crossroads of…

what to put in hypothesis in research

  • Industry News

COPE Forum Discussion Highlights Challenges and Urges Clarity in Institutional Authorship Standards

The COPE forum discussion held in December 2023 initiated with a fundamental question — is…

Networking in Academic Conferences

  • Career Corner

Unlocking the Power of Networking in Academic Conferences

Embarking on your first academic conference experience? Fear not, we got you covered! Academic conferences…

Research recommendation

Research Recommendations – Guiding policy-makers for evidence-based decision making

Research recommendations play a crucial role in guiding scholars and researchers toward fruitful avenues of…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…

How to Design Effective Research Questionnaires for Robust Findings

what to put in hypothesis in research

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

what to put in hypothesis in research

What should universities' stance be on AI tools in research and academic writing?

How to Write a Research Hypothesis

  • Research Process
  • Peer Review

Since grade school, we've all been familiar with hypotheses. The hypothesis is an essential step of the scientific method. But what makes an effective research hypothesis, how do you create one, and what types of hypotheses are there? We answer these questions and more.

Updated on April 27, 2022

the word hypothesis being typed on white paper

What is a research hypothesis?

General hypothesis.

Since grade school, we've all been familiar with the term “hypothesis.” A hypothesis is a fact-based guess or prediction that has not been proven. It is an essential step of the scientific method. The hypothesis of a study is a drive for experimentation to either prove the hypothesis or dispute it.

Research Hypothesis

A research hypothesis is more specific than a general hypothesis. It is an educated, expected prediction of the outcome of a study that is testable.

What makes an effective research hypothesis?

A good research hypothesis is a clear statement of the relationship between a dependent variable(s) and independent variable(s) relevant to the study that can be disproven.

Research hypothesis checklist

Once you've written a possible hypothesis, make sure it checks the following boxes:

  • It must be testable: You need a means to prove your hypothesis. If you can't test it, it's not a hypothesis.
  • It must include a dependent and independent variable: At least one independent variable ( cause ) and one dependent variable ( effect ) must be included.
  • The language must be easy to understand: Be as clear and concise as possible. Nothing should be left to interpretation.
  • It must be relevant to your research topic: You probably shouldn't be talking about cats and dogs if your research topic is outer space. Stay relevant to your topic.

How to create an effective research hypothesis

Pose it as a question first.

Start your research hypothesis from a journalistic approach. Ask one of the five W's: Who, what, when, where, or why.

A possible initial question could be: Why is the sky blue?

Do the preliminary research

Once you have a question in mind, read research around your topic. Collect research from academic journals.

If you're looking for information about the sky and why it is blue, research information about the atmosphere, weather, space, the sun, etc.

Write a draft hypothesis

Once you're comfortable with your subject and have preliminary knowledge, create a working hypothesis. Don't stress much over this. Your first hypothesis is not permanent. Look at it as a draft.

Your first draft of a hypothesis could be: Certain molecules in the Earth's atmosphere are responsive to the sky being the color blue.

Make your working draft perfect

Take your working hypothesis and make it perfect. Narrow it down to include only the information listed in the “Research hypothesis checklist” above.

Now that you've written your working hypothesis, narrow it down. Your new hypothesis could be: Light from the sun hitting oxygen molecules in the sky makes the color of the sky appear blue.

Write a null hypothesis

Your null hypothesis should be the opposite of your research hypothesis. It should be able to be disproven by your research.

In this example, your null hypothesis would be: Light from the sun hitting oxygen molecules in the sky does not make the color of the sky appear blue.

Why is it important to have a clear, testable hypothesis?

One of the main reasons a manuscript can be rejected from a journal is because of a weak hypothesis. “Poor hypothesis, study design, methodology, and improper use of statistics are other reasons for rejection of a manuscript,” says Dr. Ish Kumar Dhammi and Dr. Rehan-Ul-Haq in Indian Journal of Orthopaedics.

According to Dr. James M. Provenzale in American Journal of Roentgenology , “The clear declaration of a research question (or hypothesis) in the Introduction is critical for reviewers to understand the intent of the research study. It is best to clearly state the study goal in plain language (for example, “We set out to determine whether condition x produces condition y.”) An insufficient problem statement is one of the more common reasons for manuscript rejection.”

Characteristics that make a hypothesis weak include:

  • Unclear variables
  • Unoriginality
  • Too general
  • Too specific

A weak hypothesis leads to weak research and methods . The goal of a paper is to prove or disprove a hypothesis - or to prove or disprove a null hypothesis. If the hypothesis is not a dependent variable of what is being studied, the paper's methods should come into question.

A strong hypothesis is essential to the scientific method. A hypothesis states an assumed relationship between at least two variables and the experiment then proves or disproves that relationship with statistical significance. Without a proven and reproducible relationship, the paper feeds into the reproducibility crisis. Learn more about writing for reproducibility .

In a study published in The Journal of Obstetrics and Gynecology of India by Dr. Suvarna Satish Khadilkar, she reviewed 400 rejected manuscripts to see why they were rejected. Her studies revealed that poor methodology was a top reason for the submission having a final disposition of rejection.

Aside from publication chances, Dr. Gareth Dyke believes a clear hypothesis helps efficiency.

“Developing a clear and testable hypothesis for your research project means that you will not waste time, energy, and money with your work,” said Dyke. “Refining a hypothesis that is both meaningful, interesting, attainable, and testable is the goal of all effective research.”

Types of research hypotheses

There can be overlap in these types of hypotheses.

Simple hypothesis

A simple hypothesis is a hypothesis at its most basic form. It shows the relationship of one independent and one independent variable.

Example: Drinking soda (independent variable) every day leads to obesity (dependent variable).

Complex hypothesis

A complex hypothesis shows the relationship of two or more independent and dependent variables.

Example: Drinking soda (independent variable) every day leads to obesity (dependent variable) and heart disease (dependent variable).

Directional hypothesis

A directional hypothesis guesses which way the results of an experiment will go. It uses words like increase, decrease, higher, lower, positive, negative, more, or less. It is also frequently used in statistics.

Example: Humans exposed to radiation have a higher risk of cancer than humans not exposed to radiation.

Non-directional hypothesis

A non-directional hypothesis says there will be an effect on the dependent variable, but it does not say which direction.

Associative hypothesis

An associative hypothesis says that when one variable changes, so does the other variable.

Alternative hypothesis

An alternative hypothesis states that the variables have a relationship.

  • The opposite of a null hypothesis

Example: An apple a day keeps the doctor away.

Null hypothesis

A null hypothesis states that there is no relationship between the two variables. It is posed as the opposite of what the alternative hypothesis states.

Researchers use a null hypothesis to work to be able to reject it. A null hypothesis:

  • Can never be proven
  • Can only be rejected
  • Is the opposite of an alternative hypothesis

Example: An apple a day does not keep the doctor away.

Logical hypothesis

A logical hypothesis is a suggested explanation while using limited evidence.

Example: Bats can navigate in the dark better than tigers.

In this hypothesis, the researcher knows that tigers cannot see in the dark, and bats mostly live in darkness.

Empirical hypothesis

An empirical hypothesis is also called a “working hypothesis.” It uses the trial and error method and changes around the independent variables.

  • An apple a day keeps the doctor away.
  • Two apples a day keep the doctor away.
  • Three apples a day keep the doctor away.

In this case, the research changes the hypothesis as the researcher learns more about his/her research.

Statistical hypothesis

A statistical hypothesis is a look of a part of a population or statistical model. This type of hypothesis is especially useful if you are making a statement about a large population. Instead of having to test the entire population of Illinois, you could just use a smaller sample of people who live there.

Example: 70% of people who live in Illinois are iron deficient.

Causal hypothesis

A causal hypothesis states that the independent variable will have an effect on the dependent variable.

Example: Using tobacco products causes cancer.

Final thoughts

Make sure your research is error-free before you send it to your preferred journal . Check our our English Editing services to avoid your chances of desk rejection.

Jonny Rhein, BA

Jonny Rhein, BA

See our "Privacy Policy"

How to write a research hypothesis

Last updated

19 January 2023

Reviewed by

Miroslav Damyanov

Start with a broad subject matter that excites you, so your curiosity will motivate your work. Conduct a literature search to determine the range of questions already addressed and spot any holes in the existing research.

Narrow the topics that interest you and determine your research question. Rather than focusing on a hole in the research, you might choose to challenge an existing assumption, a process called problematization. You may also find yourself with a short list of questions or related topics.

Use the FINER method to determine the single problem you'll address with your research. FINER stands for:

I nteresting

You need a feasible research question, meaning that there is a way to address the question. You should find it interesting, but so should a larger audience. Rather than repeating research that others have already conducted, your research hypothesis should test something novel or unique. 

The research must fall into accepted ethical parameters as defined by the government of your country and your university or college if you're an academic. You'll also need to come up with a relevant question since your research should provide a contribution to the existing research area.

This process typically narrows your shortlist down to a single problem you'd like to study and the variable you want to test. You're ready to write your hypothesis statements.

Make research less tedious

Dovetail streamlines research to help you uncover and share actionable insights

  • Types of research hypotheses

It is important to narrow your topic down to one idea before trying to write your research hypothesis. You'll only test one problem at a time. To do this, you'll write two hypotheses – a null hypothesis (H0) and an alternative hypothesis (Ha).

You'll come across many terms related to developing a research hypothesis or referring to a specific type of hypothesis. Let's take a quick look at these terms.

Null hypothesis

The term null hypothesis refers to a research hypothesis type that assumes no statistically significant relationship exists within a set of observations or data. It represents a claim that assumes that any observed relationship is due to chance. Represented as H0, the null represents the conjecture of the research.

Alternative hypothesis

The alternative hypothesis accompanies the null hypothesis. It states that the situation presented in the null hypothesis is false or untrue, and claims an observed effect in your test. This is typically denoted by Ha or H(n), where “n” stands for the number of alternative hypotheses. You can have more than one alternative hypothesis. 

Simple hypothesis

The term simple hypothesis refers to a hypothesis or theory that predicts the relationship between two variables - the independent (predictor) and the dependent (predicted). 

Complex hypothesis

The term complex hypothesis refers to a model – either quantitative (mathematical) or qualitative . A complex hypothesis states the surmised relationship between two or more potentially related variables.

Directional hypothesis

When creating a statistical hypothesis, the directional hypothesis (the null hypothesis) states an assumption regarding one parameter of a population. Some academics call this the “one-sided” hypothesis. The alternative hypothesis indicates whether the researcher tests for a positive or negative effect by including either the greater than (">") or less than ("<") sign.

Non-directional hypothesis

We refer to the alternative hypothesis in a statistical research question as a non-directional hypothesis. It includes the not equal ("≠") sign to show that the research tests whether or not an effect exists without specifying the effect's direction (positive or negative).

Associative hypothesis

The term associative hypothesis assumes a link between two variables but stops short of stating that one variable impacts the other. Academic statistical literature asserts in this sense that correlation does not imply causation. So, although the hypothesis notes the correlation between two variables – the independent and dependent - it does not predict how the two interact.

Logical hypothesis

Typically used in philosophy rather than science, researchers can't test a logical hypothesis because the technology or data set doesn't yet exist. A logical hypothesis uses logic as the basis of its assumptions. 

In some cases, a logical hypothesis can become an empirical hypothesis once technology provides an opportunity for testing. Until that time, the question remains too expensive or complex to address. Note that a logical hypothesis is not a statistical hypothesis.

Empirical hypothesis

When we consider the opposite of a logical hypothesis, we call this an empirical or working hypothesis. This type of hypothesis considers a scientifically measurable question. A researcher can consider and test an empirical hypothesis through replicable tests, observations, and measurements.

Statistical hypothesis

The term statistical hypothesis refers to a test of a theory that uses representative statistical models to test relationships between variables to draw conclusions regarding a large population. This requires an existing large data set, commonly referred to as big data, or implementing a survey to obtain original statistical information to form a data set for the study. 

Testing this type of hypothesis requires the use of random samples. Note that the null and alternative hypotheses are used in statistical hypothesis testing.

Causal hypothesis

The term causal hypothesis refers to a research hypothesis that tests a cause-and-effect relationship. A causal hypothesis is utilized when conducting experimental or quasi-experimental research.

Descriptive hypothesis

The term descriptive hypothesis refers to a research hypothesis used in non-experimental research, specifying an influence in the relationship between two variables.

  • What makes an effective research hypothesis?

An effective research hypothesis offers a clearly defined, specific statement, using simple wording that contains no assumptions or generalizations, and that you can test. A well-written hypothesis should predict the tested relationship and its outcome. It contains zero ambiguity and offers results you can observe and test. 

The research hypothesis should address a question relevant to a research area. Overall, your research hypothesis needs the following essentials:

Hypothesis Essential #1: Specificity & Clarity

Hypothesis Essential #2: Testability (Provability)

  • How to develop a good research hypothesis

In developing your hypothesis statements, you must pre-plan some of your statistical analysis. Once you decide on your problem to examine, determine three aspects:

the parameter you'll test

the test's direction (left-tailed, right-tailed, or non-directional)

the hypothesized parameter value

Any quantitative research includes a hypothesized parameter value of a mean, a proportion, or the difference between two proportions. Here's how to note each parameter:

Single mean (μ)

Paired means (μd)

Single proportion (p)

Difference between two independent means (μ1−μ2)

Difference between two proportions (p1−p2)

Simple linear regression slope (β)

Correlation (ρ)

Defining these parameters and determining whether you want to test the mean, proportion, or differences helps you determine the statistical tests you'll conduct to analyze your data. When writing your hypothesis, you only need to decide which parameter to test and in what overarching way.

The null research hypothesis must include everyday language, in a single sentence, stating the problem you want to solve. Write it as an if-then statement with defined variables. Write an alternative research hypothesis that states the opposite.

  • What is the correct format for writing a hypothesis?

The following example shows the proper format and textual content of a hypothesis. It follows commonly accepted academic standards.

Null hypothesis (H0): High school students who participate in varsity sports as opposed to those who do not, fail to score higher on leadership tests than students who do not participate.

Alternative hypothesis (H1): High school students who play a varsity sport as opposed to those who do not participate in team athletics will score higher on leadership tests than students who do not participate in athletics.

The research question tests the correlation between varsity sports participation and leadership qualities expressed as a score on leadership tests. It compares the population of athletes to non-athletes.

  • What are the five steps of a hypothesis?

Once you decide on the specific problem or question you want to address, you can write your research hypothesis. Use this five-step system to hone your null hypothesis and generate your alternative hypothesis.

Step 1 : Create your research question. This topic should interest and excite you; answering it provides relevant information to an industry or academic area.

Step 2 : Conduct a literature review to gather essential existing research.

Step 3 : Write a clear, strong, simply worded sentence that explains your test parameter, test direction, and hypothesized parameter.

Step 4 : Read it a few times. Have others read it and ask them what they think it means. Refine your statement accordingly until it becomes understandable to everyone. While not everyone can or will comprehend every research study conducted, any person from the general population should be able to read your hypothesis and alternative hypothesis and understand the essential question you want to answer.

Step 5 : Re-write your null hypothesis until it reads simply and understandably. Write your alternative hypothesis.

What is the Red Queen hypothesis?

Some hypotheses are well-known, such as the Red Queen hypothesis. Choose your wording carefully, since you could become like the famed scientist Dr. Leigh Van Valen. In 1973, Dr. Van Valen proposed the Red Queen hypothesis to describe coevolutionary activity, specifically reciprocal evolutionary effects between species to explain extinction rates in the fossil record. 

Essentially, Van Valen theorized that to survive, each species remains in a constant state of adaptation, evolution, and proliferation, and constantly competes for survival alongside other species doing the same. Only by doing this can a species avoid extinction. Van Valen took the hypothesis title from the Lewis Carroll book, "Through the Looking Glass," which contains a key character named the Red Queen who explains to Alice that for all of her running, she's merely running in place.

  • Getting started with your research

In conclusion, once you write your null hypothesis (H0) and an alternative hypothesis (Ha), you’ve essentially authored the elevator pitch of your research. These two one-sentence statements describe your topic in simple, understandable terms that both professionals and laymen can understand. They provide the starting point of your research project.

Get started today

Go from raw data to valuable insights with a flexible research platform

Editor’s picks

Last updated: 21 December 2023

Last updated: 16 December 2023

Last updated: 6 October 2023

Last updated: 5 March 2024

Last updated: 25 November 2023

Last updated: 15 February 2024

Last updated: 11 March 2024

Last updated: 12 December 2023

Last updated: 6 March 2024

Last updated: 10 April 2023

Last updated: 20 December 2023

Latest articles

Related topics, log in or sign up.

Get started for free

  • Translators
  • Graphic Designers

Solve

Please enter the email address you used for your account. Your sign in information will be sent to your email address after it has been verified.

How To Write a Strong Research Hypothesis

ContentQueen

Are you looking to take your research project to the next level? Have you heard of the power of a hypothesis but need to figure out how to formulate one that will unlock potential discoveries? We can help!

So get ready; it's time to dive into unlocking the power of research! This blog post will explore what makes a well-crafted and powerful hypothesis - from identifying a research question to developing supporting evidence.

By learning how to craft a compelling hypothesis, you'll have more tremendous success in every step of your research project.

What are hypotheses, and why are they important?

A hypothesis is an educated guess or a proposition based on limited evidence as a starting point for further investigation. It provides a framework for research and allows researchers to refine their ideas, collect data, and draw conclusions. Hypotheses are essential to the process because they will enable us to organize our thoughts and test theories properly.

Hypotheses are used in many fields , from medicine to psychology to economics. In each area, developing hypotheses based on observations enable researchers to make predictions about their data and guide them toward finding meaningful results.

For example, in medicine, hypotheses can be used to predict which treatments will be most effective for particular conditions or which drugs may have adverse effects when taken together. This allows doctors to make better decisions when caring for patients.

In psychology, hypotheses are often used in experiments to determine whether certain variables influence behavior or mental processes. By testing different combinations of variables, psychologists can identify patterns and understand why people behave the way they do.

In economics, hypotheses provide economists with a framework for analyzing the relationship between economic variables such as wages and consumer spending habits. By understanding these relationships, economists can better understand how economic forces affect the economy.

Overall, hypotheses play an essential role in helping scientists develop new ideas and draw meaningful conclusions from the collected data. Without taking the step to create hypotheses, it would be difficult for researchers to make sense of the vast amounts of information available today and use it effectively in their investigations.

How to determine an effective research question to form your hypothesis

When conducting research, having a compelling research question is critical . Properly formulating this question will allow the researcher to develop their hypothesis. A research question provides a clear and focused goal for your research study and also gives direction on how to get there. A compelling research question should be specific, answerable in the context of your field of study, significant, novel (not already answered by previous studies), and timely – that is, relevant to current events or trends.

Before determining the best research question, you must first understand your topic. Think about the area of knowledge that interests you most and narrow it down to a single theme or concept within this topic. Focus on what interests you most within this theme, and make sure there is room for further exploration and analysis. Once you have chosen a specific topic and narrowed down your focus, you can begin formulating questions related to your project.

To ensure relevance and impact to your field of study, choose questions that address essential issues in the literature or suggest solutions to existing problems. Avoid overly broad topics with unclear objectives; instead, opt for focused questions to enable targeted data collection and analysis with concrete results.

Additionally, consider time frames when formulating questions. If the issue has been discussed extensively in the past but has not been revisited recently, then it's likely not worthy of a new investigation.

Once you have developed some potential questions related to your topic, review them carefully and decide which question best captures the essence of what you want to learn through researching this topic.

Ask yourself:

  • Is this question answerable?
  • Does it fit within my field of study?
  • Is it significant enough?
  • Would its findings be novel?

If so, then congratulations! You have identified a compelling research question.

Tips for crafting a well-crafted hypothesis

Once you have formulated the official research question, you may develop the formal hypothesis. When composing a hypothesis, it's essential to think carefully about the question you are trying to answer.

A solid hypothesis should be testable, meaning that it can be verified or disproved through research. It should also be specific and focused on one issue at a time. Here are some tips for crafting a well-crafted hypothesis:

  • Consider the goal of your research: Think about what it is that you want to learn or determine from your experiment and make sure that your hypothesis reflects this goal.
  • Create an educated guess as to why something is happening: Your hypothesis should explain why something is occurring based on what evidence you already have and direct further investigation into the matter. For example, if you hypothesize that increased carbon dioxide levels in the atmosphere will lead to global warming, your research should focus on examining this relationship further.
  • Define any variables or parameters involved in the experiment: This includes things like temperature or chemical composition that could potentially affect the outcome of any experiments done in pursuit of testing your hypothesis.
  • Use clear and precise language: Make sure your hypothesis is written with clear and precise language so that anyone reading it can understand exactly what you are attempting to investigate or explain. Avoid complex words and keep sentences short whenever possible.

Following these simple tips will help ensure that your hypothesis is well-crafted and ready for testing!

Examples of evidence that can support your hypothesis

When it comes to developing a hypothesis, supporting evidence is essential for making sure it holds up. This evidence helps strengthen the argument that is being driven by providing facts and logical reasoning that support the hypothesis.

Examples of evidence that can be used to back up a hypothesis include using data from experiments, case studies, and other research projects. Data from experiments can provide insight into how certain variables interact to form a particular outcome.

Case studies may offer greater depth in understanding a specific phenomenon's cause and effect; research projects may yield results that confirm or refute existing theories on a subject.

In addition to these traditional forms of evidence, personal experiences or observations can also help to support a hypothesis. For example, if someone's daily commute has been consistently faster since they changed routes, they could use their personal experience to argue that making this change resulted in shorter commutes.

Similarly, suppose someone has witnessed how two variables consistently coincide (i.e., when one goes up, another goes down). In that case, this could be used to support the notion that there is some correlation between these two aspects.

Overall, evidence to support your hypothesis is crucial for ensuring its validity and credibility. While conducting experiments or researching may seem like time-consuming processes, having solid supporting evidence will make it much easier to defend your ideas convincingly when challenged.

Therefore, it is crucial to take the time necessary to gather credible sources of information to provide the most substantial possible backing for your hypotheses.

Understanding the potential of hypotheses and how they can help your research project progress

The power of research lies in the ability to develop and test hypotheses. A hypothesis is a statement or an idea that can be tested to determine its validity.

Essentially, it is a form of educated guesswork that helps researchers form conclusions about their data. By developing a hypothesis for a research project, you are effectively setting up the framework for further exploration.

When developing a hypothesis, you must consider both the expected outcomes and possible alternative explanations. This will help you focus on testing the possible results without getting sidetracked by irrelevant information. Once you have established a concrete hypothesis, it can then be used as a basis for further research and experimentation.

The process of testing hypotheses is an integral part of the scientific method and can help researchers build confidence in their findings and conclusions. Through careful observation and experimentation, researchers can compare their results against what they initially hypothesized, allowing them to draw more accurate conclusions about their data. As such, hypotheses play an essential role in helping researchers connect the dots between different pieces of evidence and form meaningful conclusions.

Overall, understanding how hypotheses can be used in research projects can be immensely beneficial in helping progress towards reaching meaningful insights from their data. By setting up expectations ahead of time and then testing them against real-world conditions, researchers can gain valuable insights that could potentially change the way we understand our world – now that's something worth exploring!

Final thoughts

A hypothesis is a proposed explanation for an observable phenomenon. It's important to note that hypotheses are not the same thing as theories–a theory is a much broader and well-established frame of reference that explains multiple phenomena.

Generally, scientists form a research question and then narrow it down to a testable hypothesis. After making observations and conducting experiments to gather data, researchers can use evidence to support or reject the hypothesis.

By following these steps to formulate a solid hypothesis, you will be on your way to developing a successful research project. Happy researching!

Header image by Bnenin .

Related Posts

How to Write the Perfect Process Analysis Essay (With a Sample Essay)

How to Write the Perfect Process Analysis Essay (With a Sample Essay)

The Best Way to Synthesize Academic Research

The Best Way to Synthesize Academic Research

  • Academic Writing Advice
  • All Blog Posts
  • Writing Advice
  • Admissions Writing Advice
  • Book Writing Advice
  • Short Story Advice
  • Employment Writing Advice
  • Business Writing Advice
  • Web Content Advice
  • Article Writing Advice
  • Magazine Writing Advice
  • Grammar Advice
  • Dialect Advice
  • Editing Advice
  • Freelance Advice
  • Legal Writing Advice
  • Poetry Advice
  • Graphic Design Advice
  • Logo Design Advice
  • Translation Advice
  • Blog Reviews
  • Short Story Award Winners
  • Scholarship Winners

Need an academic editor before submitting your work?

Need an academic editor before submitting your work?

Grad Coach

What Is A Research (Scientific) Hypothesis? A plain-language explainer + examples

By:  Derek Jansen (MBA)  | Reviewed By: Dr Eunice Rautenbach | June 2020

If you’re new to the world of research, or it’s your first time writing a dissertation or thesis, you’re probably noticing that the words “research hypothesis” and “scientific hypothesis” are used quite a bit, and you’re wondering what they mean in a research context .

“Hypothesis” is one of those words that people use loosely, thinking they understand what it means. However, it has a very specific meaning within academic research. So, it’s important to understand the exact meaning before you start hypothesizing. 

Research Hypothesis 101

  • What is a hypothesis ?
  • What is a research hypothesis (scientific hypothesis)?
  • Requirements for a research hypothesis
  • Definition of a research hypothesis
  • The null hypothesis

What is a hypothesis?

Let’s start with the general definition of a hypothesis (not a research hypothesis or scientific hypothesis), according to the Cambridge Dictionary:

Hypothesis: an idea or explanation for something that is based on known facts but has not yet been proved.

In other words, it’s a statement that provides an explanation for why or how something works, based on facts (or some reasonable assumptions), but that has not yet been specifically tested . For example, a hypothesis might look something like this:

Hypothesis: sleep impacts academic performance.

This statement predicts that academic performance will be influenced by the amount and/or quality of sleep a student engages in – sounds reasonable, right? It’s based on reasonable assumptions , underpinned by what we currently know about sleep and health (from the existing literature). So, loosely speaking, we could call it a hypothesis, at least by the dictionary definition.

But that’s not good enough…

Unfortunately, that’s not quite sophisticated enough to describe a research hypothesis (also sometimes called a scientific hypothesis), and it wouldn’t be acceptable in a dissertation, thesis or research paper . In the world of academic research, a statement needs a few more criteria to constitute a true research hypothesis .

What is a research hypothesis?

A research hypothesis (also called a scientific hypothesis) is a statement about the expected outcome of a study (for example, a dissertation or thesis). To constitute a quality hypothesis, the statement needs to have three attributes – specificity , clarity and testability .

Let’s take a look at these more closely.

Need a helping hand?

what to put in hypothesis in research

Hypothesis Essential #1: Specificity & Clarity

A good research hypothesis needs to be extremely clear and articulate about both what’ s being assessed (who or what variables are involved ) and the expected outcome (for example, a difference between groups, a relationship between variables, etc.).

Let’s stick with our sleepy students example and look at how this statement could be more specific and clear.

Hypothesis: Students who sleep at least 8 hours per night will, on average, achieve higher grades in standardised tests than students who sleep less than 8 hours a night.

As you can see, the statement is very specific as it identifies the variables involved (sleep hours and test grades), the parties involved (two groups of students), as well as the predicted relationship type (a positive relationship). There’s no ambiguity or uncertainty about who or what is involved in the statement, and the expected outcome is clear.

Contrast that to the original hypothesis we looked at – “Sleep impacts academic performance” – and you can see the difference. “Sleep” and “academic performance” are both comparatively vague , and there’s no indication of what the expected relationship direction is (more sleep or less sleep). As you can see, specificity and clarity are key.

A good research hypothesis needs to be very clear about what’s being assessed and very specific about the expected outcome.

Hypothesis Essential #2: Testability (Provability)

A statement must be testable to qualify as a research hypothesis. In other words, there needs to be a way to prove (or disprove) the statement. If it’s not testable, it’s not a hypothesis – simple as that.

For example, consider the hypothesis we mentioned earlier:

Hypothesis: Students who sleep at least 8 hours per night will, on average, achieve higher grades in standardised tests than students who sleep less than 8 hours a night.  

We could test this statement by undertaking a quantitative study involving two groups of students, one that gets 8 or more hours of sleep per night for a fixed period, and one that gets less. We could then compare the standardised test results for both groups to see if there’s a statistically significant difference. 

Again, if you compare this to the original hypothesis we looked at – “Sleep impacts academic performance” – you can see that it would be quite difficult to test that statement, primarily because it isn’t specific enough. How much sleep? By who? What type of academic performance?

So, remember the mantra – if you can’t test it, it’s not a hypothesis 🙂

A good research hypothesis must be testable. In other words, you must able to collect observable data in a scientifically rigorous fashion to test it.

Defining A Research Hypothesis

You’re still with us? Great! Let’s recap and pin down a clear definition of a hypothesis.

A research hypothesis (or scientific hypothesis) is a statement about an expected relationship between variables, or explanation of an occurrence, that is clear, specific and testable.

So, when you write up hypotheses for your dissertation or thesis, make sure that they meet all these criteria. If you do, you’ll not only have rock-solid hypotheses but you’ll also ensure a clear focus for your entire research project.

What about the null hypothesis?

You may have also heard the terms null hypothesis , alternative hypothesis, or H-zero thrown around. At a simple level, the null hypothesis is the counter-proposal to the original hypothesis.

For example, if the hypothesis predicts that there is a relationship between two variables (for example, sleep and academic performance), the null hypothesis would predict that there is no relationship between those variables.

At a more technical level, the null hypothesis proposes that no statistical significance exists in a set of given observations and that any differences are due to chance alone.

And there you have it – hypotheses in a nutshell. 

If you have any questions, be sure to leave a comment below and we’ll do our best to help you. If you need hands-on help developing and testing your hypotheses, consider our private coaching service , where we hold your hand through the research journey.

what to put in hypothesis in research

Psst… there’s more (for free)

This post is part of our dissertation mini-course, which covers everything you need to get started with your dissertation, thesis or research project. 

You Might Also Like:

Research limitations vs delimitations

16 Comments

Lynnet Chikwaikwai

Very useful information. I benefit more from getting more information in this regard.

Dr. WuodArek

Very great insight,educative and informative. Please give meet deep critics on many research data of public international Law like human rights, environment, natural resources, law of the sea etc

Afshin

In a book I read a distinction is made between null, research, and alternative hypothesis. As far as I understand, alternative and research hypotheses are the same. Can you please elaborate? Best Afshin

GANDI Benjamin

This is a self explanatory, easy going site. I will recommend this to my friends and colleagues.

Lucile Dossou-Yovo

Very good definition. How can I cite your definition in my thesis? Thank you. Is nul hypothesis compulsory in a research?

Pereria

It’s a counter-proposal to be proven as a rejection

Egya Salihu

Please what is the difference between alternate hypothesis and research hypothesis?

Mulugeta Tefera

It is a very good explanation. However, it limits hypotheses to statistically tasteable ideas. What about for qualitative researches or other researches that involve quantitative data that don’t need statistical tests?

Derek Jansen

In qualitative research, one typically uses propositions, not hypotheses.

Samia

could you please elaborate it more

Patricia Nyawir

I’ve benefited greatly from these notes, thank you.

Hopeson Khondiwa

This is very helpful

Dr. Andarge

well articulated ideas are presented here, thank you for being reliable sources of information

TAUNO

Excellent. Thanks for being clear and sound about the research methodology and hypothesis (quantitative research)

I have only a simple question regarding the null hypothesis. – Is the null hypothesis (Ho) known as the reversible hypothesis of the alternative hypothesis (H1? – How to test it in academic research?

Tesfaye Negesa Urge

this is very important note help me much more

Trackbacks/Pingbacks

  • What Is Research Methodology? Simple Definition (With Examples) - Grad Coach - […] Contrasted to this, a quantitative methodology is typically used when the research aims and objectives are confirmatory in nature. For example,…

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • How it works

How to Write a Hypothesis – Steps & Tips

Published by Alaxendra Bets at August 14th, 2021 , Revised On October 26, 2023

What is a Research Hypothesis?

You can test a research statement with the help of experimental or theoretical research, known as a hypothesis.

If you want to find out the similarities, differences, and relationships between variables, you must write a testable hypothesis before compiling the data, performing analysis, and generating results to complete.

The data analysis and findings will help you test the hypothesis and see whether it is true or false. Here is all you need to know about how to write a hypothesis for a  dissertation .

Research Hypothesis Definition

Not sure what the meaning of the research hypothesis is?

A research hypothesis predicts an answer to the research question  based on existing theoretical knowledge or experimental data.

Some studies may have multiple hypothesis statements depending on the research question(s).  A research hypothesis must be based on formulas, facts, and theories. It should be testable by data analysis, observations, experiments, or other scientific methodologies that can refute or support the statement.

Variables in Hypothesis

Developing a hypothesis is easy. Most research studies have two or more variables in the hypothesis, particularly studies involving correlational and experimental research. The researcher can control or change the independent variable(s) while measuring and observing the independent variable(s).

“How long a student sleeps affects test scores.”

In the above statement, the dependent variable is the test score, while the independent variable is the length of time spent in sleep. Developing a hypothesis will be easy if you know your research’s dependent and independent variables.

Once you have developed a thesis statement, questions such as how to write a hypothesis for the dissertation and how to test a research hypothesis become pretty straightforward.

Looking for dissertation help?

Researchprospect to the rescue then.

We have expert writers on our team who are skilled at helping students with quantitative dissertations across a variety of STEM disciplines. Guaranteeing 100% satisfaction!

dissertation help

Step-by-Step Guide on How to Write a Hypothesis

Here are the steps involved in how to write a hypothesis for a dissertation.

Step 1: Start with a Research Question

  • Begin by asking a specific question about a topic of interest.
  • This question should be clear, concise, and researchable.

Example: Does exposure to sunlight affect plant growth?

Step 2: Do Preliminary Research

  • Before formulating a hypothesis, conduct background research to understand existing knowledge on the topic.
  • Familiarise yourself with prior studies, theories, or observations related to the research question.

Step 3: Define Variables

  • Independent Variable (IV): The factor that you change or manipulate in an experiment.
  • Dependent Variable (DV): The factor that you measure.

Example: IV: Amount of sunlight exposure (e.g., 2 hours/day, 4 hours/day, 8 hours/day) DV: Plant growth (e.g., height in centimetres)

Step 4: Formulate the Hypothesis

  • A hypothesis is a statement that predicts the relationship between variables.
  • It is often written as an “if-then” statement.

Example: If plants receive more sunlight, then they will grow taller.

Step 5: Ensure it is Testable

A good hypothesis is empirically testable. This means you should be able to design an experiment or observation to test its validity.

Example: You can set up an experiment where plants are exposed to varying amounts of sunlight and then measure their growth over a period of time.

Step 6: Consider Potential Confounding Variables

  • Confounding variables are factors other than the independent variable that might affect the outcome.
  • It is important to identify these to ensure that they do not skew your results.

Example: Soil quality, water frequency, or type of plant can all affect growth. Consider keeping these constant in your experiment.

Step 7: Write the Null Hypothesis

  • The null hypothesis is a statement that there is no effect or no relationship between the variables.
  • It is what you aim to disprove or reject through your research.

Example: There is no difference in plant growth regardless of the amount of sunlight exposure.

Step 8: Test your Hypothesis

Design an experiment or conduct observations to test your hypothesis.

Example: Grow three sets of plants: one set exposed to 2 hours of sunlight daily, another exposed to 4 hours, and a third exposed to 8 hours. Measure and compare their growth after a set period.

Step 9: Analyse the Results

After testing, review your data to determine if it supports your hypothesis.

Step 10: Draw Conclusions

  • Based on your findings, determine whether you can accept or reject the hypothesis.
  • Remember, even if you reject your hypothesis, it’s a valuable result. It can guide future research and refine questions.

Three Ways to Phrase a Hypothesis

Try to use “if”… and “then”… to identify the variables. The independent variable should be present in the first part of the hypothesis, while the dependent variable will form the second part of the statement. Consider understanding the below research hypothesis example to create a specific, clear, and concise research hypothesis;

If an obese lady starts attending Zomba fitness classes, her health will improve.

In academic research, you can write the predicted variable relationship directly because most research studies correlate terms.

The number of Zomba fitness classes attended by the obese lady has a positive effect on health.

If your research compares two groups, then you can develop a hypothesis statement on their differences.

An obese lady who attended most Zumba fitness classes will have better health than those who attended a few.

How to Write a Null Hypothesis

If a statistical analysis is involved in your research, then you must create a null hypothesis. If you find any relationship between the variables, then the null hypothesis will be the default position that there is no relationship between them. H0 is the symbol for the null hypothesis, while the hypothesis is represented as H1. The null hypothesis will also answer your question, “How to test the research hypothesis in the dissertation.”

H0: The number of Zumba fitness classes attended by the obese lady does not affect her health.

H1: The number of Zumba fitness classes attended by obese lady positively affects health.

Also see:  Your Dissertation in Education

Hypothesis Examples

Research Question: Does the amount of sunlight a plant receives affect its growth? Hypothesis: Plants that receive more sunlight will grow taller than plants that receive less sunlight.

Research Question: Do students who eat breakfast perform better in school exams than those who don’t? Hypothesis: Students who eat a morning breakfast will score higher on school exams compared to students who skip breakfast.

Research Question: Does listening to music while studying impact a student’s ability to retain information? Hypothesis 1 (Directional): Students who listen to music while studying will retain less information than those who study in silence. Hypothesis 2 (Non-directional): There will be a difference in information retention between students who listen to music while studying and those who study in silence.

How can ResearchProspect Help?

If you are unsure about how to rest a research hypothesis in a dissertation or simply unsure about how to develop a hypothesis for your research, then you can take advantage of our dissertation services which cover every tiny aspect of a dissertation project you might need help with including but not limited to setting up a hypothesis and research questions,  help with individual chapters ,  full dissertation writing ,  statistical analysis , and much more.

Frequently Asked Questions

What are the 5 rules for writing a good hypothesis.

  • Clear Statement: State a clear relationship between variables.
  • Testable: Ensure it can be investigated and measured.
  • Specific: Avoid vague terms, be precise in predictions.
  • Falsifiable: Design to allow potential disproof.
  • Relevant: Address research question and align with existing knowledge.

What is a hypothesis in simple words?

A hypothesis is an educated guess or prediction about something that can be tested. It is a statement that suggests a possible explanation for an event or phenomenon based on prior knowledge or observation. Scientists use hypotheses as a starting point for experiments to discover if they are true or false.

What is the hypothesis and examples?

A hypothesis is a testable prediction or explanation for an observation or phenomenon. For example, if plants are given sunlight, then they will grow. In this case, the hypothesis suggests that sunlight has a positive effect on plant growth. It can be tested by experimenting with plants in varying light conditions.

What is the hypothesis in research definition?

A hypothesis in research is a clear, testable statement predicting the possible outcome of a study based on prior knowledge and observation. It serves as the foundation for conducting experiments or investigations. Researchers test the validity of the hypothesis to draw conclusions and advance knowledge in a particular field.

Why is it called a hypothesis?

The term “hypothesis” originates from the Greek word “hypothesis,” which means “base” or “foundation.” It’s used to describe a foundational statement or proposition that can be tested. In scientific contexts, it denotes a tentative explanation for a phenomenon, serving as a starting point for investigation or experimentation.

You May Also Like

Struggling to find relevant and up-to-date topics for your dissertation? Here is all you need to know if unsure about how to choose dissertation topic.

This article is a step-by-step guide to how to write statement of a problem in research. The research problem will be half-solved by defining it correctly.

Not sure how to approach a company for your primary research study? Don’t worry. Here we have some tips for you to successfully gather primary study.

USEFUL LINKS

LEARNING RESOURCES

researchprospect-reviews-trust-site

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.34(45); 2019 Nov 25

Logo of jkms

Scientific Hypotheses: Writing, Promoting, and Predicting Implications

Armen yuri gasparyan.

1 Departments of Rheumatology and Research and Development, Dudley Group NHS Foundation Trust (Teaching Trust of the University of Birmingham, UK), Russells Hall Hospital, Dudley, West Midlands, UK.

Lilit Ayvazyan

2 Department of Medical Chemistry, Yerevan State Medical University, Yerevan, Armenia.

Ulzhan Mukanova

3 Department of Surgical Disciplines, South Kazakhstan Medical Academy, Shymkent, Kazakhstan.

Marlen Yessirkepov

4 Department of Biology and Biochemistry, South Kazakhstan Medical Academy, Shymkent, Kazakhstan.

George D. Kitas

5 Arthritis Research UK Epidemiology Unit, University of Manchester, Manchester, UK.

Scientific hypotheses are essential for progress in rapidly developing academic disciplines. Proposing new ideas and hypotheses require thorough analyses of evidence-based data and predictions of the implications. One of the main concerns relates to the ethical implications of the generated hypotheses. The authors may need to outline potential benefits and limitations of their suggestions and target widely visible publication outlets to ignite discussion by experts and start testing the hypotheses. Not many publication outlets are currently welcoming hypotheses and unconventional ideas that may open gates to criticism and conservative remarks. A few scholarly journals guide the authors on how to structure hypotheses. Reflecting on general and specific issues around the subject matter is often recommended for drafting a well-structured hypothesis article. An analysis of influential hypotheses, presented in this article, particularly Strachan's hygiene hypothesis with global implications in the field of immunology and allergy, points to the need for properly interpreting and testing new suggestions. Envisaging the ethical implications of the hypotheses should be considered both by authors and journal editors during the writing and publishing process.

INTRODUCTION

We live in times of digitization that radically changes scientific research, reporting, and publishing strategies. Researchers all over the world are overwhelmed with processing large volumes of information and searching through numerous online platforms, all of which make the whole process of scholarly analysis and synthesis complex and sophisticated.

Current research activities are diversifying to combine scientific observations with analysis of facts recorded by scholars from various professional backgrounds. 1 Citation analyses and networking on social media are also becoming essential for shaping research and publishing strategies globally. 2 Learning specifics of increasingly interdisciplinary research studies and acquiring information facilitation skills aid researchers in formulating innovative ideas and predicting developments in interrelated scientific fields.

Arguably, researchers are currently offered more opportunities than in the past for generating new ideas by performing their routine laboratory activities, observing individual cases and unusual developments, and critically analyzing published scientific facts. What they need at the start of their research is to formulate a scientific hypothesis that revisits conventional theories, real-world processes, and related evidence to propose new studies and test ideas in an ethical way. 3 Such a hypothesis can be of most benefit if published in an ethical journal with wide visibility and exposure to relevant online databases and promotion platforms.

Although hypotheses are crucially important for the scientific progress, only few highly skilled researchers formulate and eventually publish their innovative ideas per se . Understandably, in an increasingly competitive research environment, most authors would prefer to prioritize their ideas by discussing and conducting tests in their own laboratories or clinical departments, and publishing research reports afterwards. However, there are instances when simple observations and research studies in a single center are not capable of explaining and testing new groundbreaking ideas. Formulating hypothesis articles first and calling for multicenter and interdisciplinary research can be a solution in such instances, potentially launching influential scientific directions, if not academic disciplines.

The aim of this article is to overview the importance and implications of infrequently published scientific hypotheses that may open new avenues of thinking and research.

Despite the seemingly established views on innovative ideas and hypotheses as essential research tools, no structured definition exists to tag the term and systematically track related articles. In 1973, the Medical Subject Heading (MeSH) of the U.S. National Library of Medicine introduced “Research Design” as a structured keyword that referred to the importance of collecting data and properly testing hypotheses, and indirectly linked the term to ethics, methods and standards, among many other subheadings.

One of the experts in the field defines “hypothesis” as a well-argued analysis of available evidence to provide a realistic (scientific) explanation of existing facts, fill gaps in public understanding of sophisticated processes, and propose a new theory or a test. 4 A hypothesis can be proven wrong partially or entirely. However, even such an erroneous hypothesis may influence progress in science by initiating professional debates that help generate more realistic ideas. The main ethical requirement for hypothesis authors is to be honest about the limitations of their suggestions. 5

EXAMPLES OF INFLUENTIAL SCIENTIFIC HYPOTHESES

Daily routine in a research laboratory may lead to groundbreaking discoveries provided the daily accounts are comprehensively analyzed and reproduced by peers. The discovery of penicillin by Sir Alexander Fleming (1928) can be viewed as a prime example of such discoveries that introduced therapies to treat staphylococcal and streptococcal infections and modulate blood coagulation. 6 , 7 Penicillin got worldwide recognition due to the inventor's seminal works published by highly prestigious and widely visible British journals, effective ‘real-world’ antibiotic therapy of pneumonia and wounds during World War II, and euphoric media coverage. 8 In 1945, Fleming, Florey and Chain got a much deserved Nobel Prize in Physiology or Medicine for the discovery that led to the mass production of the wonder drug in the U.S. and ‘real-world practice’ that tested the use of penicillin. What remained globally unnoticed is that Zinaida Yermolyeva, the outstanding Soviet microbiologist, created the Soviet penicillin, which turned out to be more effective than the Anglo-American penicillin and entered mass production in 1943; that year marked the turning of the tide of the Great Patriotic War. 9 One of the reasons of the widely unnoticed discovery of Zinaida Yermolyeva is that her works were published exclusively by local Russian (Soviet) journals.

The past decades have been marked by an unprecedented growth of multicenter and global research studies involving hundreds and thousands of human subjects. This trend is shaped by an increasing number of reports on clinical trials and large cohort studies that create a strong evidence base for practice recommendations. Mega-studies may help generate and test large-scale hypotheses aiming to solve health issues globally. Properly designed epidemiological studies, for example, may introduce clarity to the hygiene hypothesis that was originally proposed by David Strachan in 1989. 10 David Strachan studied the epidemiology of hay fever in a cohort of 17,414 British children and concluded that declining family size and improved personal hygiene had reduced the chances of cross infections in families, resulting in epidemics of atopic disease in post-industrial Britain. Over the past four decades, several related hypotheses have been proposed to expand the potential role of symbiotic microorganisms and parasites in the development of human physiological immune responses early in life and protection from allergic and autoimmune diseases later on. 11 , 12 Given the popularity and the scientific importance of the hygiene hypothesis, it was introduced as a MeSH term in 2012. 13

Hypotheses can be proposed based on an analysis of recorded historic events that resulted in mass migrations and spreading of certain genetic diseases. As a prime example, familial Mediterranean fever (FMF), the prototype periodic fever syndrome, is believed to spread from Mesopotamia to the Mediterranean region and all over Europe due to migrations and religious prosecutions millennia ago. 14 Genetic mutations spearing mild clinical forms of FMF are hypothesized to emerge and persist in the Mediterranean region as protective factors against more serious infectious diseases, particularly tuberculosis, historically common in that part of the world. 15 The speculations over the advantages of carrying the MEditerranean FeVer (MEFV) gene are further strengthened by recorded low mortality rates from tuberculosis among FMF patients of different nationalities living in Tunisia in the first half of the 20th century. 16

Diagnostic hypotheses shedding light on peculiarities of diseases throughout the history of mankind can be formulated using artefacts, particularly historic paintings. 17 Such paintings may reveal joint deformities and disfigurements due to rheumatic diseases in individual subjects. A series of paintings with similar signs of pathological conditions interpreted in a historic context may uncover mysteries of epidemics of certain diseases, which is the case with Ruben's paintings depicting signs of rheumatic hands and making some doctors to believe that rheumatoid arthritis was common in Europe in the 16th and 17th century. 18

WRITING SCIENTIFIC HYPOTHESES

There are author instructions of a few journals that specifically guide how to structure, format, and make submissions categorized as hypotheses attractive. One of the examples is presented by Med Hypotheses , the flagship journal in its field with more than four decades of publishing and influencing hypothesis authors globally. However, such guidance is not based on widely discussed, implemented, and approved reporting standards, which are becoming mandatory for all scholarly journals.

Generating new ideas and scientific hypotheses is a sophisticated task since not all researchers and authors are skilled to plan, conduct, and interpret various research studies. Some experience with formulating focused research questions and strong working hypotheses of original research studies is definitely helpful for advancing critical appraisal skills. However, aspiring authors of scientific hypotheses may need something different, which is more related to discerning scientific facts, pooling homogenous data from primary research works, and synthesizing new information in a systematic way by analyzing similar sets of articles. To some extent, this activity is reminiscent of writing narrative and systematic reviews. As in the case of reviews, scientific hypotheses need to be formulated on the basis of comprehensive search strategies to retrieve all available studies on the topics of interest and then synthesize new information selectively referring to the most relevant items. One of the main differences between scientific hypothesis and review articles relates to the volume of supportive literature sources ( Table 1 ). In fact, hypothesis is usually formulated by referring to a few scientific facts or compelling evidence derived from a handful of literature sources. 19 By contrast, reviews require analyses of a large number of published documents retrieved from several well-organized and evidence-based databases in accordance with predefined search strategies. 20 , 21 , 22

The format of hypotheses, especially the implications part, may vary widely across disciplines. Clinicians may limit their suggestions to the clinical manifestations of diseases, outcomes, and management strategies. Basic and laboratory scientists analysing genetic, molecular, and biochemical mechanisms may need to view beyond the frames of their narrow fields and predict social and population-based implications of the proposed ideas. 23

Advanced writing skills are essential for presenting an interesting theoretical article which appeals to the global readership. Merely listing opposing facts and ideas, without proper interpretation and analysis, may distract the experienced readers. The essence of a great hypothesis is a story behind the scientific facts and evidence-based data.

ETHICAL IMPLICATIONS

The authors of hypotheses substantiate their arguments by referring to and discerning rational points from published articles that might be overlooked by others. Their arguments may contradict the established theories and practices, and pose global ethical issues, particularly when more or less efficient medical technologies and public health interventions are devalued. The ethical issues may arise primarily because of the careless references to articles with low priorities, inadequate and apparently unethical methodologies, and concealed reporting of negative results. 24 , 25

Misinterpretation and misunderstanding of the published ideas and scientific hypotheses may complicate the issue further. For example, Alexander Fleming, whose innovative ideas of penicillin use to kill susceptible bacteria saved millions of lives, warned of the consequences of uncontrolled prescription of the drug. The issue of antibiotic resistance had emerged within the first ten years of penicillin use on a global scale due to the overprescription that affected the efficacy of antibiotic therapies, with undesirable consequences for millions. 26

The misunderstanding of the hygiene hypothesis that primarily aimed to shed light on the role of the microbiome in allergic and autoimmune diseases resulted in decline of public confidence in hygiene with dire societal implications, forcing some experts to abandon the original idea. 27 , 28 Although that hypothesis is unrelated to the issue of vaccinations, the public misunderstanding has resulted in decline of vaccinations at a time of upsurge of old and new infections.

A number of ethical issues are posed by the denial of the viral (human immunodeficiency viruses; HIV) hypothesis of acquired Immune deficiency Syndrome (AIDS) by Peter Duesberg, who overviewed the links between illicit recreational drugs and antiretroviral therapies with AIDS and refuted the etiological role of HIV. 29 That controversial hypothesis was rejected by several journals, but was eventually published without external peer review at Med Hypotheses in 2010. The publication itself raised concerns of the unconventional editorial policy of the journal, causing major perturbations and more scrutinized publishing policies by journals processing hypotheses.

WHERE TO PUBLISH HYPOTHESES

Although scientific authors are currently well informed and equipped with search tools to draft evidence-based hypotheses, there are still limited quality publication outlets calling for related articles. The journal editors may be hesitant to publish articles that do not adhere to any research reporting guidelines and open gates for harsh criticism of unconventional and untested ideas. Occasionally, the editors opting for open-access publishing and upgrading their ethics regulations launch a section to selectively publish scientific hypotheses attractive to the experienced readers. 30 However, the absence of approved standards for this article type, particularly no mandate for outlining potential ethical implications, may lead to publication of potentially harmful ideas in an attractive format.

A suggestion of simultaneously publishing multiple or alternative hypotheses to balance the reader views and feedback is a potential solution for the mainstream scholarly journals. 31 However, that option alone is hardly applicable to emerging journals with unconventional quality checks and peer review, accumulating papers with multiple rejections by established journals.

A large group of experts view hypotheses with improbable and controversial ideas publishable after formal editorial (in-house) checks to preserve the authors' genuine ideas and avoid conservative amendments imposed by external peer reviewers. 32 That approach may be acceptable for established publishers with large teams of experienced editors. However, the same approach can lead to dire consequences if employed by nonselective start-up, open-access journals processing all types of articles and primarily accepting those with charged publication fees. 33 In fact, pseudoscientific ideas arguing Newton's and Einstein's seminal works or those denying climate change that are hardly testable have already found their niche in substandard electronic journals with soft or nonexistent peer review. 34

CITATIONS AND SOCIAL MEDIA ATTENTION

The available preliminary evidence points to the attractiveness of hypothesis articles for readers, particularly those from research-intensive countries who actively download related documents. 35 However, citations of such articles are disproportionately low. Only a small proportion of top-downloaded hypotheses (13%) in the highly prestigious Med Hypotheses receive on average 5 citations per article within a two-year window. 36

With the exception of a few historic papers, the vast majority of hypotheses attract relatively small number of citations in a long term. 36 Plausible explanations are that these articles often contain a single or only a few citable points and that suggested research studies to test hypotheses are rarely conducted and reported, limiting chances of citing and crediting authors of genuine research ideas.

A snapshot analysis of citation activity of hypothesis articles may reveal interest of the global scientific community towards their implications across various disciplines and countries. As a prime example, Strachan's hygiene hypothesis, published in 1989, 10 is still attracting numerous citations on Scopus, the largest bibliographic database. As of August 28, 2019, the number of the linked citations in the database is 3,201. Of the citing articles, 160 are cited at least 160 times ( h -index of this research topic = 160). The first three citations are recorded in 1992 and followed by a rapid annual increase in citation activity and a peak of 212 in 2015 ( Fig. 1 ). The top 5 sources of the citations are Clin Exp Allergy (n = 136), J Allergy Clin Immunol (n = 119), Allergy (n = 81), Pediatr Allergy Immunol (n = 69), and PLOS One (n = 44). The top 5 citing authors are leading experts in pediatrics and allergology Erika von Mutius (Munich, Germany, number of publications with the index citation = 30), Erika Isolauri (Turku, Finland, n = 27), Patrick G Holt (Subiaco, Australia, n = 25), David P. Strachan (London, UK, n = 23), and Bengt Björksten (Stockholm, Sweden, n = 22). The U.S. is the leading country in terms of citation activity with 809 related documents, followed by the UK (n = 494), Germany (n = 314), Australia (n = 211), and the Netherlands (n = 177). The largest proportion of citing documents are articles (n = 1,726, 54%), followed by reviews (n = 950, 29.7%), and book chapters (n = 213, 6.7%). The main subject areas of the citing items are medicine (n = 2,581, 51.7%), immunology and microbiology (n = 1,179, 23.6%), and biochemistry, genetics and molecular biology (n = 415, 8.3%).

An external file that holds a picture, illustration, etc.
Object name is jkms-34-e300-g001.jpg

Interestingly, a recent analysis of 111 publications related to Strachan's hygiene hypothesis, stating that the lack of exposure to infections in early life increases the risk of rhinitis, revealed a selection bias of 5,551 citations on Web of Science. 37 The articles supportive of the hypothesis were cited more than nonsupportive ones (odds ratio adjusted for study design, 2.2; 95% confidence interval, 1.6–3.1). A similar conclusion pointing to a citation bias distorting bibliometrics of hypotheses was reached by an earlier analysis of a citation network linked to the idea that β-amyloid, which is involved in the pathogenesis of Alzheimer disease, is produced by skeletal muscle of patients with inclusion body myositis. 38 The results of both studies are in line with the notion that ‘positive’ citations are more frequent in the field of biomedicine than ‘negative’ ones, and that citations to articles with proven hypotheses are too common. 39

Social media channels are playing an increasingly active role in the generation and evaluation of scientific hypotheses. In fact, publicly discussing research questions on platforms of news outlets, such as Reddit, may shape hypotheses on health-related issues of global importance, such as obesity. 40 Analyzing Twitter comments, researchers may reveal both potentially valuable ideas and unfounded claims that surround groundbreaking research ideas. 41 Social media activities, however, are unevenly distributed across different research topics, journals and countries, and these are not always objective professional reflections of the breakthroughs in science. 2 , 42

Scientific hypotheses are essential for progress in science and advances in healthcare. Innovative ideas should be based on a critical overview of related scientific facts and evidence-based data, often overlooked by others. To generate realistic hypothetical theories, the authors should comprehensively analyze the literature and suggest relevant and ethically sound design for future studies. They should also consider their hypotheses in the context of research and publication ethics norms acceptable for their target journals. The journal editors aiming to diversify their portfolio by maintaining and introducing hypotheses section are in a position to upgrade guidelines for related articles by pointing to general and specific analyses of the subject, preferred study designs to test hypotheses, and ethical implications. The latter is closely related to specifics of hypotheses. For example, editorial recommendations to outline benefits and risks of a new laboratory test or therapy may result in a more balanced article and minimize associated risks afterwards.

Not all scientific hypotheses have immediate positive effects. Some, if not most, are never tested in properly designed research studies and never cited in credible and indexed publication outlets. Hypotheses in specialized scientific fields, particularly those hardly understandable for nonexperts, lose their attractiveness for increasingly interdisciplinary audience. The authors' honest analysis of the benefits and limitations of their hypotheses and concerted efforts of all stakeholders in science communication to initiate public discussion on widely visible platforms and social media may reveal rational points and caveats of the new ideas.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Gasparyan AY, Yessirkepov M, Kitas GD.
  • Methodology: Gasparyan AY, Mukanova U, Ayvazyan L.
  • Writing - original draft: Gasparyan AY, Ayvazyan L, Yessirkepov M.
  • Writing - review & editing: Gasparyan AY, Yessirkepov M, Mukanova U, Kitas GD.

Research Hypothesis In Psychology: Types, & Examples

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

A research hypothesis, in its plural form “hypotheses,” is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method .

Hypotheses connect theory to data and guide the research process towards expanding scientific understanding

Some key points about hypotheses:

  • A hypothesis expresses an expected pattern or relationship. It connects the variables under investigation.
  • It is stated in clear, precise terms before any data collection or analysis occurs. This makes the hypothesis testable.
  • A hypothesis must be falsifiable. It should be possible, even if unlikely in practice, to collect data that disconfirms rather than supports the hypothesis.
  • Hypotheses guide research. Scientists design studies to explicitly evaluate hypotheses about how nature works.
  • For a hypothesis to be valid, it must be testable against empirical evidence. The evidence can then confirm or disprove the testable predictions.
  • Hypotheses are informed by background knowledge and observation, but go beyond what is already known to propose an explanation of how or why something occurs.
Predictions typically arise from a thorough knowledge of the research literature, curiosity about real-world problems or implications, and integrating this to advance theory. They build on existing literature while providing new insight.

Types of Research Hypotheses

Alternative hypothesis.

The research hypothesis is often called the alternative or experimental hypothesis in experimental research.

It typically suggests a potential relationship between two key variables: the independent variable, which the researcher manipulates, and the dependent variable, which is measured based on those changes.

The alternative hypothesis states a relationship exists between the two variables being studied (one variable affects the other).

A hypothesis is a testable statement or prediction about the relationship between two or more variables. It is a key component of the scientific method. Some key points about hypotheses:

  • Important hypotheses lead to predictions that can be tested empirically. The evidence can then confirm or disprove the testable predictions.

In summary, a hypothesis is a precise, testable statement of what researchers expect to happen in a study and why. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

An experimental hypothesis predicts what change(s) will occur in the dependent variable when the independent variable is manipulated.

It states that the results are not due to chance and are significant in supporting the theory being investigated.

The alternative hypothesis can be directional, indicating a specific direction of the effect, or non-directional, suggesting a difference without specifying its nature. It’s what researchers aim to support or demonstrate through their study.

Null Hypothesis

The null hypothesis states no relationship exists between the two variables being studied (one variable does not affect the other). There will be no changes in the dependent variable due to manipulating the independent variable.

It states results are due to chance and are not significant in supporting the idea being investigated.

The null hypothesis, positing no effect or relationship, is a foundational contrast to the research hypothesis in scientific inquiry. It establishes a baseline for statistical testing, promoting objectivity by initiating research from a neutral stance.

Many statistical methods are tailored to test the null hypothesis, determining the likelihood of observed results if no true effect exists.

This dual-hypothesis approach provides clarity, ensuring that research intentions are explicit, and fosters consistency across scientific studies, enhancing the standardization and interpretability of research outcomes.

Nondirectional Hypothesis

A non-directional hypothesis, also known as a two-tailed hypothesis, predicts that there is a difference or relationship between two variables but does not specify the direction of this relationship.

It merely indicates that a change or effect will occur without predicting which group will have higher or lower values.

For example, “There is a difference in performance between Group A and Group B” is a non-directional hypothesis.

Directional Hypothesis

A directional (one-tailed) hypothesis predicts the nature of the effect of the independent variable on the dependent variable. It predicts in which direction the change will take place. (i.e., greater, smaller, less, more)

It specifies whether one variable is greater, lesser, or different from another, rather than just indicating that there’s a difference without specifying its nature.

For example, “Exercise increases weight loss” is a directional hypothesis.

hypothesis

Falsifiability

The Falsification Principle, proposed by Karl Popper , is a way of demarcating science from non-science. It suggests that for a theory or hypothesis to be considered scientific, it must be testable and irrefutable.

Falsifiability emphasizes that scientific claims shouldn’t just be confirmable but should also have the potential to be proven wrong.

It means that there should exist some potential evidence or experiment that could prove the proposition false.

However many confirming instances exist for a theory, it only takes one counter observation to falsify it. For example, the hypothesis that “all swans are white,” can be falsified by observing a black swan.

For Popper, science should attempt to disprove a theory rather than attempt to continually provide evidence to support a research hypothesis.

Can a Hypothesis be Proven?

Hypotheses make probabilistic predictions. They state the expected outcome if a particular relationship exists. However, a study result supporting a hypothesis does not definitively prove it is true.

All studies have limitations. There may be unknown confounding factors or issues that limit the certainty of conclusions. Additional studies may yield different results.

In science, hypotheses can realistically only be supported with some degree of confidence, not proven. The process of science is to incrementally accumulate evidence for and against hypothesized relationships in an ongoing pursuit of better models and explanations that best fit the empirical data. But hypotheses remain open to revision and rejection if that is where the evidence leads.
  • Disproving a hypothesis is definitive. Solid disconfirmatory evidence will falsify a hypothesis and require altering or discarding it based on the evidence.
  • However, confirming evidence is always open to revision. Other explanations may account for the same results, and additional or contradictory evidence may emerge over time.

We can never 100% prove the alternative hypothesis. Instead, we see if we can disprove, or reject the null hypothesis.

If we reject the null hypothesis, this doesn’t mean that our alternative hypothesis is correct but does support the alternative/experimental hypothesis.

Upon analysis of the results, an alternative hypothesis can be rejected or supported, but it can never be proven to be correct. We must avoid any reference to results proving a theory as this implies 100% certainty, and there is always a chance that evidence may exist which could refute a theory.

How to Write a Hypothesis

  • Identify variables . The researcher manipulates the independent variable and the dependent variable is the measured outcome.
  • Operationalized the variables being investigated . Operationalization of a hypothesis refers to the process of making the variables physically measurable or testable, e.g. if you are about to study aggression, you might count the number of punches given by participants.
  • Decide on a direction for your prediction . If there is evidence in the literature to support a specific effect of the independent variable on the dependent variable, write a directional (one-tailed) hypothesis. If there are limited or ambiguous findings in the literature regarding the effect of the independent variable on the dependent variable, write a non-directional (two-tailed) hypothesis.
  • Make it Testable : Ensure your hypothesis can be tested through experimentation or observation. It should be possible to prove it false (principle of falsifiability).
  • Clear & concise language . A strong hypothesis is concise (typically one to two sentences long), and formulated using clear and straightforward language, ensuring it’s easily understood and testable.

Consider a hypothesis many teachers might subscribe to: students work better on Monday morning than on Friday afternoon (IV=Day, DV= Standard of work).

Now, if we decide to study this by giving the same group of students a lesson on a Monday morning and a Friday afternoon and then measuring their immediate recall of the material covered in each session, we would end up with the following:

  • The alternative hypothesis states that students will recall significantly more information on a Monday morning than on a Friday afternoon.
  • The null hypothesis states that there will be no significant difference in the amount recalled on a Monday morning compared to a Friday afternoon. Any difference will be due to chance or confounding factors.

More Examples

  • Memory : Participants exposed to classical music during study sessions will recall more items from a list than those who studied in silence.
  • Social Psychology : Individuals who frequently engage in social media use will report higher levels of perceived social isolation compared to those who use it infrequently.
  • Developmental Psychology : Children who engage in regular imaginative play have better problem-solving skills than those who don’t.
  • Clinical Psychology : Cognitive-behavioral therapy will be more effective in reducing symptoms of anxiety over a 6-month period compared to traditional talk therapy.
  • Cognitive Psychology : Individuals who multitask between various electronic devices will have shorter attention spans on focused tasks than those who single-task.
  • Health Psychology : Patients who practice mindfulness meditation will experience lower levels of chronic pain compared to those who don’t meditate.
  • Organizational Psychology : Employees in open-plan offices will report higher levels of stress than those in private offices.
  • Behavioral Psychology : Rats rewarded with food after pressing a lever will press it more frequently than rats who receive no reward.

Print Friendly, PDF & Email

Learn How To Write A Hypothesis For Your Next Research Project!

blog image

Undoubtedly, research plays a crucial role in substantiating or refuting our assumptions. These assumptions act as potential answers to our questions. Such assumptions, also known as hypotheses, are considered key aspects of research. In this blog, we delve into the significance of hypotheses. And provide insights on how to write them effectively. So, let’s dive in and explore the art of writing hypotheses together.

Table of Contents

What is a Hypothesis?

A hypothesis is a crucial starting point in scientific research. It is an educated guess about the relationship between two or more variables. In other words, a hypothesis acts as a foundation for a researcher to build their study.

Here are some examples of well-crafted hypotheses:

  • Increased exposure to natural sunlight improves sleep quality in adults.

A positive relationship between natural sunlight exposure and sleep quality in adult individuals.

  • Playing puzzle games on a regular basis enhances problem-solving abilities in children.

Engaging in frequent puzzle gameplay leads to improved problem-solving skills in children.

  • Students and improved learning hecks.

S tudents using online  paper writing service  platforms (as a learning tool for receiving personalized feedback and guidance) will demonstrate improved writing skills. (compared to those who do not utilize such platforms).

  • The use of APA format in research papers. 

Using the  APA format  helps students stay organized when writing research papers. Organized students can focus better on their topics and, as a result, produce better quality work.

The Building Blocks of a Hypothesis

To better understand the concept of a hypothesis, let’s break it down into its basic components:

  • Variables . A hypothesis involves at least two variables. An independent variable and a dependent variable. The independent variable is the one being changed or manipulated, while the dependent variable is the one being measured or observed.
  • Relationship : A hypothesis proposes a relationship or connection between the variables. This could be a cause-and-effect relationship or a correlation between them.
  • Testability : A hypothesis should be testable and falsifiable, meaning it can be proven right or wrong through experimentation or observation.

Types of Hypotheses

When learning how to write a hypothesis, it’s essential to understand its main types. These include; alternative hypotheses and null hypotheses. In the following section, we explore both types of hypotheses with examples. 

Alternative Hypothesis (H1)

This kind of hypothesis suggests a relationship or effect between the variables. It is the main focus of the study. The researcher wants to either prove or disprove it. Many research divides this hypothesis into two subsections: 

  • Directional 

This type of H1 predicts a specific outcome. Many researchers use this hypothesis to explore the relationship between variables rather than the groups. 

  • Non-directional

You can take a guess from the name. This type of H1 does not provide a specific prediction for the research outcome. 

Here are some examples for your better understanding of how to write a hypothesis.

  • Consuming caffeine improves cognitive performance.  (This hypothesis predicts that there is a positive relationship between caffeine consumption and cognitive performance.)
  • Aerobic exercise leads to reduced blood pressure.  (This hypothesis suggests that engaging in aerobic exercise results in lower blood pressure readings.)
  • Exposure to nature reduces stress levels among employees.  (Here, the hypothesis proposes that employees exposed to natural environments will experience decreased stress levels.)
  • Listening to classical music while studying increases memory retention.  (This hypothesis speculates that studying with classical music playing in the background boosts students’ ability to retain information.)
  • Early literacy intervention improves reading skills in children.  (This hypothesis claims that providing early literacy assistance to children results in enhanced reading abilities.)
  • Time management in nursing students. ( Students who use a  nursing research paper writing service  have more time to focus on their studies and can achieve better grades in other subjects. )

Null Hypothesis (H0)

A null hypothesis assumes no relationship or effect between the variables. If the alternative hypothesis is proven to be false, the null hypothesis is considered to be true. Usually a null hypothesis shows no direct correlation between the defined variables. 

Here are some of the examples

  • The consumption of herbal tea has no effect on sleep quality.  (This hypothesis assumes that herbal tea consumption does not impact the quality of sleep.)
  • The number of hours spent playing video games is unrelated to academic performance.  (Here, the null hypothesis suggests that no relationship exists between video gameplay duration and academic achievement.)
  • Implementing flexible work schedules has no influence on employee job satisfaction.  (This hypothesis contends that providing flexible schedules does not affect how satisfied employees are with their jobs.)
  • Writing ability of a 7th grader is not affected by reading editorial example. ( There is no relationship between reading an  editorial example  and improving a 7th grader’s writing abilities.) 
  • The type of lighting in a room does not affect people’s mood.  (In this null hypothesis, there is no connection between the kind of lighting in a room and the mood of those present.)
  • The use of social media during break time does not impact productivity at work.  (This hypothesis proposes that social media usage during breaks has no effect on work productivity.)

As you learn how to write a hypothesis, remember that aiming for clarity, testability, and relevance to your research question is vital. By mastering this skill, you’re well on your way to conducting impactful scientific research. Good luck!

Importance of a Hypothesis in Research

A well-structured hypothesis is a vital part of any research project for several reasons:

  • It provides clear direction for the study by setting its focus and purpose.
  • It outlines expectations of the research, making it easier to measure results.
  • It helps identify any potential limitations in the study, allowing researchers to refine their approach.

In conclusion, a hypothesis plays a fundamental role in the research process. By understanding its concept and constructing a well-thought-out hypothesis, researchers lay the groundwork for a successful, scientifically sound investigation.

How to Write a Hypothesis?

Here are five steps that you can follow to write an effective hypothesis. 

Step 1: Identify Your Research Question

The first step in learning how to compose a hypothesis is to clearly define your research question. This question is the central focus of your study and will help you determine the direction of your hypothesis.

Step 2: Determine the Variables

When exploring how to write a hypothesis, it’s crucial to identify the variables involved in your study. You’ll need at least two variables:

  • Independent variable : The factor you manipulate or change in your experiment.
  • Dependent variable : The outcome or result you observe or measure, which is influenced by the independent variable.

Step 3: Build the Hypothetical Relationship

In understanding how to compose a hypothesis, constructing the relationship between the variables is key. Based on your research question and variables, predict the expected outcome or connection. This prediction should be specific, testable, and, if possible, expressed in the “If…then” format.

Step 4: Write the Null Hypothesis

When mastering how to write a hypothesis, it’s important to create a null hypothesis as well. The null hypothesis assumes no relationship or effect between the variables, acting as a counterpoint to your primary hypothesis.

Step 5: Review Your Hypothesis

Finally, when learning how to compose a hypothesis, it’s essential to review your hypothesis for clarity, testability, and relevance to your research question. Make any necessary adjustments to ensure it provides a solid basis for your study.

In conclusion, understanding how to write a hypothesis is crucial for conducting successful scientific research. By focusing on your research question and carefully building relationships between variables, you will lay a strong foundation for advancing research and knowledge in your field.

Hypothesis vs. Prediction: What’s the Difference?

Understanding the differences between a hypothesis and a prediction is crucial in scientific research. Often, these terms are used interchangeably, but they have distinct meanings and functions. This segment aims to clarify these differences and explain how to compose a hypothesis correctly, helping you improve the quality of your research projects.

Hypothesis: The Foundation of Your Research

A hypothesis is an educated guess about the relationship between two or more variables. It provides the basis for your research question and is a starting point for an experiment or observational study.

The critical elements for a hypothesis include:

  • Specificity: A clear and concise statement that describes the relationship between variables.
  • Testability: The ability to test the hypothesis through experimentation or observation.

To learn how to write a hypothesis, it’s essential to identify your research question first and then predict the relationship between the variables.

Prediction: The Expected Outcome

A prediction is a statement about a specific outcome you expect to see in your experiment or observational study. It’s derived from the hypothesis and provides a measurable way to test the relationship between variables.

Here’s an example of how to write a hypothesis and a related prediction:

  • Hypothesis: Consuming a high-sugar diet leads to weight gain.
  • Prediction: People who consume a high-sugar diet for six weeks will gain more weight than those who maintain a low-sugar diet during the same period.

Key Differences Between a Hypothesis and a Prediction

While a hypothesis and prediction are both essential components of scientific research, there are some key differences to keep in mind:

  • A hypothesis is an educated guess that suggests a relationship between variables, while a prediction is a specific and measurable outcome based on that hypothesis.
  • A hypothesis can give rise to multiple experiment or observational study predictions.

To conclude, understanding the differences between a hypothesis and a prediction, and learning how to write a hypothesis, are essential steps to form a robust foundation for your research. By creating clear, testable hypotheses along with specific, measurable predictions, you lay the groundwork for scientifically sound investigations.

Here’s a wrap-up for this guide on how to write a hypothesis. We’re confident this article was helpful for many of you. We understand that many students struggle with writing their school research . However, we hope to continue assisting you through our blog tutorial on writing different aspects of academic assignments.

For further information, you can check out our reverent blog or contact our professionals to avail amazing writing services. Paper perk experts tailor assignments to reflect your unique voice and perspectives. Our professionals make sure to stick around till your satisfaction. So what are you waiting for? Pick your required service and order away!

Order Original Papers & Essays

Your First Custom Paper Sample is on Us!

timely deliveries

Timely Deliveries

premium quality

No Plagiarism & AI

unlimited revisions

100% Refund

Try Our Free Paper Writing Service

Related blogs.

blog-img

Connections with Writers and support

safe service

Privacy and Confidentiality Guarantee

quality-score

Average Quality Score

  • Privacy Policy

Buy Me a Coffee

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

I Help to Study

Useful information for students

Home » Proposal » Where to put hypothesis in research proposal

  • Academic Writing
  • Assignments
  • Business Plans
  • Buy Services
  • Custom Writing
  • Dissertations
  • For Professionals
  • Help & Assistance
  • Useful Services
  • Various Papers

Expert writing

Where to put hypothesis in research proposal

Where to put hypothesis in research proposal the study answers

Elements of a research proposal and report

2005 � david s. walonick, ph.d..

Excerpts from Survival Statistics – an applied statistics book for graduate students.

All research reports use roughly the same format. It doesn’t matter whether you’ve done a customer satisfaction survey, an employee opinion survey, a health care survey, or a marketing research survey. All have the same basic structure and format. The rationale is that readers of research reports (i.e. decision makers, funders, etc.) will know exactly where to find the information they are looking for, regardless of the individual report.

Once you’ve learned the basic rules for research proposal and report writing, you can apply them to any research discipline. The same rules apply to writing a proposal, a thesis, a dissertation, or any business research report.

The Research Proposal and Report

General considerations.

Research papers usually have five chapters with well-established sections in each chapter. Readers of the paper will be looking for these chapters and sections so you should not deviate from the standard format unless you are specifically requested to do so by the research sponsor.

The most commonly used style for writing research reports is called APA and the rules are described in the Publication Manual of the American Psychological Association . Any library or bookstore will have it readily available. The style guide contains hundreds of rules for grammar, layout, and syntax. This paper will cover the most important ones.

Avoid the use of first person pronouns. Refer to yourself or the research team in third person. Instead of saying I will. or We will. , say something like The researcher will. or The research team will. .

A suggestion: Never present a draft (rough) copy of your proposal, thesis, dissertation, or research paper. even if asked. A paper that looks like a draft, will interpreted as such, and you can expect extensive and liberal modifications. Take the time to put your paper in perfect APA format before showing it to anyone else. The payoff will be great since it will then be perceived as a final paper, and there will be far fewer changes.

Style, layout, and page formatting

All text on the title page is centered vertically and horizontally. The title page has no page number and it is not counted in any page numbering.

Page layout

Left margin: 1� Right margin: 1 Top margin: 1 Bottom margin: 1

Page numbering

Where to put hypothesis in research proposal The same rules apply to

Numeric page numbering begins with the first page of Chapter 1 (although a page number is not placed on page 1).

Spacing and justification

All pages are single sided. Text is double-spaced, except for long quotations and the bibliography (which are single-spaced). There is one blank line between a section heading and the text that follows it. Do not right-justify text. Use ragged-right.

Font face and size

Any easily readable font is acceptable. The font should be 10 points or larger. Generally, the same font must be used throughout the manuscript, except 1) tables and graphs may use a different font, and 2) chapter titles and section headings may use a different font.

APA format should be used to cite references within the paper. If you name the author in your sentence, then follow the authors name with the year in parentheses. For example:

Jones (2004) found that.

If you do not include the authors name as part of the text, then both the author’s name and year are enclosed in parentheses. For example:

One researcher (Jones, 2004) found that.

A complete bibliography is attached at the end of the paper. It is double spaced except single-spacing is used for a multiple-line reference. The first line of each reference is indented.

Bradburn, N. M. Mason, W. M. (1964). The effect of question order on response. Journal of Marketing Research1 (4), 57-61.

Bradburn, N. M. Miles, C. (1979). Vague quantifiers. Public Opinion Quarterly43 (1), 92-101.

Outline of chapters and sections

TABLE OF CONTENTS

CHAPTER I – Introduction Introductory paragraphs Statement of the problem Purpose Significance of the study Research questions and/or hypotheses

CHAPTER II – Background Literature review Definition of terms

CHAPTER III – Methodology Restate purpose and research questions or null hypotheses Population and sampling Instrumentation (include copy in appendix) Procedure and time frame Analysis plan (state critical alpha level and type of statistical tests) Validity and reliability Assumptions Scope and limitations

CHAPTER IV – Results

CHAPTER V – Conclusions and recommendations Summary (of what you did and found) Discussion (explanation of findings – why do you think you found what you did?) Recommendations (based on your findings)

Chapter I – Introduction

Introductory paragraphs.

Chapter I begins with a few short introductory paragraphs (a couple of pages at most). The primary goal of the introductory paragraphs is to catch the attention of the readers and to get them turned on about the subject. It sets the stage for the paper and puts your topic in perspective. The introduction often contains dramatic and general statements about the need for the study. It uses dramatic illustrations or quotes to set the tone. When writing the introduction, put yourself in your reader’s position – would you continue reading?

Statement of the Problem

The statement of the problem is the focal point of your research. It is just one sentence (with several paragraphs of elaboration).

You are looking for something wrong. . or something that needs close attention . or existing methods that no longer seem to be working.

Example of a problem statement:

The frequency of job layoffs is creating fear, anxiety, and a loss of productivity in middle management workers.

While the problem statement itself is just one sentence, it is always accompanied by several paragraphs that elaborate on the problem. Present persuasive arguments why the problem is important enough to study. Include the opinions of others (politicians, futurists, other professionals). Explain how the problem relates to business, social or political trends by presenting data that demonstrates the scope and depth of the problem. Try to give dramatic and concrete illustrations of the problem. After writing this section, make sure you can easily identify the single sentence that is the problem statement.

The purpose is a single statement or paragraph that explains what the study intends to accomplish. A few typical statements are:

The goal of this study is to. . overcome the difficulty with. . discover what. . understand the causes or effects of. . refine our current understanding of. . provide a new interpretation of. . understand what makes ___ successful or unsuccessful

Significance of the Study

This section creates a perspective for looking at the problem. It points out how your study relates to the larger issues and uses a persuasive rationale to justify the reason for your study. It makes the purpose worth pursuing. The significance of the study answers the questions:

Why is your study important? To whom is it important? What benefit(s) will occur if your study is done?

Research Questions and/or Hypotheses and/or Null Hypotheses

Chapter I lists the research questions (although it is equally acceptable to present the hypotheses or null hypotheses). No elaboration is included in this section. An example would be:

The research questions for this study will be:

1. What are the attitudes of. 2. Is there a significant difference between. 3. Is there a significant relationship between.

Chapter II – Background

Chapter II is a review of the literature. It is important because it shows what previous researchers have discovered. It is usually quite long and primarily depends upon how much research has previously been done in the area you are planning to investigate. If you are planning to explore a relatively new area, the literature review should cite similar areas of study or studies that lead up to the current research. Never say that your area is so new that no research exists. It is one of the key elements that proposal readers look at when deciding whether or not to approve a proposal.

Chapter II should also contain a definition of terms section when appropriate. Include it if your paper uses special terms that are unique to your field of inquiry or that might not be understood by the general reader. Operational definitions (definitions that you have formulated for the study) should also be included. An example of an operational definition is: For the purpose of this research, improvement is operationally defined as posttest score minus pretest score.

Chapter III – Methodology

The methodology section describes your basic research plan. It usually begins with a few short introductory paragraphs that restate purpose and research questions. The phraseology should be identical to that used in Chapter I. Keep the wording of your research questions consistent throughout the document.

Population and sampling

The basic research paradigm is: 1) Define the population 2) Draw a representative sample from the population 3) Do the research on the sample 4) Infer your results from the sample back to the population

As you can see, it all begins with a precise definition of the population. The whole idea of inferential research (using a sample to represent the entire population) depends upon an accurate description of the population. When you’ve finished your research and you make statements based on the results, who will they apply to? Usually, just one sentence is necessary to define the population. Examples are: The population for this study is defined as all adult customers who make a purchase in our stores during the sampling time frame, or . all home owners in the city of Minneapolis, or . all potential consumers of our product.

While the population can usually be defined by a single statement, the sampling procedure needs to be described in extensive detail. There are numerous sampling methods from which to choose. Describe in minute detail, how you will select the sample. Use specific names, places, times, etc. Don’t omit any details. This is extremely important because the reader of the paper must decide if your sample will sufficiently represent the population.

Instrumentation

If you are using a survey that was designed by someone else, state the source of the survey. Describe the theoretical constructs that the survey is attempting to measure. Include a copy of the actual survey in the appendix and state that a copy of the survey is in the appendix.

Procedure and time frame

State exactly when the research will begin and when it will end. Describe any special procedures that will be followed (e.g. instructions that will be read to participants, presentation of an informed consent form, etc.).

Analysis plan

The analysis plan should be described in detail. Each research question will usually require its own analysis. Thus, the research questions should be addressed one at a time followed by a description of the type of statistical tests that will be performed to answer that research question. Be specific. State what variables will be included in the analyses and identify the dependent and independent variables if such a relationship exists. Decision making criteria (e.g. the critical alpha level) should also be stated, as well as the computer software that will be used.

Validity and reliability

If the survey you’re using was designed by someone else, then describe the previous validity and reliability assessments. When using an existing instrument, you’ll want to perform the same reliability measurement as the author of the instrument. If you’ve developed your own survey, then you must describe the steps you took to assess its validity and a description of how you will measure its reliability.

Validity refers to the accuracy or truthfulness of a measurement. Are we measuring what we think we are? There are no statistical tests to measure validity. All assessments of validity are subjective opinions based on the judgment of the researcher. Nevertheless, there are at least three types of validity that should be addressed and you should state what steps you took to assess validity.

Face validity refers to the likelihood that a question will be misunderstood or misinterpreted. Pretesting a survey is a good way to increase the likelihood of face validity. One method of establishing face validity is described here. How to make sure your survey is valid .

Content validity refers to whether an instrument provides adequate coverage of a topic. Expert opinions, literature searches, and pretest open-ended questions help to establish content validity.

Construct validity refers to the theoretical foundations underlying a particular scale or measurement. It looks at the underlying theories or constructs that explain a phenomena. In other words, if you are using several survey items to measure a more global construct (e.g. a subscale of a survey), then you should describe why you believe the items comprise a construct. If a construct has been identified by previous researchers, then describe the criteria they used to validate the construct. A technique known as confirmatory factor analysis is often used to explore how individual survey items contribute to an overall construct measurement.

Reliability is synonymous with repeatability or stability. A measurement that yields consistent results over time is said to be reliable. When a measurement is prone to random error, it lacks reliability.

There are three basic methods to test reliability. test-retest, equivalent form, and internal consistency. Most research uses some form of internal consistency. When there is a scale of items all attempting to measure the same construct, then we would expect a large degree of coherence in the way people answer those items. Various statistical tests can measure the degree of coherence. Another way to test reliability is to ask the same question with slightly different wording in different parts of the survey. The correlation between the items is a measure of their reliability. See: How to test the reliability of a survey .

Assumptions

All research studies make assumptions. The most obvious is that the sample represents the population. Another common assumptions are that an instrument has validity and is measuring the desired constructs. Still another is that respondents will answer a survey truthfully. The important point is for the researcher to state specifically what assumptions are being made.

Scope and limitations

All research studies also have limitations and a finite scope. Limitations are often imposed by time and budget constraints. Precisely list the limitations of the study. Describe the extent to which you believe the limitations degrade the quality of the research.

Chapter IV – Results

Description of the sample.

Nearly all research collects various demographic information. It is important to report the descriptive statistics of the sample because it lets the reader decide if the sample is truly representative of the population.

The analyses section is cut and dry. It precisely follows the analysis plan laid out in Chapter III. Each research question addressed individually. For each research question:

1) Restate the research question using the exact wording as in Chapter I 2) If the research question is testable, state the null hypothesis 3) State the type of statistical test(s) performed 4) Report the statistics and conclusions, followed by any appropriate table(s)

Numbers and tables are not self-evident. If you use tables or graphs, refer to them in the text and explain what they say. An example is: Table 4 shows a strong negative relationship between delivery time and customer satisfaction ( r =-.72, p =.03). All tables and figures have a number and a descriptive heading. For example:

Table 4 The relationship between delivery time and customer satisfaction.

Avoid the use of trivial tables or graphs. If a graph or table does not add new information (i.e. information not explained in the text), then don’t include it.

Simply present the results. Do not attempt to explain the results in this chapter.

Chapter V – Conclusions and recommendations

Begin the final chapter with a few paragraphs summarizing what you did and found (i.e. the conclusions from Chapter IV).

Discuss the findings. Do your findings support existing theories? Explain why you think you found what you did. Present plausible reasons why the results might have turned out the way they did.

Recommendations

Present recommendations based on your findings. Avoid the temptation to present recommendations based on your own beliefs or biases that are not specifically supported by your data. Recommendations fall into two categories. The first is recommendations to the study sponsor. What actions do you recommend they take based upon the data. The second is recommendations to other researchers. There are almost always ways that a study could be improved or refined. What would you change if you were to do your study over again? These are the recommendations to other researchers.

List references in APA format alphabetically by author’s last name

Include a copy of any actual instruments. If used, include a copy of the informed consent form.

Related Articles:

dr-bastian-hiltscher-dissertation-proposal_1.png

Latest Posts

Small field dosimetry thesis proposal

  • Privacy Policy

© 2016 | IHelptoStudy.Com

Please Wait!

custom writing

Banner

HOW TO: Use Articles for Research: Introduction: Hypothesis/Thesis

  • What's a Scholarly Journal?
  • Reading the Citation
  • Authors' Credentials
  • Introduction: Hypothesis/Thesis
  • Literature Review
  • Research Method
  • Results/Data
  • Discussion/Conclusions

Hypothesis or Thesis

The first few paragraphs of a journal article serve to introduce the topic, to provide the author's hypothesis or thesis, and to indicate why the research was done.  A thesis or hypothesis is not always clearly labled; you may need to read through the introductory paragraphs to determine what the authors are proposing.

  • << Previous: Abstract
  • Next: Literature Review >>
  • Last Updated: Jan 29, 2024 3:35 PM
  • URL: https://libguides.cayuga-cc.edu/1ST-PRIORITY/articles

Integrations

What's new?

Prototype Testing

Live Website Testing

Feedback Surveys

Interview Studies

Card Sorting

Tree Testing

In-Product Prompts

Participant Management

Automated Reports

Templates Gallery

Choose from our library of pre-built mazes to copy, customize, and share with your own users

Browse all templates

Financial Services

Tech & Software

Product Designers

Product Managers

User Researchers

By use case

Concept & Idea Validation

Wireframe & Usability Test

Content & Copy Testing

Feedback & Satisfaction

Content Hub

Educational resources for product, research and design teams

Explore all resources

Question Bank

Research Maturity Model

Guides & Reports

Help Center

Future of User Research Report

The Optimal Path Podcast

Creating a research hypothesis: How to formulate and test UX expectations

User Research

Mar 21, 2024

Creating a research hypothesis: How to formulate and test UX expectations

A research hypothesis helps guide your UX research with focused predictions you can test and learn from. Here’s how to formulate your own hypotheses.

Armin Tanovic

Armin Tanovic

All great products were once just thoughts—the spark of an idea waiting to be turned into something tangible.

A research hypothesis in UX is very similar. It’s the starting point for your user research; the jumping off point for your product development initiatives.

Formulating a UX research hypothesis helps guide your UX research project in the right direction, collect insights, and evaluate not only whether an idea is worth pursuing, but how to go after it.

In this article, we’ll cover what a research hypothesis is, how it's relevant to UX research, and the best formula to create your own hypothesis and put it to the test.

Test your hypothesis with Maze

Maze lets you validate your design and test research hypotheses to move forward with authentic user insights.

what to put in hypothesis in research

What defines a research hypothesis?

A research hypothesis is a statement or prediction that needs testing to be proven or disproven.

Let’s say you’ve got an inkling that making a change to a feature icon will increase the number of users that engage with it—with some minor adjustments, this theory becomes a research hypothesis: “ Adjusting Feature X’s icon will increase daily average users by 20% ”.

A research hypothesis is the starting point that guides user research . It takes your thought and turns it into something you can quantify and evaluate. In this case, you could conduct usability tests and user surveys, and run A/B tests to see if you’re right—or, just as importantly, wrong .

A good research hypothesis has three main features:

  • Specificity: A hypothesis should clearly define what variables you’re studying and what you expect an outcome to be, without ambiguity in its wording
  • Relevance: A research hypothesis should have significance for your research project by addressing a potential opportunity for improvement
  • Testability: Your research hypothesis must be able to be tested in some way such as empirical observation or data collection

What is the difference between a research hypothesis and a research question?

Research questions and research hypotheses are often treated as one and the same, but they’re not quite identical.

A research hypothesis acts as a prediction or educated guess of outcomes , while a research question poses a query on the subject you’re investigating. Put simply, a research hypothesis is a statement, whereas a research question is (you guessed it) a question.

For example, here’s a research hypothesis: “ Implementing a navigation bar on our dashboard will improve customer satisfaction scores by 10%. ”

This statement acts as a testable prediction. It doesn’t pose a question, it’s a prediction. Here’s what the same hypothesis would look like as a research question: “ Will integrating a navigation bar on our dashboard improve customer satisfaction scores? ”

The distinction is minor, and both are focused on uncovering the truth behind the topic, but they’re not quite the same.

Why do you use a research hypothesis in UX?

Research hypotheses in UX are used to establish the direction of a particular study, research project, or test. Formulating a hypothesis and testing it ensures the UX research you conduct is methodical, focused, and actionable. It aids every phase of your research process , acting as a north star that guides your efforts toward successful product development .

Typically, UX researchers will formulate a testable hypothesis to help them fulfill a broader objective, such as improving customer experience or product usability. They’ll then conduct user research to gain insights into their prediction and confirm or reject the hypothesis.

A proven or disproven hypothesis will tell if your prediction is right, and whether you should move forward with your proposed design—or if it's back to the drawing board.

Formulating a hypothesis can be helpful in anything from prototype testing to idea validation, and design iteration. Put simply, it’s one of the first steps in conducting user research.

Whether you’re in the initial stages of product discovery for a new product, a single feature, or conducting ongoing research, a strong hypothesis presents a clear purpose and angle for your research It also helps understand which user research methodology to use to get your answers.

What are the types of research hypotheses?

Not all hypotheses are built the same—there are different types with different objectives. Understanding the different types enables you to formulate a research hypothesis that outlines the angle you need to take to prove or disprove your predictions.

Here are some of the different types of hypotheses to keep in mind.

Null and alternative hypotheses

While a normal research hypothesis predicts that a specific outcome will occur based upon a certain change of variables, a null hypothesis predicts that no difference will occur when you introduce a new condition.

By that reasoning, a null hypothesis would be:

  • Adding a new CTA button to the top of our homepage will make no difference in conversions

Null hypotheses are useful because they help outline what your test or research study is trying to dis prove, rather than prove, through a research hypothesis.

An alternative hypothesis states the exact opposite of a null hypothesis. It proposes that a certain change will occur when you introduce a new condition or variable. For example:

  • Adding a CTA button to the top of our homepage will cause a difference in conversion rates

Simple hypotheses and complex hypotheses

A simple hypothesis is a prediction that includes only two variables in a cause-and-effect sequence, with one variable dependent on the other. It predicts that you'll achieve a particular outcome based on a certain condition. The outcome is known as the dependent variable and the change causing it is the independent variable .

For example, this is a simple hypothesis:

  • Including the search function on our mobile app will increase user retention

The expected outcome of increasing user retention is based on the condition of including a new search function. But, what happens when there are more than two factors at play?

We get what’s called a complex hypothesis. Instead of a simple condition and outcome, complex hypotheses include multiple results. This makes them a perfect research hypothesis type for framing complex studies or tracking multiple KPIs based on a single action.

Building upon our previous example, a complex research hypothesis could be:

  • Including the search function on our mobile app will increase user retention and boost conversions

Directional and non-directional hypotheses

Research hypotheses can also differ in the specificity of outcomes. Put simply, any hypothesis that has a specific outcome or direction based on the relationship of its variables is a directional hypothesis . That means that our previous example of a simple hypothesis is also a directional hypothesis.

Non-directional hypotheses don’t specify the outcome or difference the variables will see. They just state that a difference exists. Following our example above, here’s what a non-directional hypothesis would look like:

  • Including the search function on our mobile app will make a difference in user retention

In this non-directional hypothesis, the direction of difference (increase/decrease) hasn’t been specified, we’ve just noted that there will be a difference.

The type of hypothesis you write helps guide your research—let’s get into it.

How to write and test your UX research hypothesis

Now we’ve covered the types of research hypothesis examples, it’s time to get practical.

Creating your research hypothesis is the first step in conducting successful user research.

Here are the four steps for writing and testing a UX research hypothesis to help you make informed, data-backed decisions for product design and development.

1. Formulate your hypothesis

Start by writing out your hypothesis in a way that’s specific and relevant to a distinct aspect of your user or product experience. Meaning: your prediction should include a design choice followed by the outcome you’d expect—this is what you’re looking to validate or reject.

Your proposed research hypothesis should also be testable through user research data analysis. There’s little point in a hypothesis you can’t test!

Let’s say your focus is your product’s user interface—and how you can improve it to better meet customer needs. A research hypothesis in this instance might be:

  • Adding a settings tab to the navigation bar will improve usability

By writing out a research hypothesis in this way, you’re able to conduct relevant user research to prove or disprove your hypothesis. You can then use the results of your research—and the validation or rejection of your hypothesis—to decide whether or not you need to make changes to your product’s interface.

2. Identify variables and choose your research method

Once you’ve got your hypothesis, you need to map out how exactly you’ll test it. Consider what variables relate to your hypothesis. In our case, the main variable of our outcome is adding a settings tab to the navigation bar.

Once you’ve defined the relevant variables, you’re in a better position to decide on the best UX research method for the job. If you’re after metrics that signal improvement, you’ll want to select a method yielding quantifiable results—like usability testing . If your outcome is geared toward what users feel, then research methods for qualitative user insights, like user interviews , are the way to go.

3. Carry out your study

It’s go time. Now you’ve got your hypothesis, identified the relevant variables, and outlined your method for testing them, you’re ready to run your study. This step involves recruiting participants for your study and reaching out to them through relevant channels like email, live website testing , or social media.

Given our hypothesis, our best bet is to conduct A/B and usability tests with a prototype that includes the additional UI elements, then compare the usability metrics to see whether users find navigation easier with or without the settings button.

We can also follow up with UX surveys to get qualitative insights and ask users how they found the task, what they preferred about each design, and to see what additional customer insights we uncover.

💡 Want more insights from your usability tests? Maze Clips enables you to gather real-time recordings and reactions of users participating in usability tests .

4. Analyze your results and compare them to your hypothesis

By this point, you’ve neatly outlined a hypothesis, chosen a research method, and carried out your study. It’s now time to analyze your findings and evaluate whether they support or reject your hypothesis.

Look at the data you’ve collected and what it means. Given that we conducted usability testing, we’ll want to look to some key usability metrics for an indication of whether the additional settings button improves usability.

For example, with the usability task of ‘ In account settings, find your profile and change your username ’, we can conduct task analysis to compare the times spent on task and misclick rates of the new design, with those same metrics from the old design.

If you also conduct follow-up surveys or interviews, you can ask users directly about their experience and analyze their answers to gather additional qualitative data . Maze AI can handle the analysis automatically, but you can also manually read through responses to get an idea of what users think about the change.

By comparing the findings to your research hypothesis, you can identify whether your research accepts or rejects your hypothesis. If the majority of users struggle with finding the settings page within usability tests, but had a higher success rate with your new prototype, you’ve proved the hypothesis.

However, it's also crucial to acknowledge if the findings refute your hypothesis rather than prove it as true. Ruling something out is just as valuable as confirming a suspicion.

In either case, make sure to draw conclusions based on the relationship between the variables and store findings in your UX research repository . You can conduct deeper analysis with techniques like thematic analysis or affinity mapping .

UX research hypotheses: four best practices to guide your research

Knowing the big steps for formulating and testing a research hypothesis ensures that your next UX research project gives you focused, impactful results and insights. But, that’s only the tip of the research hypothesis iceberg. There are some best practices you’ll want to consider when using a hypothesis to test your UX design ideas.

Here are four research hypothesis best practices to help guide testing and make your UX research systematic and actionable.

Align your hypothesis to broader business and UX goals

Before you begin to formulate your hypothesis, be sure to pause and think about how it connects to broader goals in your UX strategy . This ensures that your efforts and predictions align with your overarching design and development goals.

For example, implementing a brand new navigation menu for current account holders might work for usability, but if the wider team is focused on boosting conversion rates for first-time site viewers, there might be a different research project to prioritize.

Create clear and actionable reports for stakeholders

Once you’ve conducted your testing and proved or disproved your hypothesis, UX reporting and analysis is the next step. You’ll need to present your findings to stakeholders in a way that's clear, concise, and actionable. If your hypothesis insights come in the form of metrics and statistics, then quantitative data visualization tools and reports will help stakeholders understand the significance of your study, while setting the stage for design changes and solutions.

If you went with a research method like user interviews, a narrative UX research report including key themes and findings, proposed solutions, and your original hypothesis will help inform your stakeholders on the best course of action.

Consider different user segments

While getting enough responses is crucial for proving or disproving your hypothesis, you’ll want to consider which users will give you the highest quality and most relevant responses. Remember to consider user personas —e.g. If you’re only introducing a change for premium users, exclude testing with users who are on a free trial of your product.

You can recruit and target specific user demographics with the Maze Panel —which enables you to search for and filter participants that meet your requirements. Doing so allows you to better understand how different users will respond to your hypothesis testing. It also helps you uncover specific needs or issues different users may have.

Involve stakeholders from the start

Before testing or even formulating a research hypothesis by yourself, ensure all your stakeholders are on board. Informing everyone of your plan to formulate and test your hypothesis does three things:

Firstly, it keeps your team in the loop . They’ll be able to inform you of any relevant insights, special considerations, or existing data they already have about your particular design change idea, or KPIs to consider that would benefit the wider team.

Secondly, informing stakeholders ensures seamless collaboration across multiple departments . Together, you’ll be able to fit your testing results into your overall CX strategy , ensuring alignment with business goals and broader objectives.

Finally, getting everyone involved enables them to contribute potential hypotheses to test . You’re not the only one with ideas about what changes could positively impact the user experience, and keeping everyone in the loop brings fresh ideas and perspectives to the table.

Test your UX research hypotheses with Maze

Formulating and testing out a research hypothesis is a great way to define the scope of your UX research project clearly. It helps keep research on track by providing a single statement to come back to and anchor your research in.

Whether you run usability tests or user interviews to assess your hypothesis—Maze's suite of advanced research methods enables you to get the in-depth user and customer insights you need.

Frequently asked questions about research hypothesis

What is the difference between a hypothesis and a problem statement in UX?

A research hypothesis describes the prediction or method of solving that problem. A problem statement, on the other hand, identifies a specific issue in your design that you intend to solve. A problem statement will typically include a user persona, an issue they have, and a desired outcome they need.

How many hypotheses should a UX research problem have?

Technically, there are no limits to the amount of hypotheses you can have for a certain problem or study. However, you should limit it to one hypothesis per specific issue in UX research. This ensures that you can conduct focused testing and reach clear, actionable results.

COMMENTS

  1. How to Write a Strong Hypothesis

    5. Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  2. How to Write a Hypothesis in 6 Steps, With Examples

    A hypothesis is a statement that explains the predictions and reasoning of your research—an "educated guess" about how your scientific experiments will end. As a fundamental part of the scientific method, a good hypothesis is carefully written, but even the simplest ones can be difficult to put into words.

  3. What is a Research Hypothesis: How to Write it, Types, and Examples

    It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis. 7.

  4. How to Write a Strong Hypothesis

    Step 5: Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  5. Research Hypothesis: Definition, Types, Examples and Quick Tips

    A research hypothesis is an assumption or a tentative explanation for a specific process observed during research. Unlike a guess, research hypothesis is a calculated, educated guess proven or disproven through research methods. ... It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a ...

  6. Hypothesis Examples: How to Write a Great Research Hypothesis

    What is a hypothesis and how can you write a great one for your research? A hypothesis is a tentative statement about the relationship between two or more variables that can be tested empirically. Find out how to formulate a clear, specific, and testable hypothesis with examples and tips from Verywell Mind, a trusted source of psychology and mental health information.

  7. What is and How to Write a Good Hypothesis in Research?

    Simply put, a hypothesis is a research question that also includes the predicted or expected result of the research. Without a hypothesis, there can be no basis for a scientific or research experiment. As such, it is critical that you carefully construct your hypothesis by being deliberate and thorough, even before you set pen to paper. ...

  8. How to Write a Hypothesis

    Variables in a hypothesis. In any research hypothesis, variables play a critical role. These are the elements or factors that the researcher manipulates, controls, or measures. Understanding variables is essential for crafting a clear, testable hypothesis and for the stages of research that follow, such as data collection and analysis.

  9. What is a Research Hypothesis and How to Write a Hypothesis

    The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem. 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a 'if-then' structure. 3.

  10. How to Write a Research Hypothesis

    Research hypothesis checklist. Once you've written a possible hypothesis, make sure it checks the following boxes: It must be testable: You need a means to prove your hypothesis. If you can't test it, it's not a hypothesis. It must include a dependent and independent variable: At least one independent variable ( cause) and one dependent ...

  11. How to Write a Research Hypothesis

    The term null hypothesis refers to a research hypothesis type that assumes no statistically significant relationship exists within a set of observations or data. It represents a claim that assumes that any observed relationship is due to chance. Represented as H0, the null represents the conjecture of the research. Alternative hypothesis

  12. How To Write a Strong Research Hypothesis

    A hypothesis is a statement or an idea that can be tested to determine its validity. Essentially, it is a form of educated guesswork that helps researchers form conclusions about their data. By developing a hypothesis for a research project, you are effectively setting up the framework for further exploration.

  13. What Is A Research Hypothesis? A Simple Definition

    A research hypothesis (also called a scientific hypothesis) is a statement about the expected outcome of a study (for example, a dissertation or thesis). To constitute a quality hypothesis, the statement needs to have three attributes - specificity, clarity and testability. Let's take a look at these more closely.

  14. How to Write a Hypothesis

    Step 8: Test your Hypothesis. Design an experiment or conduct observations to test your hypothesis. Example: Grow three sets of plants: one set exposed to 2 hours of sunlight daily, another exposed to 4 hours, and a third exposed to 8 hours. Measure and compare their growth after a set period.

  15. Scientific Hypotheses: Writing, Promoting, and Predicting Implications

    What they need at the start of their research is to formulate a scientific hypothesis that revisits conventional theories, real-world processes, and related evidence to propose new studies and test ideas in an ethical way.3 Such a hypothesis can be of most benefit if published in an ethical journal with wide visibility and exposure to relevant ...

  16. Research Hypothesis In Psychology: Types, & Examples

    A research hypothesis, in its plural form "hypotheses," is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

  17. How to Write a Hypothesis 101: A Step-by-Step Guide

    Many research divides this hypothesis into two subsections: Directional ; This type of H1 predicts a specific outcome. Many researchers use this hypothesis to explore the relationship between variables rather than the groups. Non-directional; You can take a guess from the name. This type of H1 does not provide a specific prediction for the ...

  18. What is a Hypothesis

    Definition: Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation. Hypothesis is often used in scientific research to guide the design of experiments ...

  19. How to Write a Hypothesis for a Research Paper + Examples

    Ensure that your hypothesis is realistic and can be tested within the constraints of your available resources, time, and ethical considerations. Avoid value judgments: Be neutral and objective. Avoid including personal beliefs, value judgments, or subjective opinions. Stick to empirical statements based on evidence.

  20. The Role of Hypotheses in Research Studies: A Simple Guide

    Essentially, a hypothesis is a tentative statement that predicts the relationship between two or more variables in a research study. It is usually derived from a theoretical framework or previous ...

  21. Where to put hypothesis in research proposal

    1) Restate the research question using the exact wording as in Chapter I 2) If the research question is testable, state the null hypothesis 3) State the type of statistical test (s) performed 4) Report the statistics and conclusions, followed by any appropriate table (s) Numbers and tables are not self-evident.

  22. Introduction: Hypothesis/Thesis

    Hypothesis or Thesis The first few paragraphs of a journal article serve to introduce the topic, to provide the author's hypothesis or thesis, and to indicate why the research was done. A thesis or hypothesis is not always clearly labled; you may need to read through the introductory paragraphs to determine what the authors are proposing.

  23. How to Create a Research Hypothesis for UX: Step-by-Step

    Here are the four steps for writing and testing a UX research hypothesis to help you make informed, data-backed decisions for product design and development. 1. Formulate your hypothesis. Start by writing out your hypothesis in a way that's specific and relevant to a distinct aspect of your user or product experience.