What is 5G?

5G cell tower

Fifth time’s the charm: 5G—or fifth-generation wireless technology— is powering the Fourth Industrial Revolution . Sure, 5G is faster than 4G. But 5G is more than just (a lot) faster: the connectivity made possible with 5G is significantly more secure and more stable than its predecessors. Plus, 5G enables data to travel from one place to another with a significantly shorter delay between data submission and arrival—this delay is known as latency.

Here are a few big numbers from the International Telecommunications Union . 5G networks aim to deliver:

  • 1,000 times higher mobile data volume per area
  • 100 times the number of connected devices
  • 100 times higher user data rate
  • ten times longer battery life for low-power massive-machine communications
  • five times reduced end-to-end latency

Here’s how it works: like all cellular networks, the service area of 5G networks is divided into geographic sub-areas called cells. Each cell has local antennae, through which all wireless devices in the cell are connected to the internet and telephone network via radio waves. To achieve its very high speeds, 5G utilizes low- and midbands on the radio spectrum  (below six gigahertz), as well as whole new bands of the radio spectrum . These are so-called “millimeter waves,” broadcast at frequencies between 30 and 300 gigahertz, which have previously been used only for communication between satellites and radar systems.

Cell phone companies began deploying 5G in 2019. In the United States, 5G coverage is already available in many areas . And, while previous generation 2G and 3G technology is still in use, 5G adoption is accelerating: according to various predictions, 5G networks will have billions of subscribers by 2025.

But 5G can do more than enable faster loading of cat videos. This new speed and responsiveness—and the connectivity solutions it makes possible—is poised to transform a wide variety of industries.

Learn more about our Technology, Media & Telecommunications Practice .

How will 5G be used?

To date, 5G will enable four key use-case archetypes , which will require 5G to deliver on its promise of evolutionary change in network performance. They are:

  • Enhanced mobile broadband . The faster speed, lower latency, and greater capacity 5G makes possible could enable on-the-go, ultra-high-definition video, virtual reality, and other advanced applications.
  • Internet of Things (IoT) . Existing cellular networks are not able to keep up with the explosive growth in the number of connected devices, from smart refrigerators to devices monitoring battery levels on manufacturing shop floors. 5G will unlock the potential of IoT by enabling exponentially more connections at very low power.
  • Mission-critical control . Connected devices are increasingly used in applications that require absolute reliability, such as vehicle safety systems or medical devices. 5G’s lower latency and higher resiliency mean that these time-critical applications will be increasingly reliable.
  • Fixed wireless access . The speeds made possible by 5G make it a viable alternative to wired broadband in many markets, particularly those without fiber optics.

How might 5G and other advanced technologies impact the world?

If 5G is deployed across just four commercial domains—mobility, healthcare, manufacturing, and retail—it could boost global GDP by up to $2 trillion by 2030. Most of this value will be captured with creative applications of advanced connectivity.

Here are the four commercial domains with some of the largest potential to capture higher revenues or cost efficiencies:

  • Connectivity will be the foundation for increasingly intelligent mobility systems, including carsharing services, public transit, infrastructure, hardware and software, and more. Connectivity could create new revenue streams through preventive maintenance, improved navigation and carpooling services, and personalized “infotainment” offerings.
  • Devices and advanced networks with improved connectivity could transform the healthcare industry. Seamless data flow and low-latency networks could mean better robotic surgery. AI-powered decision support tools can make faster and more accurate diagnoses, as well as automate tasks so that caregivers can spend more time with patients. McKinsey analysis estimates that these use cases together could generate up to $420 billion in global GDP impact by 2030 .
  • Low-latency and private 5G networks can power highly precise operations in manufacturing and other advanced industries . Smart factories powered by AI , analytics, and advanced robotics can run at maximum efficiency, optimizing and adjusting processes in real time. New features like automated guided vehicles and computer-vision-enhanced bin picking and quality control require the kind of speed and latency provided by high-band 5G. By 2030, the GDP impact in manufacturing could reach up to $650 billion .
  • Retailers can use technology like sensors, trackers, and computer vision to manage inventories, improve warehouse operations, and coordinate along the supply chain. Use cases like connectivity-enhanced in-store experiences and real-time personalized recommendations could boost global GDP up to $700 billion by 2030 .

The use cases identified in these commercial domains alone could boost global GDP by up to $2 trillion by 2030 . The value at stake could ultimately run trillions of dollars higher across the entire global economy.

Beyond industry, 5G connectivity has important implications for society. Enabling more people to plug into global flows of information, communication, and services could add another $1.5 trillion to $2 trillion to GDP . This stands to unlock greater human potential and prosperity, particularly in developing nations .

Learn more about our Technology, Media & Telecommunications  Practice.

What are advanced connectivity and frontier connectivity?

Advanced connectivity is propelled by the continued evolution  of existing connectivity technologies, as networks are built out and adoption grows. For instance, providers are upgrading existing 4G infrastructure with 5G network overlays, which generally offer improvements in speed and latency while supporting a greater density of connected devices. At the same time, land-based fiber optic networks continue to expand, enabling faster data connections all over the world.

Circular, white maze filled with white semicircles.

Introducing McKinsey Explainers : Direct answers to complex questions

On the other hand, frontier technologies like millimeter-wave 5G and low-earth-orbit satellite constellations offer a more radical leap forward . Millimeter-wave 5G is the ultra-fast mobile option, but comes with significant deployment challenges. Low-earth-orbit (LEO) satellites could deliver a breakthrough in breadth of coverage. LEO satellites work by beaming broadband down from space, bringing coverage to remote parts of the world where physical internet infrastructure doesn’t make sense for a variety of reasons. Despite the promise of LEO technology, challenges do remain, and no commercial services are yet available.

How are telecommunications players grappling with the transition to 5G?

5G promises better connectivity for consumers and organizations. Network providers, on the other hand, are resigned  to higher costs to deploy 5G infrastructure before they can reap the benefits. This cycle has happened before: with the advent of 4G, telcos in Europe and Latin America reported decreased revenues.

Given these realities, telecommunications players are working to develop their 5G investment strategies . In order to achieve the speed, latency, and reliability required by most advanced applications, network providers will need to invest in all network domains, including spectrum, radio access network infrastructure, transmission, and core networks. More specifically, operators will increasingly share more parts of the network, including towers, backhaul, and even spectrum and radio access, through so-called MOCN (Multi-Operator Core Network) or MORAN (Multi-Operator Radio Access Network) deals. This is a 5G-specific way for operators to cope with higher investment burdens at flat revenues.

Some good news: 5G technology is largely built on 4G networks, which means that mobile operators can simply evolve their infrastructure investment  rather than start from scratch. For instance, operators could begin by upgrading the capacity of their existing 4G network by refarming a portion of their 2G and 3G spectrum, thereby delaying investments in 5G. This would allow operators to minimize investments while the revenue potential of 5G remains uncertain.

How will telecommunications players monetize 5G in the B2C market?

The rise of 5G also presents an opportunity for telecommunications players to shift their customer engagement. As they reckon with the costs of 5G, they also must reimagine how to charge customers for 5G . The B2B 5G revolution is already under way; in the B2C market, the value proposition of 5G is less clear. That’s because there is no 5G use case compelling enough, at the present time, to transform the lives of people not heavily invested in gaming, for instance.

But despite the uncertainty, McKinsey has charted a clear path  for telecommunications organizations to monetize 5G in the B2C sector. There are three models telcos might pursue, which could increase average revenue per user by up to 20 percent:

  • Impulse purchases and “business class” plans . 5G technology will allow telcos to move away from standard monthly subscriptions toward flexible plans that allow for customers to upgrade network performance when and where they feel the urge. Business class plans could feature premium network conditions at all times. According to McKinsey analysis, 7 percent of customers  are already ready to use 5G boosters, and would use them an average of seven times per month if each boost cost $1.
  • Selling 5G-enabled experiences . The speeds and latency of 5G make possible streamlined and seamless experiences such as multiplayer cloud gaming, real-time translation, and augmented reality (AR) sports streaming. McKinsey research shows that customers are willing to pay  for these 5G-enabled experiential use cases, and more.
  • Using partnerships to deliver 5G-enabled experiences . When assessing customer willingness to pay for 5G cloud gaming, McKinsey analysis showed that 74 percent of customers  would prefer buying a 5G service straight from the game app rather than from their mobile provider. To create a seamless experience for customers, telcos could embed 5G connectivity directly into their partners’ apps or devices. This could greatly expand telecommunications organizations’ customer base.

How has COVID-19 impacted connectivity IoT?

For one thing, the pandemic has created the need for applications with the advanced connectivity that only 5G can provide. Among other things, 5G enables the types of applications that help leaders understand whether their workforces are safe and which devices have been connected to the network and by whom.

Advanced connectivity technologies like 5G also stand to enable remote healthcare , although, ironically, the pandemic has also eaten up the resources necessary to create the infrastructure to implement it.

During the pandemic, Industry 4.0 frontrunners have done very well. This illustrates the fact that digital first businesses are nimbler and better prepared to react to unforeseen challenges.

Learn more about our Healthcare Systems & Services  Practice.

How can advanced electronics companies and industrials benefit from 5G?

The 5G Internet of Things (IoT)  B2B market, and its development over the coming years, offer significant opportunities for advanced electronics organizations. 5G IoT refers to industrial use-case archetypes enabled by the faster, more stable, and more secure connectivity available with 5G. McKinsey analyzed the events surrounding the introduction of 4G and other technologies, looking for clues about how 5G might evolve in the industry.

We found that many companies will derive great value from 5G IoT, but it will come in waves . The first 5G IoT use-case archetypes to gain traction will be those related to enhanced mobile broadband, followed shortly thereafter by use cases for ultra-reliable, low-latency communication. Finally, use cases for massive machine-type communication will take several more years. The businesses best placed to benefit from the growth of 5G include mobile operators, network providers, manufacturing companies, and machinery and industrial automation companies.

The B2B sector is especially well placed to benefit from 5G IoT. The most relevant short-term opportunities for 5G IoT involve Industry 4.0 , or the digitization of manufacturing and other production processes. The Industry 4.0 segment will account for sales of about 22 million 5G IoT units by 2030, with most applications related to manufacturing.

In order to take advantage of the opportunity, advanced electronics companies should look now to revamping their strategies . In the short-term, they should focus on B2B cases that are similar to those now being deployed in the B2C sector. Looking ahead, they should shift their focus toward developing hardware and software tailored to specific applications. But expanding the business field is always something that should be done with great care and consideration.

How will 5G impact the manufacturing industry?

There are five potential applications that are particularly relevant  for manufacturing organizations:

  • Cloud control of machines . In the past, automation of machines in factories has relied on controllers that were physically installed on or near machines, which would then send information to computer networks. With 5G, this monitoring can in theory be done in the cloud, although these remain edge cases for now.
  • Augmented reality . Seamless AR made possible by 5G connectivity will ultimately replace standard operating procedures currently on paper or video. These will help shop-floor workers undertake advanced tasks without waiting for specialists.
  • Perceptive AI eyes on the factory floor . 5G will allow for live video analytics based on real-time video data streaming to the cloud.
  • High-speed decisioning. The best-run factories rely on massive data lakes to make decisions. 5G accelerates the decision-cycle time, allowing massive amounts of data to be collected, cleaned, and analyzed in close to real time.
  • Shop-floor IoTs . The addition of sensors to machines on factory floors means more data than ever before. The speeds made possible by 5G will allow for the operationalization of these new data.

Learn more about our Operations  Practice.

For a more in-depth exploration of these topics, see McKinsey’s Technology, Media & Telecommunications Practice. Also check out 5G-related job opportunities if you’re interested in working at McKinsey.

Articles referenced:

  • “ Unlocking the value of 5G in the B2C marketplace ,” November 5, 2021, Ferry Grijpink , Jesper Larsson, Alexandre Ménard , and Konstantin Pell
  • “ Connected world: An evolution in connectivity beyond the 5G revolution ,” February 20, 2020, Ferry Grijpink , Eric Kutcher , Alexandre Ménard , Sree Ramaswamy, Davide Schiavotto , James Manyika , Michael Chui , Rob Hamill, and Emir Okan
  • The 5G era: New Horizons for advanced electronics in industrial companies , February 21, 2020, Ondrej Burkacky , Stephanie Lingemann, Alexander Hoffmann, and Markus Simon
  • “ Five ways that 5G will revolutionize manufacturing ,” October 18, 2019, Enno de Boer , Sid Khanna , Andy Luse , Rahul Shahani , and Stephen Creasy
  • “ Cutting through the 5G hype: Survey shows telcos’ nuanced views ,” February 13, 2019, Ferry Grijpink , Tobias Härlin, Harrison Lung, and Alexandre Ménard
  • “ The road to 5G: The inevitable growth of infrastructure cost ,” February 23, 2018, Ferry Grijpink , Alexandre Ménard , Halldor Sigurdsson , and Nemanja Vucevic
  • “ Are you ready for 5G? ,” February 22, 2018, Mark Collins, Arnab Das, Alexandre Ménard , and Dev Patel

5G cell tower

Want to know more about 5G?

Related articles.

Connected world: A broader evolution beyond the 5G revolution

Connected world: An evolution in connectivity beyond the 5G revolution

Young woman locating direction with augmented reality technology on smartphone on street.

Unlocking the value of 5G in the B2C marketplace

Smart home symbol

What is the Internet of Things?

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Open access
  • Published: 16 March 2021

5G mobile networks and health—a state-of-the-science review of the research into low-level RF fields above 6 GHz

  • Ken Karipidis   ORCID: orcid.org/0000-0001-7538-7447 1 ,
  • Rohan Mate 1 ,
  • David Urban 1 ,
  • Rick Tinker 1 &
  • Andrew Wood 2  

Journal of Exposure Science & Environmental Epidemiology volume  31 ,  pages 585–605 ( 2021 ) Cite this article

164k Accesses

65 Citations

373 Altmetric

Metrics details

The increased use of radiofrequency (RF) fields above 6 GHz, particularly for the 5 G mobile phone network, has given rise to public concern about any possible adverse effects to human health. Public exposure to RF fields from 5 G and other sources is below the human exposure limits specified by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). This state-of-the science review examined the research into the biological and health effects of RF fields above 6 GHz at exposure levels below the ICNIRP occupational limits. The review included 107 experimental studies that investigated various bioeffects including genotoxicity, cell proliferation, gene expression, cell signalling, membrane function and other effects. Reported bioeffects were generally not independently replicated and the majority of the studies employed low quality methods of exposure assessment and control. Effects due to heating from high RF energy deposition cannot be excluded from many of the results. The review also included 31 epidemiological studies that investigated exposure to radar, which uses RF fields above 6 GHz similar to 5 G. The epidemiological studies showed little evidence of health effects including cancer at different sites, effects on reproduction and other diseases. This review showed no confirmed evidence that low-level RF fields above 6 GHz such as those used by the 5 G network are hazardous to human health. Future experimental studies should improve the experimental design with particular attention to dosimetry and temperature control. Future epidemiological studies should continue to monitor long-term health effects in the population related to wireless telecommunications.

Similar content being viewed by others

essay on 5g technology and its impact

Principal component analysis

essay on 5g technology and its impact

Bayesian statistics and modelling

essay on 5g technology and its impact

Spike sorting with Kilosort4

Introduction.

There are continually emerging technologies that use radiofrequency (RF) electromagnetic fields particularly in telecommunications. Most telecommunication sources currently operate at frequencies below 6 GHz, including radio and TV broadcasting and wireless sources such as local area networks and mobile telephony. With the increasing demand for higher data rates, better quality of service and lower latency to users, future wireless telecommunication sources are planned to operate at frequencies above 6 GHz and into the ‘millimetre wave’ range (30–300 GHz) [ 1 ]. Frequencies above 6 GHz have been in use for many years in various applications such as radar, microwave links, airport security screening and in medicine for therapeutic applications. However, the planned use of millimetre waves by future wireless telecommunications, particularly the 5th generation (5 G) of mobile networks, has given rise to public concern about any possible adverse effects to human health.

The interaction mechanisms of RF fields with the human body have been extensively described and tissue heating is the main effect for RF fields above 100 kHz (e.g. HPA; SCENHIR) [ 2 , 3 ]. RF fields become less penetrating into body tissue with increasing frequency and for frequencies above 6 GHz the depth of penetration is relatively short with surface heating being the predominant effect [ 4 ].

International exposure guidelines for RF fields have been developed on the basis of current scientific knowledge to ensure that RF exposure is not harmful to human health [ 5 , 6 ]. The guidelines developed by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) in particular form the basis for regulations in the majority of countries worldwide [ 7 ]. In the frequency range above 6 GHz and up to 300 GHz the ICNIRP guidelines prevent excessive heating at the surface of the skin and in the eye.

Although not as extensively studied as RF fields at lower frequencies, a number of studies have investigated the effects of RF fields at frequencies above 6 GHz. Previous reviews have reported studies investigating frequencies above 6 GHz that show effects although many of the reported effects occurred at levels greater than the ICNIRP guidelines [ 1 , 8 ]. Given the public concern over the planned roll-out of 5 G using millimetre waves, it is important to determine whether there are any related adverse health consequences at levels encountered in the environment. The aim of this paper is to present a state-of-the-science review of the bioeffects research into RF fields above 6 GHz at low levels of exposure (exposure below the occupational limits of the ICNIRP guidelines). A meta-analysis of in vitro and in vivo studies, providing quantitative effect estimates for each study, is presented separately in a companion paper [ 9 ].

The state-of-the-science review included a comprehensive search of all available literature and examined the extent, range and nature of evidence into the bioeffects of RF fields above 6 GHz, at levels below the ICNIRP occupational limits. The review consisted of biomedical studies on low-level RF electromagnetic fields from 6 GHz to 300 GHz published at any starting date up to December 2019. Studies were initially found by searching the databases PubMed, EMF-Portal, Google Scholar, Embase and Web of Science using the search terms “millimeter wave”, “millimetre wave”, “gigahertz”, “GHz” and “radar”. We further searched major reviews published by health authorities on RF and health [ 2 , 3 , 10 , 11 ]. Finally, we searched the reference list of all the studies included. Studies were only included if the full paper was available in English.

Although over 300 studies were considered, this review was limited to experimental studies (in vitro, in vivo, human) where the stated RF exposure level was at or below the occupational whole-body limits specified by the ICNIRP (2020) guidelines: power density (PD) reference level of 50 W/m 2 or specific absorption rate (SAR) basic restriction of 0.4 W/kg. Since the PD occupational limits for local exposure are more relevant to in vitro studies, and since these limits are higher, we have included those studies with PD up to 100–200 W/m 2 , depending on frequency. The review included studies below the ICNIRP general public limits that are lower than the occupational limits.

The review also included epidemiological studies (cohort, case-control, cross-sectional) investigating exposure to radar but excluded studies where the stated radar frequencies were below 6 GHz. Epidemiological studies on radar were included as they represent occupational exposure below the ICNIRP guidelines. Case reports or case series were excluded. Studies investigating therapeutical outcomes were also excluded unless they reported specific bio-effects.

The state-of-the-science review appraised the quality of the included studies, but unlike a systematic review it did not exclude any studies based on quality. The review also identified gaps in knowledge for future investigation and research. The reporting of results in this paper is narrative with tabular accompaniment showing study characteristics. In this paper, the acronym “MMWs” (or millimetre waves) is used to denote RF fields above 6 GHz.

The review included 107 experimental studies (91 in vitro, 15 in vivo, and 1 human) that investigated various bioeffects, including genotoxicity, cell proliferation, gene expression, cell signalling, membrane function and other effects. The exposure characteristics and biological system investigated in experimental studies for the various bioeffects are shown in Tables  1 – 6 . The results of the meta-analysis of the in vitro and in vivo studies are presented separately in Wood et al. [ 9 ].

Genotoxicity

Studies have examined the effects of exposing whole human or mouse blood samples or lymphocytes and leucocytes to low-level MMWs to determine possible genotoxicity. Some of the genotoxicity studies have looked at the possible effects of MMWs on chromosome aberrations [ 12 , 13 , 14 ]. At exposure levels below the ICNIRP limits, the results have been inconsistent, with either a statistically significant increase [ 14 ] or no significant increase [ 12 , 13 ] in chromosome aberrations.

MMWs do not penetrate past the skin therefore epithelial and skin cells have been a common model of examination for possible genotoxic effects. DNA damage in a number of epithelial and skin cell types and at varied exposure parameters both below and above the ICNIRP limits have been examined using comet assays [ 15 , 16 , 17 , 18 , 19 ]. Despite the varied exposure models and methods used, no statistically significant evidence of DNA damage was identified in these studies. Evidence of genotoxic damage was further assessed in skin cells by the occurrence of micro-nucleation. De Amicis et al. [ 18 ] and Franchini et al. [ 19 ] reported a statistically significant increase in micro-nucleation, however, Hintzsche et al. [ 15 ] and Koyama et al. [ 16 , 17 ] did not find an effect. Two of the studies also examined telomere length and found no statistically significant difference between exposed and unexposed cells [ 15 , 19 ]. Last, a Ukrainian research group examined different skin cell types in three studies and reported an increase in chromosome condensation in the nucleus [ 20 , 21 , 22 ]; these results have not been independently verified. Overall, there was no confirmed evidence of MMWs causing genotoxic damage in epithelial and skin cells.

Three studies from an Indian research group have examined indicators of DNA damage and reactive oxygen species (ROS) production in rats exposed in vivo to MMWs. The studies reported DNA strand breaks based on evidence from comet assays [ 23 , 24 ] and changes in enzymes that control the build-up of ROS [ 24 ]. Kumar et al. also reported an increase in ROS production [ 25 ]. All the studies from this research group had low animal numbers (six animals exposed) and their results have not been independently replicated. An in vitro study that investigated ROS production in yeast cultures reported an increase in free radicals exposed to high-level but not low-level MMWs [ 26 ].

Other studies have looked at the effect of low-level MMWs on DNA in a range of different ways. Two studies reported that MMWs induce colicin synthesis and prophage induction in bacterial cells, both of which are suggested as indicative of DNA damage [ 27 , 28 ]. Another study suggested that DNA exposed to MMWs undergoes polymerase chain reaction synthesis differently than unexposed DNA [ 29 ], although no statistical analysis was presented. Hintzsche et al. reported statistically significant occurrence of spindle disturbance in hybrid cells exposed to MMWs [ 30 ]. Zeni et al. found no evidence of DNA damage or alteration of cell cycle kinetics in blood cells exposed to MMWs [ 31 ]. Last, two studies from a Russian research group examined the protective effects of MMWs where mouse blood leukocytes were pre-exposed to low-level MMWs and then to X-rays [ 32 , 33 ]. The studies reported that there was statistically significant less DNA damage in the leucocytes that were pre-exposed to MMWs than those exposed to X-rays alone. Overall, these studies had no independent replication.

Cell proliferation

A number of studies have examined the effects of low-level MMWs on cell proliferation and they have used a variety of cellular models and methods of investigation. Studies have exposed bacterial cells to low-level MMWs alone or in conjunction with other agents. Two early studies reported changes in the growth rate of E. coli cultures exposed to low-level MMWs; however, both of these studies were preliminary in nature without appropriate dosimetry or statistical analysis [ 34 , 35 ]. Two studies exposed E. coli cultures and one study exposed yeast cell cultures to MMWs alone, and before and after UVC exposure [ 36 , 37 , 38 ]. All three studies reported that MMWs alone had no significant effect on bacterial cell proliferation or survival. Rojavin et al., however, did report that when E. coli bacteria were exposed to MMWs after UVC sterilisation treatment, there was an increase in their survival rate [ 36 ]. The authors suggested this could be due to the MMW activation of bacterial DNA repair mechanisms. Other studies by an Armenian research group reported a reduction in E. coli cell growth when exposed to MMWs [ 39 , 40 , 41 , 42 , 43 , 44 , 45 ]. These studies reported that when E.coli cultures were exposed to MMWs in the presence of antibiotics, there was a greater reduction in the bacterial growth rate and an increase in the time between bacterial cell division compared with antibiotics exposure alone. Two of these studies investigated if these effects could be due to a reduction in the activity of the E. coli ATPase when exposed to MMWs. The studies reported exposure to MMWs in combination with particular antibiotics changed the concentration of H + and K + ions in the E.coli cells, which the authors linked to changes in ATPase activity [ 43 , 44 ]. Overall, the results from studies on cell proliferation of bacterial cells have been inconsistent with different research groups reporting conflicting results.

Studies have also examined how exposure to low-level MMWs could affect cell proliferation in yeast. Two early studies by a German research group reported changes in yeast cell growth [ 46 , 47 ]. However, another two independent studies did not report any changes in the growth rate of exposed yeast [ 48 , 49 ]. Furia et al. [ 48 ] noted that the Grundler and Keilmann studies [ 46 , 47 ] had a number of methodical issues, which may have skewed their results, such as poor exposure control and analysis of results. Another study exposed yeast to MMWs before and after UVC exposure and reported that MMWs did not change the rates of cell survival [ 37 ].

Studies have also examined the possible effect of low-level MMWs on tumour cells with some studies reporting a possible anti-proliferative effect. Chidichimo et al. reported a reduction in the growth of a variety of tumour cells exposed to MMWs; however, the results of the study did not support this conclusion [ 50 ]. An Italian research group published a number of studies investigating proliferation effects on human melanoma cell lines with conflicting results. Two of the studies reported reduced growth rate [ 51 , 52 ] and a third study showed no change in proliferation or in the cell cycle [ 53 ]. Beneduci et al. also reported changes in the morphology of MMW exposed cells; however, the authors did not present quantitative data for these reported changes [ 51 , 52 ]. In another study by the same Italian group, Beneduci et al. reported that exposure to low-level MMWs had a greater than 40% reduction in the number of viable erythromyeloid leukaemia cells compared with controls; however, there was no significant change in the number of dead cells [ 54 ]. More recently, Yaekashiwa et al. reported no statistically significant effect in proliferation or cellular activity in glioblastoma cells exposed to low-level MMWs [ 55 ].

Other studies did not report statistically significant effects on proliferation in chicken embryo cell cultures, rat nerve cells or human skin fibroblasts exposed to low-level MMWs [ 55 , 56 , 57 ].

Gene expression

Some studies have investigated whether low-level MMWs can influence gene expression. Le Queument et al. examined a multitude of genes using microarray analyses and reported transient expression changes in five of them. However, the authors concluded that these results were extremely minor, especially when compared with studies using microarrays to study known pollutants [ 58 ]. Studies by a French research group have examined the effect of MMWs on stress sensitive genes, stress sensitive gene promotors and chaperone proteins in human glial cell lines. In two studies, glial cells were exposed to low-level MMWs and there was no observed modification in the expression of stress sensitive gene promotors when compared with sham exposed cells [ 59 , 60 , 61 ]. Further, glial cells were examined for the expression of the chaperone protein clusterin (CLU) and heat shock protein HSP70. These proteins are activated in times of cellular stress to maintain protein functions and help with the repair process [ 60 ]. There was no observed modification in gene expression of the chaperone proteins. Other studies have examined the endoplasmic reticulum of glial cells exposed to MMWs [ 62 , 63 ]. The endoplasmic reticulum is the site of synthesis and folding of secreted proteins and has been shown to be sensitive to environmental insults [ 62 ]. The authors reported that there was no elevation in mRNA expression levels of endoplasmic reticulum specific chaperone proteins. Studies of stress sensitive genes in glial cells have consistently shown no modification due to low-level MMW exposure [ 59 , 60 , 61 , 62 , 63 ].

Belyaev and co-authors have studied a possible resonance effect of low-level MMWs primarily on Escherichia Coli (E. coli) cells and cultures. The Belyaev research group reported that the resonance effect of MMWs can change the conformation state of chromosomal DNA complexes [ 64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 72 , 73 , 74 ]; however, most of these experiments were not temperature controlled. This resonance effect was not supported by earlier experiments on a number of different cell types conducted by Gandhi et al. and Bush et al. [ 75 , 76 ].

The results of Belyaev and co-workers have primarily been based on evidence from the anomalous viscosity time dependence (AVTD) method [ 77 ]. The research group argued that changes in the AVTD curve can indicate changes to the DNA conformation state and DNA-protein bonds. Belyaev and co-workers have reported in a number of studies that differences in the AVTD curve were dependent on several parameter including MMW characteristics (frequency, exposure level, and polarisation), cellular concentration and cell growth rate [ 69 , 71 , 72 , 73 , 74 ]. In some of the Belyaev studies E. coli were pre-exposed to X-rays, which was reported to change the AVTD curve; however, if the cells were then exposed to MMWs there was no longer a change in the AVTD curve [ 64 , 65 , 66 , 67 ]. The authors suggested that exposure to MMWs increased the rate of recovery in bacterial cells previously exposed to ionising radiation. The Belyaev group also used rat thymocytes in another study and they concluded that the results closely paralleled those found in E. coli cells [ 67 ]. The studies on the DNA conformation state change relied heavily on the AVTD method that has only been used by the Balyaev group and has not been independently validated [ 78 ].

Cell signalling and electrical activity

Studies examining effects of low-level MMWs on cell signalling have mainly involved MMW exposure to nervous system tissue of various animals. An in vivo study on rats recorded extracellular background electrical spike activity from neurons in the supraoptic nucleus of the hypothalamus after MMW exposure [ 79 ]. The study reported that there were changes in inter-spike interval and spike activity in the cells of exposed animals when compared with controls. There was also a mixture of significant shifts in neuron population proportions and spike frequency. The effect on the regularity of neuron spike activity was greater at higher frequencies. An in vitro study on rat cortical tissue slices reported that neuron firing rates decreased in half of the samples exposed to low-level MMWs [ 80 ]. The width of the signals was also decreased but all effects were short lived. The observed changes were not consistent between the two studies, but this could be a consequence of different brain regions being studied.

In vitro experiments by a Japanese research group conducted on crayfish exposed the dissected optical components and brain to MMWs [ 81 , 82 ]. Munemori and Ikeda reported that there was no significant change in the inter-spike intervals or amplitude of spontaneous discharges [ 81 ]. However, there was a change in the distribution of inter-spike intervals where the initial standard deviation decreased and then restored in a short time to a rhythm comparable to the control. A follow-up study on the same tissues and a wide range of exposure levels (many above the ICNIRP limits) reported similar results with the distribution of spike intervals decreasing with increasing exposure level [ 82 ]. These results on action potentials in crayfish tissue have not been independently investigated.

Mixed results were reported in experiments conducted by a US research group on sciatic frog nerve preparations. These studies applied electrical stimulation to the nerve and examined the effect of MMWs on the compound action potentials (CAPs) conductivity through the neurological tissue fibre. Pakhomov et al. found a reduction in CAP latency accompanied by an amplitude increase for MMWs above the ICNIRP limits but not for low-level MMWs [ 83 ]. However, in two follow-up studies, Pakhomov et al. reported that the attenuation in amplitude of test CAPs caused by high-rate stimulus was significantly reduced to the same magnitude at various MMW exposure levels [ 84 , 85 ]. In all of these studies, the observed effect on the CAPs was temporal and reversible, but there were implications of a frequency specific resonance interaction with the nervous tissue. These results on action potentials in frog sciatic nerves have not been investigated by others.

Other common experimental systems involved low-level MMW exposure to isolated ganglia of leeches. Pikov and Siegel reported that there was a decrease in the firing rate in one of the tested neurons and, through the measurement of input resistance in an inserted electrode, there was a transient dose-dependent change in membrane permeability [ 86 ]. However, Romanenko et al. found that low-level MMWs did not cause suppression of neuron firing rate [ 87 ]. Further experiments by Romanenko et al. reported that MMWs at the ICNIRP public exposure limit and above reported similar action potential firing rate suppression [ 88 ]. Significant differences were reported between MMW effects and effects due to an equivalent rise in temperature caused by heating the bathing solution by conventional means.

Membrane effects

Studies examining membrane interactions with low-level MMWs have all been conducted at frequencies above 40 GHz in in vitro experiments. A number of studies investigated membrane phase transitions involving exposure to a range of phospholipid vesicles prepared to mimic biological cell membranes. One group of studies by an Italian research group reported effects on membrane hydration dynamics and phase transition [ 89 , 90 , 91 ]. Observations included transition delays from the gel to liquid phase or vice versa when compared with sham exposures maintained at the same temperature; the effect was reversed after exposure. These reported changes remain unconfirmed by independent groups.

A number of studies investigated membrane permeability. One study focussed on Ca 2+ activated K + channels on the membrane surface of cultured kidney cells of African Green Marmosets [ 92 ]. The study reported modifications to the Hill coefficient and apparent affinity of the Ca 2+ by the K + channels. Another study reported that the effectiveness of a chemical to supress membrane permeability in the gap junction was transiently reduced when the cells were exposed to MMWs [ 93 , 94 ]. Two studies by one research group reported increases in the movement of molecules into skin cells during MMW exposure and suggested this indicates increased cell membrane permeability [ 21 , 91 ]. Permeability changes based on membrane pressure differences were also investigated in relation to phospholipid organisation [ 95 ]. Although there was no evidence of effects on phospholipid organisation on exposed model membranes, the authors reported a measurable difference in membrane pressure at low exposure levels. Another study reported neuron shrinkage and dehydration of brain tissues [ 96 ]. The study reported this was due to influences of low-level MMWs on the cellular bathing medium and intracellular water. Further, the authors suggested this influence of MMWs may have led to formation of unknown messengers, which are able to modulate brain cell hydration. A study using an artificial axon system consisting of a network of cells containing aqueous phospholipid vesicles reported permeability changes with exposure to MMWs by measuring K + efflux [ 97 ]. In this case, the authors emphasised limitations in applying this model to processes within a living organism. The varied effects of low-level MMWs on membrane permeability lack replication.

Other studies have examined the shape or size of vesicles to determine possible effects on membrane permeability. Ramundo-Orlando et al., reported effects on the shape of giant unilamellar vesicles (GUVs), specifically elongation, attributed to permeability changes [ 98 ]. However, another study reported that only smaller diameter vesicles demonstrated a statistically significant change when exposed to MMWs [ 99 ]. A study by Cosentino et al. examined the effect of MMWs on the size distributions of both large unilamellar vesicles (LUVs) and GUVs in in vitro preparations [ 100 ]. It was reported that size distribution was only affected when the vesicles were under osmotic stress, resulting in a statistically significant reduction in their size. In this case, the effect was attributed to dehydration as a result of membrane permeability changes. There is, generally, lack of replication on physical changes to phospholipid vesicles due to low-level MMWs.

Studies on E. coli and E. hirae cultures have reported resonance effects on membrane proteins and phospholipid constituents or within the media suspension [ 39 , 40 , 41 , 42 ]. These studies observed cell proliferation effects such as changes to cell growth rate, viability and lag phase duration. These effects were reported to be more pronounced at specific MMW frequencies. The authors suggested this could be due to a resonance effect on the cell membrane or the suspension medium. Torgomyan et al. and Hovnanyan et al. reported similar changes to proliferation that they attributed to changes in membrane permeability from MMW exposure [ 43 , 45 ]. These experiments were all conducted by an Armenian research group and have not been replicated by others.

Other effects

A number of studies have reported on the experimental results of other effects. Reproductive effects were examined in three studies on mice, rats and human spermatozoa. An in vivo study on mice exposed to low-level MMWs reported that spermatogonial cells had significantly more metaphase translocation disturbances than controls and an increased number of cells with unpaired chromosomes [ 101 ]. Another in vivo study on rats reported increased morphological abnormalities to spermatozoa following exposure, however, there was no statistical analysis presented [ 102 ]. Conversely, an in vitro study on human spermatozoa reported that there was an increase in motility after a short time of exposure to MMWs with no changes in membrane integrity and no generation of apoptosis [ 103 ]. All three of these studies looked at different effects on spermatozoa making it difficult to make an overall conclusion. A further two studies exposed rats to MMWs and examined their sperm for indicators of ROS production. One study reported both increases and decreases in enzymes that control the build-up of ROS [ 104 ]. The other study reported a decrease in the activity of histone kinase and an increase in ROS [ 105 ]. Both studies had low animal numbers (six animals exposed) and these results have not been independently replicated.

Immune function was also examined in a limited number of studies focussing on the effects of low-level MMWs on antigens and antibody systems. Three studies by a Russian research group that exposed neutrophils to MMWs reported frequency dependant changes in ROS production [ 106 , 107 , 108 ]. Another study reported a statistically significant decrease in antigen binding to antibodies when exposed to MMWs [ 109 ]; the study also reported that exposure decreased the stability of previously formed antigen–antibody complexes.

The effect on fatty acid composition in mice exposed to MMWs has been examined by a Russian research group using a number of experimental methods [ 110 , 111 , 112 ]. One study that exposed mice afflicted with an inflammatory condition to low-level MMWs reported no change in the fatty acid concentrations in the blood plasma. However, there was a significant increase in the omega-3 and omega-6 polyunsaturated fatty acid content of the thymus [ 110 ]. Another study exposed tumour-bearing mice and reported that monounsaturated fatty acids decreased and polyunsaturated fatty acids increased in both the thymus and tumour tissue. These changes resulted in fatty acid composition of the thymus tissue more closely resembling that of the healthy control animals [ 111 ]. The authors also examined the effect of exposure to X-rays of healthy mice, which was reported to reduce the total weight of the thymus. However, when the thymus was exposed to MMWs before or after exposure to X-rays, the fatty acid content was restored and was no longer significantly different from controls [ 112 ]. Overall, the authors reported a potential protective effect of MMWs on the recovery of fatty acids, however, all the results came from the same research group with a lack of replication from others.

Physiological effects were examined by a study conducted on mice exposed to WWMs to assess the safety of police radar [ 113 ]. The authors reported no statistically significant changes in the physiological parameters tested, which included body mass and temperature, peripheral blood and the mass and cellular composition, and number of cells in several important organs. Another study exposing human volunteers to low-level MMWs specifically examined cardiovascular function of exposed and sham exposed groups by electrocardiogram (ECG) and atrioventricular conduction velocity derivation [ 114 ]. This study reported that there were no significant differences in the physiological indicators assessed in test subjects.

Other individual studies have looked at various other effects. An early study reported differences in the attenuation of MMWs at specific frequencies in healthy and tumour cells [ 115 ]. Another early study reported no effect in the morphology of BHK-21/C13 cell cultures when exposed to low-level MMWs; the study did report morphological changes at higher levels, which were related to heating [ 116 ]. One study examined whether low-level MMWs induced cancer promotion in leukaemia and Lewis tumour cell grafted mice. The study reported no statistically significant growth promotion in either of the grafted cancer cell types [ 117 ]. Another study looked at the activity of gamma-glutamyl transpeptidase enzyme in rats after treatment with hydrocortisone and exposure to MMWs [ 118 ]. The study reported no effects at exposures below the ICNIRP limit, however, at levels above authors reported a range of effects. Another study exposed saline liquid solutions to continuous low and high level MMWs and reported temperature oscillations within the liquid medium but lacked a statistical analysis [ 119 ]. Another study reported that low-level MMWs decrease the mobility of the protozoa S. ambiguum offspring [ 120 ]. None of the reported effects in all of these other studies have been investigated elsewhere.

Epidemiological studies

There are no epidemiological studies that have directly investigated 5 G and potential health effects. There are however epidemiological studies that have looked at occupational exposure to radar, which could potentially include the frequency range from 6 to 300 GHz. Epidemiological studies on radar were included as they represent occupational exposure below the ICNIRP guidelines. The review included 31 epidemiological studies (8 cohort, 13 case-control, 9 cross-sectional and 1 meta-analysis) that investigated exposure to radar and various health outcomes including cancer at different sites, effects on reproduction and other diseases. The risk estimates as well as limitations of the epidemiological studies are shown in Table  7 .

Three large cohort studies investigated mortality in military personnel with potential exposure to MMWs from radar. Studies reporting on over 40-year follow-up of US navy veterans of the Korean War found that radar exposure had little effect on all-cause or cancer mortality with the second study reporting risk estimates below unity [ 121 , 122 ]. Similarly, in a 40-year follow-up of Belgian military radar operators, there was no statistically significant increase in all-cause mortality [ 123 , 124 ]; the study did, however, find a small increase in cancer mortality. More recently in a 25-year follow-up of military personnel who served in the French Navy, there was no increase in all-cause or cancer mortality for personnel exposed to radar [ 125 ]. The main limitation in the cohort studies was the lack of individual levels of RF exposure with most studies based on job-title. Comparisons were made between occupations with presumed high exposure to RF fields and other occupations with presumed lower exposure. This type of non-differential misclassification in dichotomous exposure assessment is associated mostly with an effect measure biased towards a null effect if there is a true effect of RF fields. If there is no true effect of RF fields, non-differential exposure misclassification will not bias the effect estimate (which will be close to the null value, but may vary because of random error). The military personnel in these studies were compared with the general population and this ‘healthy worker effect’ presents possible bias since military personnel are on average in better health than the general population; the healthy worker effect tends to underestimate the risk. The cohort studies also lacked information on possible confounding factors including other occupational exposures such as chemicals and lifestyle factors such as smoking.

Several epidemiological studies have specifically investigated radar exposure and testicular cancer. In a case-control study where most of the subjects were selected from military hospitals in Washington DC, USA, Hayes et al. found no increased risk between exposure to radar and testicular cancer [ 126 ]; exposure to radar was self-reported and thus subject to misclassification. In this study, the misclassification was likely non-differential, biasing the result towards the null. Davis and Mostofi reported a cluster of testicular cancer within a small cohort of 340 police officers in Washington State (USA) where the cases routinely used handheld traffic radar guns [ 127 ]; however, exposure was not assessed for the full cohort, which may have overestimated the risk. In a population-based case-control study conducted in Sweden, Hardell et al. did not find a statistically significant association between radar work and testicular cancer; however, the result was based on only five radar workers questioning the validity of this result [ 128 ]. In a larger population-based case control study in Germany, Baumgardt-Elms et al. also reported no association between working near radar units (both self-reported and expert assessed) and testicular cancer [ 129 ]; a limitation of this study was the low participation of identified controls (57%), however, there was no difference compared with the characteristics of the cases so selection bias was unlikely. In the cohort study of US navy veterans previously mentioned exposure to radar was not associated with testicular cancer [ 122 ]; the limitations of this cohort study mentioned earlier may have underestimated the risk. Finally, in a hospital-based case-control study in France, radar workers were also not associated with risk of testicular cancer [ 130 ]; a limitation was the low participation of controls (37%) with a difference in education level between participating and non-participating controls, which may have underestimated this result.

A limited number of studies have investigated radar exposure and brain cancer. In a nested case-control study within a cohort of male US Air Force personnel, Grayson reported a small association between brain cancer and RF exposure, which included radar [ 131 ]; no potential confounders were included in the analysis, which may have overestimated the result. However, in a case-control study of personnel in the Brazilian Navy, Santana et al. reported no association between naval occupations likely to be exposed to radar and brain cancer [ 132 ]; the small number of cases and lack of diagnosis confirmation may have biased the results towards the null. All of the cohort studies on military personnel previously mentioned also examined brain cancer mortality and found no association with exposure to radar [ 122 , 124 , 125 ].

A limited number of studies have investigated radar exposure and ocular cancer. Holly et al. in a population-based case-control study in the US reported an association between self-reported exposure to radar or microwaves and uveal melanoma [ 133 ]; the study investigated many different exposures and the result is prone to multiple testing. In another case-control study, which used both hospital and population controls, Stang et al. did not find an association between self-reported exposure to radar and uveal melanoma [ 134 ]; a high non-response in the population controls (52%) and exposure misclassification may have underestimated this result. The cohort studies of the Belgian military and French navy also found no association between exposure to radar and ocular cancer [ 124 , 125 ].

A few other studies have examined the potential association between radar and other cancers. In a hospital-based case-control study in Italy, La Vecchia investigated 14 occupational agents and risk of bladder cancer and found no association with radar, although no risk estimate was reported [ 135 ]; non-differential self-reporting of exposure may have underestimated this finding if there is a true effect. Finkelstein found an increased risk for melanoma in a large cohort of Ontario police officers exposed to traffic radar and followed for 31 years [ 136 ]; there was significant loss to follow up which may have biased this result in either direction. Finkelstein found no statistically significant associations with other types of cancer and the study reported a statistically significant risk estimate just below unity for all cancers, which is reflective of the healthy worker effect [ 136 ]. In a large population-based case-control study in France, Fabbro-Peray et al. investigated a large number of occupational and environmental risk factors in relation to non-Hodgkin lymphoma and found no association with radar operators based on job-title; however, the result was based on a small number of radar operators [ 137 ]. The cohort studies on military personnel did not find statistically significant associations between exposure to radar and other cancers [ 122 , 124 , 125 ].

Variani et al. conducted a recent systematic review and meta-analysis investigating occupational exposure to radar and cancer risk [ 138 ]. The meta-analysis included three cohort studies [ 122 , 124 , 125 ] and three case-control studies [ 129 , 130 , 131 ] for a total sample size of 53,000 subjects. The meta-analysis reported a decrease in cancer risk for workers exposed to radar but noted the small number of studies included with significant heterogeneity between the studies.

Apart from cancer, a number of epidemiological studies have investigated radar exposure and reproductive outcomes. Two early studies on military personnel in the US [ 139 ] and Denmark [ 140 ] reported differences in semen parameters between personnel using radar and personnel on other duty assignments; these studies included only volunteers with potential fertility concerns and are prone to bias. A further volunteer study on US military personnel did not find a difference in semen parameters in a similar comparison [ 141 ]; in general these type of cross-sectional investigations on volunteers provide limited evidence on possible risk. In a case-control study of personnel in the French military, Velez de la Calle et al. reported no association between exposure to radar and male infertility [ 142 ]; non-differential self-reporting of exposure may have underestimated this finding if there is a true effect. In two separate cross-sectional studies of personnel in the Norwegian navy, Baste et al. and Møllerløkken et al. reported an association between exposure to radar and male infertility, but there has been no follow up cohort or case control studies to confirm these results [ 143 , 144 ].

Again considering reproduction, a number of studies investigated pregnancy and offspring outcomes. In a population-based case-control study conducted in the US and Canada, De Roos et al. found no statistically significant association between parental occupational exposure to radar and neuroblastoma in offspring; however, the result was based on a small number of cases and controls exposed to radar [ 145 ]. In another cross-sectional study of the Norwegian navy, Mageroy et al. reported a higher risk of congenital anomalies in the offspring of personnel who were exposed to radar; the study found positive associations with a large number of other chemical and physical exposures, but the study involved multiple comparisons so is prone to over-interpretation [ 146 ]. Finally, a number of pregnancy outcomes were investigated in a cohort study of Norwegian navy personnel enlisted between 1950 and 2004 [ 147 ]. The study reported an increase in perinatal mortality for parental service aboard fast patrol boats during a short period (3 months); exposure to radar was one of many possible exposures when serving on fast patrol boats and the result is prone to multiple testing. No associations were found between long-term exposure and any pregnancy outcomes.

There is limited research investigating exposure to radar and other diseases. In a large case-control study of US military veterans investigating a range of risk factors and amyotrophic lateral sclerosis, Beard et al. did not find a statistically significant association with radar [ 148 ]; the study reported a likely under-ascertainment of non-exposed cases, which may have biased the result away from the null. The cohort studies on military personnel did not find statistically significant associations between exposure to radar and other diseases [ 122 , 124 , 125 ].

A number of observational studies have investigated outcomes measured on volunteers in the laboratory. They are categorised as epidemiological studies because exposure to radar was not based on provocation. These studies investigated genotoxicity [ 149 ], oxidative stress [ 149 ], cognitive effects [ 150 ] and endocrine function [ 151 ]; the studies generally reported positive associations with radar. These volunteer studies did not sample from a defined population and are prone to bias [ 152 ].

The experimental studies investigating exposure to MMWs at levels below the ICNIRP occupational limits have looked at a variety of biological effects. Genotoxicity was mainly examined by using comet assays of exposed cells. This approach has consistently found no evidence of DNA damage in skin cells in well-designed studies. However, animal studies conducted by one research group reported DNA strand breaks and changes in enzymes that control the build-up of ROS, noting that these studies had low animal numbers (six animals exposed); these results have not been independently replicated. Studies have also investigated other indications of genotoxicity including chromosome aberrations, micro-nucleation and spindle disturbances. The methods used to investigate these indicators have generally been rigorous; however, the studies have reported contradictory results. Two studies by a Russian research group have also reported indicators of DNA damage in bacteria, however, these results have not been verified by other investigators.

The studies of the effect of MMWs on cell proliferation primarily focused on bacteria, yeast cells and tumour cells. Studies of bacteria were mainly from an Armenian research group that reported a reduction in the bacterial growth rate of exposed E. coli cells at different MMW frequencies; however, the studies suffered from inadequate dosimetry and temperature control and heating due to high RF energy deposition may have contributed to the results. Other authors have reported no effect of MMWs on E. coli cell growth rate. The results on cell proliferation of yeast exposed to MMWs were also contradictory. An Italian research group that has conducted the majority of the studies on tumour cells reported either a reduction or no change in the proliferation of exposed cells; however, these studies also suffered from inadequate dosimetry and temperature control.

The studies on gene expression mainly examined two different indicators, expression of stress sensitive genes and chaperone proteins and the occurrence of a resonance effect in cells to explain DNA conformation state changes. Most studies reported no effect of low-level MMWs on the expression of stress sensitive genes or chaperone proteins using a range of experimental methods to confirm these results; noting that these studies did not use blinding so experimental bias cannot be excluded from the results. A number of studies from a Russian research group reported a resonance effect of MMWs, which they propose can change the conformation state of chromosomal DNA complexes. Their results relied heavily on the AVTD method for testing changes in the DNA conformation state, however, the biological relevance of results obtained through the AVTD method has not been independently validated.

Studies on cell signalling and electrical activity reported a range of different outcomes including increases or decreases in signal amplitude and changes in signal rhythm, with no consistent effect noting the lack of blinding in most of the studies. Further, temperature contributions could not be eliminated from the studies and in some cases thermal interactions by conventional heating were studied and found to differ from the MMW effects. The results from some studies were based on small sample sizes, some being confined to a single specimen, or by observed effects only occurring in a small number of the samples tested. Overall, the reported electrical activity effects could not be dismissed as being within normal variability. This is indicated by studies reporting the restoration of normal function within a short time during ongoing exposure. In this case there is no implication of an expected negative health outcome.

Studies on membrane effects examined changes in membrane properties and permeability. Some studies observed changes in transitions from liquid to gel phase or vice versa and the authors implied that MMWs influenced cell hydration, however the statistical methods used in these studies were not described so it is difficult to examine the validity of these results. Other studies observing membrane properties in artificial cell suspensions and dissected tissue reported changes in vesicle shape, reduced cell volume and morphological changes although most of these studies suffered from various methodological problems including poor temperature control and no blinding. Experiments on bacteria and yeast were conducted by the same research group reporting changes in membrane permeability, which was attributed to cell proliferation effects, however, the studies suffered from inadequate dosimetry and temperature control. Overall, although there were a variety of membrane bioeffects reported, these have not been independently replicated.

The limited number of studies on a number of other effects from exposure to MMWs below the ICNIRP limits generally reported little to no consistent effects. The single in vivo study on cancer promotion did not find an effect although the study did not include sham controls. Effects on reproduction were contradictory that may have been influenced by opposing objectives of examining adverse health effects or infertility treatment. Further, the only study on human sperm found no effects of low-level MMWs. The studies on reproduction suffered from inadequate dosimetry and temperature control, and since sperm is sensitive to temperature, the effect of heating due to high RF energy deposition may have contributed to the studies showing an effect. A number of studies from two research groups reported effects on ROS production in relation to reproduction and immune function; the in vivo studies had low animal numbers (six animals per exposure) and the in vitro studies generally had inadequate dosimetry and temperature control. Studies on fatty acid composition and physiological indicators did not generally show any effects; poor temperature control was also a problem in the majority of these studies. A number of other studies investigating various other biological effects reported mixed results.

Although a range of bioeffects have been reported in many of the experimental studies, the results were generally not independently reproduced. Approximately half of the studies were from just five laboratories and several studies represented a collaboration between one or more laboratories. The exposure characteristics varied considerably among the different studies with studies showing the highest effect size clustered around a PD of approximately 1 W/m 2 . The meta-analysis of the experimental studies in our companion paper [ 9 ] showed that there was no dose-response relationship between the exposure (either PD or SAR) and the effect size. In fact, studies with a higher exposure tended to show a lower effect size, which is counterfactual. Most of the studies showing a large effect size were conducted in the frequency range around 40–55 GHz, representing investigations into the use of MMWs for therapeutic purposes, rather than deleterious health consequences. Future experimental research would benefit from investigating bioeffects at the specific frequency range of the next stage of the 5 G network roll-out in the range 26–28 GHz. Mobile communications beyond the 5 G network plan to use frequencies higher than 30 GHz so research across the MMW band is relevant.

An investigation into the methods of the experimental studies showed that the majority of studies were lacking in a number of quality criteria including proper attention to dosimetry, incorporating positive controls, using blind evaluation or accurately measuring or controlling the temperature of the biological system being tested. Our meta-analysis showed that the bulk of the studies had a quality score lower than 2 out of a possible 5, with only one study achieving a maximum quality score of 5 [ 9 ]. The meta-analysis further showed that studies with a low quality score were more likely to show a greater effect. Future research should pay careful attention to the experimental design to reduce possible sources of artefact.

The experimental studies included in this review reported PDs below the ICNIRP exposure limits. Many of the authors suggested that the resulting biological effects may be related to non-thermal mechanisms. However, as is shown in our meta-analysis, data from these studies should be treated with caution because the estimated SAR values in many of the studies were much higher than the ICNIRP SAR limits [ 9 ]. SAR values much higher than the ICNIRP guidelines are certainly capable of producing significant temperature rise and are far beyond the levels expected for 5 G telecommunication devices [ 1 ]. Future research into the low-level effects of MMWs should pay particular attention to appropriate temperature control in order to avoid possible heating effects.

Although a systematic review of experimental studies was not conducted, this paper presents a critical appraisal of study design and quality of all available studies into the bioeffects of low level MMWs. The conclusions from the review of experimental studies are supported by a meta-analysis in our companion paper [ 9 ]. Given the low-quality methods of the majority of the experimental studies we infer that a systematic review of different bioeffects is not possible at present. Our review includes recommendations for future experimental research. A search of the available literature showed a further 44 non-English papers that were not included in our review. Although the non-English papers may have some important results it is noted that the majority are from research groups that have published English papers that are included in our review.

The epidemiological studies on MMW exposure from radar that has a similar frequency range to that of 5 G and exposure levels below the ICNIRP occupational limits in most situations, provided little evidence of an association with any adverse health effects. Only a small number of studies reported positive associations with various methodological issues such as risk of bias, confounding and multiple testing questioning the result. The three large cohort studies of military personnel exposed to radar in particular did not generally show an association with cancer or other diseases. A key concern across all the epidemiological studies was the quality of exposure assessment. Various challenges such as variability in complex occupational environments that also include other co-exposures, retrospective estimation of exposure and an appropriate exposure metric remain central in studies of this nature [ 153 ]. Exposure in most of the epidemiological studies was self-reported or based on job-title, which may not necessarily be an adequate proxy for exposure to RF fields above 6 GHz. Some studies improved on exposure assessment by using expert assessment and job-exposure matrices, however, the possibility of exposure misclassification is not eliminated. Another limitation in many of the studies was the poor assessment of possible confounding including other occupational exposures and lifestyle factors. It should also be noted that close proximity to certain very powerful radar units could have exceeded the ICNIRP occupational limits, therefore the reported effects especially related to reproductive outcomes could potentially be related to heating.

Given that wireless communications have only recently started to use RF frequencies above 6 GHz there are no epidemiological studies investigating 5 G directly as yet. Some previous epidemiological studies have reported a possible weak association between mobile phone use (from older networks using frequencies below 6 GHz) and brain cancer [ 11 ]. However, methodological limitations in these studies prevent conclusions of causality being drawn from the observations [ 152 ]. Recent investigations have not shown an increase in the incidence of brain cancer in the population that can be attributed to mobile phone use [ 154 , 155 ]. Future epidemiological research should continue to monitor long-term health effects in the population related to wireless telecommunications.

The review of experimental studies provided no confirmed evidence that low-level MMWs are associated with biological effects relevant to human health. Many of the studies reporting effects came from the same research groups and the results have not been independently reproduced. The majority of the studies employed low quality methods of exposure assessment and control so the possibility of experimental artefact cannot be excluded. Further, many of the effects reported may have been related to heating from high RF energy deposition so the assertion of a ‘low-level’ effect is questionable in many of the studies. Future studies into the low-level effects of MMWs should improve the experimental design with particular attention to dosimetry and temperature control. The results from epidemiological studies presented little evidence of an association between low-level MMWs and any adverse health effects. Future epidemiological research would benefit from specific investigation on the impact of 5 G and future telecommunication technologies.

Wu T, Rappaport TS, Collins CM. Safe for generations to come: considerations of safety for millimeter waves in wireless communications. IEEE Micro Mag. 2015;16:65–84.

Article   Google Scholar  

Health protection agency (HPA). Health effects from radiofrequency electromagnetic fields: the report of the independent advisory group on non-ionising radiation (AGNIR). HPA. 2012; RCE 20.

Scientific committee on emerging and newly identified health risks (SCENHIR). Potential health effects of exposure to electromagnetic fields (EMF). Euro Comm. 2015; 1831-4783.

Australian radiation protection and nuclear safety agency (ARPANSA). Radiation protection standard for maximum exposure levels to radiofrequency fields—3 kHz to 300 GHz. Radiation Protection Series 3. ARPANSA; 2002.

International Commission on Non-Ionizing Radiation Protection (ICNIRP). ICNIRP guidelines for limiting exposure to electromagnetic fields (100 KHz to 300 GHz). Health Phys. 2020;118:483–524.

Article   CAS   PubMed   Google Scholar  

Institute of electrical and electronics engineers (IEEE). IEEE standard for safety levels with respect to human exposure to electric, magnetic, and electromagnetic fields, 0 Hz to 300 GHz. IEEE 2019; C95.1.

Stam R. Comparison of international policies on electromagnetic fields (power frequency and radiofrequency fields). National institute for public health and the environment, RIVM 2018.

Simkó M, Mattsson MO. 5G Wireless communication and health effects—a pragmatic review based on available studies regarding 6 to 100 GHz. Int J Environ Res Public Health. 2019;16:3406.

Article   PubMed Central   CAS   Google Scholar  

Wood A, Mate R, Karipidis K. Meta-analysis of in vitro and in vivo studies of the biological effects of low-level millimetre waves. 2020. https://doi.org/10.1038/s41370-021-00307-7 .

International commission on non-Ionizing radiation protection (ICNIRP). Exposure to high frequency electromagnetic fields, biological effects and health consequences (100 kHz-300 GHz). ICNIRP 2009; 978-3-934994-10-2.

International agency for research on cancer (IARC). IARC monographs: non-ionizing radiation, part 2: radiofrequency electromagnetic fields. IARC 2013;102:1–460.

Google Scholar  

Garaj-Vrhovac V, Horvat D, Koren Z. The relationship between colony-forming ability, chromosome aberrations and incidence of micronuclei in V79 Chinese hamster cells exposed to microwave radiation. Mutat Res Lett. 1991;263:143–9.

Article   CAS   Google Scholar  

Garaj-Vrhovac V, Fučić A, Horvat D. The correlation between the frequency of micronuclei and specific chromosome aberrations in human lymphocytes exposed to microwave radiation in vitro. Mutat Res Lett. 1992;281:181–6.

Korenstein-Ilan A, Barbul A, Hasin P, Eliran A, Gover A, Korenstein R. Terahertz radiation increases genomic instability in human lymphocytes. Radiat Res. 2008;170:224–34.

Hintzsche H, Jastrow C, Kleine-Ostmann T, Kärst U, Schrader T, Stopper H. Terahertz electromagnetic fields (0.106 THz) do not induce manifest genomic damage in vitro. PloS One. 2012;7:e46397.

Koyama S, Narita E, Shimizu Y, Suzuki Y, Shiina T, Taki M, et al. Effects of long-term exposure to 60 GHz millimeter-wavelength radiation on the genotoxicity and heat shock protein (Hsp) expression of cells derived from human eye. Int J Environ Res Public Health. 2016;13:802.

Koyama S, Narita E, Suzuki Y, Shiina T, Taki M, Shinohara N, et al. Long-term exposure to a 40-GHz electromagnetic field does not affect genotoxicity or heat shock protein expression in HCE-T or SRA01/04 cells. J Radiat Res. 2019;60:417–23.

Article   CAS   PubMed   PubMed Central   Google Scholar  

De Amicis A, De Sanctis S, Di Cristofaro S, Franchini V, Lista F, Regalbuto E, et al. Biological effects of in vitro THz radiation exposure in human foetal fibroblasts. Mutat Res Genet Toxicol Environ Mutagen. 2015;793:150–60.

Franchini V, Regalbuto E, De Amicis A, De Sanctis S, Di Cristofaro S, Coluzzi E, et al. Genotoxic effects in human fibroblasts exposed to microwave radiation. Health Phys. 2018;115:126–39.

Shckorbatov YG, Grigoryeva NN, Shakhbazov VG, Grabina VA, Bogoslavsky AM. Microwave irradiation influences on the state of human cell nuclei. Bioelectromagnetics. 1998;19:414–9.

Shckorbatov YG, Pasiuga VN, Kolchigin NN, Grabina VA, Batrakov DO, Kalashnikov VV. The influence of differently polarised microwave radiation on chromatin in human cells. Int J Radiat Biol. 2009;85:322–9.

Shckorbatov YG, Pasiuga VN, Goncharuk EI, Petrenko TP, Grabina VA, Kolchigin NN, et al. Effects of differently polarized microwave radiation on the microscopic structure of the nuclei in human fibroblasts. J Zhejiang Univ Sci B. 2010;11:801–5.

Article   PubMed   PubMed Central   Google Scholar  

Paulraj R, Behari J. Single strand DNA breaks in rat brain cells exposed to microwave radiation. Mutat Res. 2006;596:76–80.

Kesari KK, Behari J. Fifty-gigahertz microwave exposure effect of radiations on rat brain. Appl Biochem Biotechnol. 2009;158:126.

Kumar S, Kesari KK, Behari J. Evaluation of genotoxic effects in male Wistar rats following microwave exposure. Indian J Exp Biol. 2010;48:586–92.

PubMed   Google Scholar  

Crouzier D, Perrin A, Torres G, Dabouis V, Debouzy JC. Pulsed electromagnetic field at 9.71 GHz increase free radical production in yeast (Saccharomyces cerevisiae). Patho Biol. 2009;57:245–51.

Smolyanskaya AZ, Vilenskaya RL. Effects of millimeter-band electromagnetic radiation on the functional activity of certain genetic elements of bacterial cells. Sov Phys. 1974;16:571. USPEKHI

Lukashevsky KV, Belyaev IY. Switching of prophage lambda genes in Escherichia coli by millimetre waves. Med Sci Res. 1990;18:955–7.

Kalantaryan VP, Vardevanyan PO, Babayan YS, Gevorgyan ES, Hakobyan SN, Antonyan AP. Influence of low intensity coherent electromagnetic millimeter radiation (EMR) on aqua solution of DNA. Prog Electromag Res. 2010;13:1–9.

Hintzsche H, Jastrow C, Kleine-Ostmann T. Terahertz radiation induces spindle disturbances in human-hamster hybrid cells. Radiat Res. 2011;175:569–74.

Zeni O, Gallerano GP, Perrotta A, Romano M, Sannino A, Sarti M, et al. Cytogenetic observations in human peripheral blood leukocytes following in vitro exposure to THz radiation: a pilot study. Health Phys. 2007;92:349–57.

Gapeyev A, Lukyanova N, Gudkov S. Hydrogen peroxide induced by modulated electromagnetic radiation protects the cells from DNA damage. Open Life Sci. 2014;9:915–21.

Gapeyev AB, Lukyanova NA. Pulse-modulated extremely high-frequency electromagnetic radiation protects cellular DNA from the damaging effects of physical and chemical factors in vitro. Biophys. 2015;60:732–8.

Webb SJ, Dodds DD. Inhibition of bacterial cell growth by 136 GC microwaves. Nature. 1968;218:374–5.

Webb SJ, Booth AD. Absorption of microwaves by microorganisms. Nature. 1969;222:1199–200.

Rojavin MA, Ziskin MC. Effect of millimeter waves on survival of UVC‐exposed Escherichia coli. Bioelectromagnetics. 1995;16:188–96.

Pakhomova ON, Pakhomov AG, Akyel Y. Effect of millimeter waves on UV-induced recombination and mutagenesis in yeast. Bioelectrochem Bioenerg. 1997;43:227–32.

Cohen I, Cahan R, Shani G, Cohen E, Abramovich A. Effect of 99 GHz continuous millimeter wave electro-magnetic radiation on E. coli viability and metabolic activity. Int J Radiat Biol. 2010;86:390–9.

Tadevosyan H, Kalantaryan V, Trchounian A. Extremely high frequency electromagnetic radiation enforces bacterial effects of inhibitors and antibiotics. Cell Biochem Biophys. 2008;51:97–103.

Torgomyan H, Trchounian A. Low-intensity electromagnetic irradiation of 70.6 and 73 GHz frequencies enhances the effects of disulfide bonds reducer on Escherichia coli growth and affects the bacterial surface oxidation–reduction state. Biochem Biophys Res Commun. 2011;414:265–9.

Torgomyan H, Kalantaryan V, Trchounian A. Low intensity electromagnetic irradiation with 70.6 and 73 GHz frequencies affects Escherichia coli growth and changes water properties. Cell Biochem Biophys. 2011;60:275–81.

Torgomyan H, Hovnanyan K, Trchounian A. Escherichia coli growth changes by the mediated effects after low-intensity electromagnetic irradiation of extremely high frequencies. Cell Biochem Biophys. 2012;65:445–54.

Torgomyan H, Ohanyan V, Blbulyan S, Kalantaryan V, Trchounian A. Electromagnetic irradiation of Enterococcus hirae at low-intensity 51.8-and 53.0-GHz frequencies: changes in bacterial cell membrane properties and enhanced antibiotics effects. FEMS microbiol Lett. 2012;329:131–7.

Soghomonyan D, Trchounian A. Comparable effects of low-intensity electromagnetic irradiation at the frequency of 51.8 and 53 GHz and antibiotic ceftazidime on Lactobacillus acidophilus growth and survival. Cell Biochem Biophys. 2013;67:829–35.

Hovnanyan K, Kalantaryan V, Trchounian A. The distinguishing effects of low‐intensity electromagnetic radiation of different extremely high frequencies on Enterococcus hirae: growth rate inhibition and scanning electron microscopy analysis. Lett Appl microbiol. 2017;65:220–5.

Grundler W, Keilmann F. Nonthermal effects of millimeter microwaves on yeast growth. Z Naturforsch. 1977;33:15–22.

Grundler W, Keilmann F. Sharp resonances in yeast growth prove nonthermal sensitivity to microwaves. Phys Rev Lett. 1983;51:1214.

Furia L, Hill DW, Gandhi OMP. Effect of millimeter-wave irradiation on growth of Saccharomyces cerevisiae. IEEE Trans Biom Eng. 1986;33:993–9.

Gos P, Eicher B, Kohli J, Heyer WD. Extremely high frequency electromagnetic fields at low power density do not affect the division of exponential phase Saccharomyces cerevisiae cells. Bioelectromagnetics. 1997;18:142–55.

Chidichimo G, Beneduci A, Nicoletta M, Critelli M, De RR, Tkatchenko Y, et al. Selective inhibition of tumoral cells growth by low power millimeter waves. Anticancer Res. 2002;22:1681–8.

Beneduci A, Chidichimo G, Tripepi S, Perrotte E. Frequency and irradiation time-dependant antiproliferative effect of low-power millimeter waves on RPMI 7932 human melanoma cell line. Anticancer Res. 2005;25(2A):1023–8.

Beneduci A, Chidichimo G, Tripepi S, Perrotte E. Transmission electron microscopy study of the effects produced by wide-band low-power millimeter waves on MCF-7 human breast cancer cells in culture. Anticancer Res. 2005;25(2A):1009–13.

Beneduci A. Evaluation of the potential in vitro antiproliferative effects of millimeter waves at some therapeutic frequencies on RPMI 7932 human skin malignant melanoma cells. Cell Biochem Biophys. 2009;1:25–32.

Beneduci A, Chidichimo G, Tripepi S, Perrotta E, Cufone F. Antiproliferative effect of millimeter radiation on human erythromyeloid leukemia cell line K562 in culture: ultrastructural-and metabolic-induced changes. Bioelectrochemistry. 2007;70:214–20.

Yaekashiwa N, Otsuki S, Hayashi SI, Kawase K. Investigation of the non-thermal effects of exposing cells to 70–300 GHz irradiation using a widely tunable source. J Radiat Res. 2017;59:116–21.

Badzhinyan SA, Sayadyan AB, Sarkisyan NK, Grigoryan RM, Gasparyan GG. Lethal effect of electromagnetic radiation of the millimeter wavelength range on cell cultures of chicken embryo. Dokl Biochem Biophys. 2001;377:94–5.

Shiina T, Suzuki Y, Kasai Y, Inami Y, Taki M, Wake K. Effect of two-times 24 h exposures to 60 GHz millimeter-waves on neurite outgrowth in PC12VG cells in consideration of polarization. IEEE Int Sympo Electromag Compat. 2014;13:166–9.

Le Quément C, Nicolas Nicolaz C, Zhadobov M, Desmots F, Sauleau R, Aubry M, et al. Whole‐genome expression analysis in primary human keratinocyte cell cultures exposed to 60 GHz radiation. Bioelectromagnetics. 2012;33:147–58.

Article   PubMed   CAS   Google Scholar  

Zhadobov M, Sauleau R, Le Coq L, Thouroude D, Orlov I, Michel D et al. 60 GHz electromagnetic fields do not activate stress-sensitive gene expression. IEEE 11th Int Sympo on Antenna Technol and appl electromag. 2005;11:1–4.

Zhadobov M, Sauleau R, Le Coq L, Debure L, Thouroude D, Michel D, et al. Low‐power millimeter wave radiations do not alter stress‐sensitive gene expression of chaperone proteins. Bioelectromagnetics. 2007;28:188–96.

Zhadobov M, Nicolaz CN, Sauleau R, Desmots F, Thouroude D, Michel D, et al. Evaluation of the potential biological effects of the 60-GHz millimeter waves upon human cells. IEEE Trans Antennas Propag. 2009;57:2949–56.

Nicolaz CN, Zhadobov M, Desmots F, Ansart A, Sauleau R, Thouroude D, et al. Study of narrow band millimeter‐wave potential interactions with endoplasmic reticulum stress sensor genes. Bioelectromagnetics. 2008;30:365–73.

Nicolaz CN, Zhadobov M, Desmots F, Sauleau R, Thouroude D, Michel D, et al. Absence of direct effect of low-power millimeter-wave radiation at 60.4 GHz on endoplasmic reticulum stress. Cell Biol Toxicol. 2009;25:471–8.

Belyaev IY, Alipov YD, Shcheglov VS, Lystsov VN. Resonance effect of microwaves on the genome conformational state of E. coli cells. Z Naturforsch C. 1992;47:621–7.

Belyaev IY, Shcheglov VS, Alipov YD. Existence of selection rules on helicity during discrete transitions of the genome conformational state of E. coli cells exposed to low-level millimetre radiation. Bioelectrochem Bioenerg. 1992;27:405–11.

Belyaev IY, Shcheglov VS, Alipov YD. Selection rules on helicity during discrete transitions of the genome conformational state in intact and X-rayed cells of E. coli in millimeter range of electromagnetic field. Charg Field Eff Biosyst. 1992;3:115–26.

Belyaev I, Alipov YD, Shcheglov VS, Chromosome DNA. as a target of resonant interaction between Escherichia coli cells and low–intensity millimeter waves. Electro Magnetobiol. 1992;11:97–108.

Belyaev IY, Alipov YD, Polunin VA, Shcheglov VS. Evidence for dependence of resonant frequency of millimeter wave interaction with Escherichia coli K12 cells on haploid genome length. Electro Magnetobiol. 1993;12:39–49.

Belyaev IY, Shcheglov VS, Alipov YD, Radko SP. Regularities of separate and combined effects of circularly polarized millimeter waves on E. coli cells at different phases of culture growth. Bioelectrochem Bioenerg. 1993;31:49–63.

Belyaev IY, Alipov YD, Shcheglov VS, Polunin VA, Aizenberg OA. Cooperative response of Escherichia coli cells to the resonance effect of millimeter waves at super low intensity. Electro Magnetobiol. 1994;13:53–66.

Belyaev IY, Kravchenko VG. Resonance effect of low-intensity millimeter waves on the chromatin conformational state of rat thymocytes. Z Naturforsch. 1994;49:352–8.

Belyaev IY, Shcheglov VS, Alipov YD, Polunin VA. Resonance effect of millimeter waves in the power range from 10‐19 to 3× 10‐3 W/cm2 on Escherichia coli cells at different concentrations. Bioelectromagnetics. 1996;17:312–21.

Shcheglov VS, Belyaev I, Alipov YD, Ushakov VL. Power-dependent rearrangement in the spectrum of resonance effect of millimeter waves on the genome conformational state of Escherichia Coli cells. Electro Magnetobiol. 1997;16:69–82.

Shcheglov VS, Alipov ED, Belyaev I. Cell-to-cell communication in response of E. coli cells at different phases of growth to low-intensity microwaves. Biochim biophys Acta. 2002;1572:101–6.

Gandhi OP, Hagmann MJ, Hill DW, Partlow LM, Bush L. Millimeter wave absorption spectra of biological samples. Bioelectromagnetics. 1980;1:285–98.

Bush LG, Hill DW, Riazi A, Stensaas LJ, Partlow LM, Gandhi OP. Effects of millimeter‐wave radiation on monolayer cell cultures. III. A search for frequency‐specific athermal biological effects on protein synthesis. Bioelectromagnetics. 1981;2:151–9.

Belyaev IY, Shcheglov VS, Alipov ED, Ushakov VD. Nonthermal effects of extremely high-frequency microwaves on chromatin conformation in cells in vitro—dependence on physical, physiological, and genetic factors. IEEE Trans Micro Theory Tech. 2000;48:2172–9.

Pakhomov AG, Akyel Y, Pakhomova ON, Stuck BE, Murphy MR. Current state and implications of research on biological effects of millimeter waves: a review of the literature. Bioelectromagnetics. 1998;19:393–413.

Minasyan SM, Grigoryan GY, Saakyan SG, Akhumyan AA, Kalantaryan VP. Effects of the action of microwave-frequency electromagnetic radiation on the spike activity of neurons in the supraoptic nucleus of the hypothalamus in rats. Neurosci Behav Physiol. 2007;37:175–80.

Pikov V, Arakaki X, Harrington M, Fraser SE, Siegel PH. Modulation of neuronal activity and plasma membrane properties with low-power millimeter waves in organotypic cortical slices. J Neural Eng. 2010;7:045003.

Article   PubMed   Google Scholar  

Munemori J, Ikeda T. Effects of low-level microwave radiation on the eye of the crayfish. Med Biol Eng Comput. 1982;20:84–8.

Munemori J, Ikeda T. Biological effects of X-band microwave radiation on the eye of the crayfish. Med Biol Eng Comput. 1984;22:263–7.

Pakhomov AG, Prol HK, Mathur SP, Akyel Y, Campbell CB. Frequency-specific effects of millimeter-wavelength electromagnetic radiation in isolated nerve. Electro Magnetobiol. 1997;16:43–57.

Pakhomov AG, Prol HK, Mathur SP, Akyel Y, Campbell CB. Search for frequency‐specific effects of millimeter‐wave radiation on isolated nerve function. Bioelectromagnetics. 1997;18:324–34.

Pakhomov AG, Prol HK, Mathur SP, Akyel Y, Campbell CB. Role of field intensity in the biological effectiveness of millimeter waves at a resonance frequency. Bioelectrochem Bioenerg. 1997;43:27–33.

Pikov V, Siegel PH. Millimeter wave-induced changes in membrane properties of leech Retzius neurons. Photonic Therapeutics Diagnostics. 2011;7883:56–1.

Romanenko S, Siegel PH, Pikov V. Microdosimetry and physiological effects of millimeter wave irradiation in isolated neural ganglion preparation. IEEE 2013 International kharkov symposium on physics and engineering of microwaves, millimeter and submillimeter waves. IEEE. 2013;13:512–6.

Romanenko S, Siegel PH, Wagenaar DA, Pikov V. Effects of millimeter wave irradiation and equivalent thermal heating on the activity of individual neurons in the leech ganglion. J Neurophysiol. 2014;112:2423–31.

Beneduci A, Filippelli L, Cosentino K, Calabrese ML, Massa R, Chidichimo G. Microwave induced shift of the main phase transition in phosphatidylcholine membranes. Bioelectrochemistry. 2012;1:18–24.

Beneduci A, Cosentino K, Chidichimo G. Millimeter wave radiations affect membrane hydration in phosphatidylcholine vesicles. Materials. 2013;6:2701–12.

Beneduci A, Cosentino K, Romeo S, Massa R, Chidichimo G. Effect of millimetre waves on phosphatidylcholine membrane models: a non-thermal mechanism of interaction. Soft Matter. 2014;10:5559–67.

Geletyuk VI, Kazachenko VN, Chemeris NK, Fesenko EE. Dual effects of microwaves on single Ca2+-activated K+ channels in cultured kidney cells Vero. FEBS Lett. 1995;359:85–8.

Chen Q, Zeng QL, Lu DQ, Chiang H. Millimeter wave exposure reverses TPA suppression of gap junction intercellular communication in HaCaT human keratinocytes. Bioelectromagnetics. 2004;25:1–4.

Shckorbatov YG, Shakhbazov VG, Navrotskaya VV, Grabina VA, Sirenko SP, Fisun AI, et al. Application of intracellular microelectrophoresis to analysis of the influence of the low‐level microwave radiation on electrokinetic properties of nuclei in human epithelial cells. Electrophoresis. 2002;23:2074–9.

Zhadobov M, Sauleau R, Vié V, Himdi M, Le Coq L, Thouroude D. Interactions between 60-GHz millimeter waves and artificial biological membranes: dependence on radiation parameters. IEEE Trans Micro Theory Tech. 2006;54:2534–42.

Deghoyan A, Heqimyan A, Nikoghosyan A, Dadasyan E, Ayrapetyan S. Cell bathing medium as a target for non thermal effect of millimeter waves. Electromag Biol Med. 2012;31:132–42.

D’Agostino S, Della Monica C, Palizzi E, Di Pietrantonio F, Benetti M, Cannatà D, et al. Extremely high frequency electromagnetic fields facilitate electrical signal propagation by increasing transmembrane potassium efflux in an artificial axon model. Sci Rep. 2018;8:9299.

Article   PubMed   PubMed Central   CAS   Google Scholar  

Ramundo-Orlando A, Longo G, Cappelli M, Girasole M, Tarricone L, Beneduci A, et al. The response of giant phospholipid vesicles to millimeter waves radiation. Biochem Biophys Acta. 2009;1788:1497–507.

Di Donato L, Cataldo M, Stano P, Massa R, Ramundo-Orlando A. Permeability changes of cationic liposomes loaded with carbonic anhydrase induced by millimeter waves radiation. Radiat Res. 2012;178:437–46.

Cosentino K, Beneduci A, Ramundo-Orlando A, Chidichimo G. The influence of millimeter waves on the physical properties of large and giant unilamellar vesicles. J Biol Phys. 2013;39:395–410.

Manikowska E, Luciani JM, Servantie B, Czerski P, Obrenovitch J, Stahl A. Effects of 9.4 GHz microwave exposure on meiosis in mice. Experientia. 1979;35:388–90.

Subbotina TI, Tereshkina OV, Khadartsev AA, Yashin AA. Effect of low-intensity extremely high frequency radiation on reproductive function in Wistar rats. Bull Exp Biol Med. 2006;142:189–90.

Volkova NA, Pavlovich EV, Gapon AA, Nikolov OT. Effects of millimeter-wave electromagnetic exposure on the morphology and function of human cryopreserved spermatozoa. Bull Exp Biol Med. 2014;157:574–6.

Kesari KK, Behari J. Microwave exposure affecting reproductive system in male rats. Appl Biochem Biotechnol. 2010;162:416–28.

Kumar S, Kesari KK, Behari J. Influence of microwave exposure on fertility of male rats. Fertil Steril. 2011;95:1500–2.

Gapeyev AB, Safronova VG, Chemeris NK, Fesenko EE. Inhibition of the production of reactive oxygen species in mouse peritoneal neutrophils by millimeter wave radiation in the near and far field zones of the radiator. Bioelectrochem Bioenerg. 1997;43:217–20.

Gapeyev AB, Yakushina VS, Chemeris NK, Fesenko EE. Modification of production of reactive oxygen species in mouse peritoneal neutrophils on exposure to low-intensity modulated millimeter wave radiation. Bioelectrochem Bioenerg. 1998;46:267–72.

Safronova VG, Gabdoulkhakova AG, Santalov BF. Immunomodulating action of low intensity millimeter waves on primed neutrophils. Bioelectromagnetics. 2002;23:599–606.

Homenko A, Kapilevich B, Kornstein R, Firer MA. Effects of 100 GHz radiation on alkaline phosphatase activity and antigen–antibody interaction. Bioelectromagnetics. 2009;30:167–75.

Gapeyev AB, Kulagina TP, Aripovsky AV, Chemeris NK. The role of fatty acids in anti‐inflammatory effects of low‐intensity extremely high‐frequency electromagnetic radiation. Bioelectromagnetics. 2011;32:388–95.

Gapeyev AB, Kulagina TP, Aripovsky AV. Exposure of tumor-bearing mice to extremely high-frequency electromagnetic radiation modifies the composition of fatty acids in thymocytes and tumor tissue. Int J Radiat Biol. 2013;89:602–10.

Gapeyev AB, Aripovsky AV, Kulagina TP. Modifying effects of low-intensity extremely high-frequency electromagnetic radiation on content and composition of fatty acids in thymus of mice exposed to X-rays. Int J Radiat Biol. 2015;91:277–85.

Rotkovská D, Moc J, Kautská J, Bartonícková A, Keprtová J, Hofer M. Evaluation of the biological effects of police radar RAMER 7F. Environ Health Perspect. 1993;101:134–6.

PubMed   PubMed Central   Google Scholar  

Müller J, Hadeler KP, Müller V, Waldmann J, Landstorfer FM, Wisniewski R, et al. Influence of low power cm-/mm-microwaves on cardiovascular function. Int J Environ Health Res. 2004;14:331–41.

Webb SJ, Booth AD. Microwave absorption by normal and tumor cells. Science. 1971;1:72–4. 174

Stensaas LJ, Partlow LM, Bush LG, Iversen PL, Hill DW, Hagmann MJ, et al. Effects of millimeter‐wave radiation on monolayer cell cultures. II. Scanning and transmission electron microscopy. Bioelectromagnetics. 1981;2:141–50.

Bellossi A, Dubost G, Moulinoux JP, Himdi M, Ruelloux M, Rocher C. Biological effects of millimeter wave irradiation on mice-preliminary results. IEEE Trans Micro Theory Tech. 2000;48:2104–10.

Olchowik G, Maj JG. Inhibitory action of microwave radiation on gamma-glutamyl transpeptidase activity in liver of rats treated with hydrocortisone. Folia Histochemica Et Cytobiologica. 2000;38:189–91.

CAS   PubMed   Google Scholar  

Khizhnyak EP, Ziskin MC. Temperature oscillations in liquid media caused by continuous (nonmodulated) millimeter wavelength electromagnetic irradiation. Bioelectromagnetics. 1996;17:223–9.

Sarapultseva EI, Igolkina JV, Tikhonov VN, Dubrova YE. The in vivo effects of low-intensity radiofrequency fields on the motor activity of protozoa. Int J Radiat Biol. 2014;90:262–7.

Robinette CD, Silverman C, Jablon S. Effects upon health of occupational exposure to microwave radiation (radar). Am J Epidemiol. 1980;112:39–53.

Groves FD, Page WF, Gridley G, Lisimaque L, Stewart PA, Tarone RE, et al. Cancer in Korean war navy technicians: mortality survey after 40 years. Am J Epidemiol. 2002;155:810–8.

Degrave E, Autier P, Grivegnée AR, Zizi M. All-cause mortality among Belgian military radar operators: a 40-year controlled longitudinal study. Eur J Epidemiol. 2005;20:677–81.

Degrave E, Meeusen B, Grivegnée AR, Boniol M, Autier P. Causes of death among Belgian professional military radar operators: a 37‐year retrospective cohort study. Int J Cancer. 2009;124:945–51.

Dabouis V, Arvers P, Debouzy JC, Sebbah C, Crouzier D, Perrin A. First epidemiological study on occupational radar exposure in the French Navy: a 26-year cohort study. Int J Environ Health Res. 2016;26:131–44.

Hayes RB, Brown LM, Pottern LM, Gomez M, Kardaun JW, Hoover RN, et al. Occupation and risk for testicular cancer: a case-control study. Int J Epidemiol. 1990;19:825–31.

Davis RL, Mostofi FK. Cluster of testicular cancer in police officers exposed to hand‐held radar. Am J Ind Med. 1993;24:231–3.

Hardell LE, Näsman A, Ohlson CG, Fredrikson MA. Case-control study on risk factors for testicular cancer. Int J Oncol. 1998;13:1299–602.

Baumgardt-Elms C, Ahrens W, Bromen K, Boikat U, Stang A, Jahn I, et al. Testicular cancer and electromagnetic fields (EMF) in the workplace: results of a population-based case–control study in Germany. Cancer Causes Control 2002;13:895–902.

Walschaerts M, Muller A, Auger J, Bujan L, Guérin JF, Lannou DL, et al. Environmental, occupational and familial risks for testicular cancer: a hospital‐based case‐control study. Int J Androl. 2007;30:222–9.

Grayson JK. Radiation exposure, socioeconomic status, and brain tumor risk in the US Air Force: a nested case-control study. Am J Epidemiol. 1996;143:480–6.

Santana VS, Silva M, Loomis D. Brain neoplasms among naval military men. Int J Occup Environ health. 1999;5:88–94.

Holly EA, Aston DA, Ahn DK, Smith AH. Intraocular melanoma linked to occupations and chemical exposures. Epidemiology. 1996;1:55–61.

Stang A, Anastassiou G, Ahrens W, Bromen K, Bornfeld N, Jöckel KH. The possible role of radiofrequency radiation in the development of uveal melanoma. Epidemiology. 2001;1:7–12.

La Vecchia CA, Negri E, D’avanzo BA, Franceschi S. Occupation and the risk of bladder cancer. Int J Epidemiol. 1990;19:264–8.

Finkelstein MM. Cancer incidence among Ontario police officers. Am J Ind Med. 1998;34:157–62.

Fabbro-Peray P, Daures JP, Rossi JF. Environmental risk factors for non-Hodgkin’s lymphoma: a population-based case–control study in Languedoc-Roussillon, France. Cancer Causes Control. 2001;12:201–12.

Variani AS, Saboori S, Shahsavari S, Yari S, Zaroushani V. Effect of occupational exposure to radar radiation on cancer risk: a systematic review and meta-analysis. Asian Pac J cancer prev. 2019;20:3211–9.

Weyandt TB, Schrader SM, Turner TW, Simon SD. Semen analysis of military personnel associated with military duty assignments. Reprod Toxicol. 1996;10:521–8.

Hjollund NH, Bonde JP, Skotte J. Semen analysis of personnel operating military radar equipment. Reprod Toxicol. 1997;11:897

Schrader SM, Langford RE, Turner TW, Breitenstein MJ, Clark JC, Jenkins BL. Reproductive function in relation to duty assignments among military personnel. Reprod Toxicol. 1998;12:465–8.

Velez De La Calle JF, Rachou E, le Martelot MT, Ducot B, Multigner L, Thonneau PF. Male infertility risk factors in a French military population. Hum reprod. 2001;16:481–6.

Baste V, Riise T, Moen BE. Radiofrequency electromagnetic fields; male infertility and sex ratio of offspring. Eur J Epidemiol. 2008;23:369–77.

Møllerløkken OJ, Moen BE. Is fertility reduced among men exposed to radiofrequency fields in the Norwegian Navy? Bioelectromagnetics. 2008;29:345–52.

De Roos AJ, Teschke K, Savitz DA, Poole C, Grufferman S, Pollock BH, et al. Parental occupational exposures to electromagnetic fields and radiation and the incidence of neuroblastoma in offspring. Epidemiology. 2001;1:508–17.

Mageroy N, Mollerlokken OJ, Riise T, Koefoed V, Moen BE. A higher risk of congenital anomalies in the offspring of personnel who served aboard a Norwegian missile torpedo boat. Occup Environ Med. 2006;63:92–7.

Baste V, Moen BE, Oftedal G, Strand LA, Bjørge L, Mild KH. Pregnancy outcomes after paternal radiofrequency field exposure aboard fast patrol boats. J Occup Environ Med. 2012;54:431–8.

Beard JD, Kamel F. Military service, deployments, and exposures in relation to amyotrophic lateral sclerosis etiology and survival. Epidemiol Rev. 2015;37:55–70.

Garaj-Vrhovac V, Gajski G, Pažanin S, Šarolić A, Domijan AM, Flajs D, et al. Assessment of cytogenetic damage and oxidative stress in personnel occupationally exposed to the pulsed microwave radiation of marine radar equipment. Int J Hyg Environ Health. 2011;214:59–65.

Mortazavi SM, Shahram TA, Dehghan N. Alterations of visual reaction time and short term memory in military radar personnel. Iran J Public Health. 2013;42:428.

Singh S, Mani KV, Kapoor N. Effect of occupational EMF exposure from radar at two different frequency bands on plasma melatonin and serotonin levels. Int J Radiat Biol. 2015;91:426–34.

Ahlbom A, Green A, Kheifets L, Savitz D, Swerdlow A. ICNIRP standing committee on epidemiology: epidemiology of health effects of radiofrequency exposure. Environ Health Perspect. 2004;112:1741–54.

Savitz DA. Exposure assessment strategies in epidemiological studies of health effects of electric and magnetic fields. Sci Total Environ. 1995;168:143–53.

J‐H Kim S, Ioannides SJ, Elwood JM. Trends in incidence of primary brain cancer in New Zealand, 1995 to 2010. Aust NZ J Public Health. 2015;39:148–52.

Karipidis K, Elwood M, Benke G, Sanagou M, Tjong L, Croft RJ. Mobile phone use and incidence of brain tumour histological types, grading or anatomical location: a population-based ecological study. BMJ Open. 2018;8:e024489.

Download references

This work was supported by the Australian Government’s Electromagnetic Energy Program. This work was also partly supported by National Health and Medical Research Council grant no. 1042464. 

Author information

Authors and affiliations.

Australian Radiation Protection and Nuclear Safety Agency, Melbourne, VIC, Australia

Ken Karipidis, Rohan Mate, David Urban & Rick Tinker

School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia

  • Andrew Wood

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Ken Karipidis .

Ethics declarations

Conflict of interest.

The authors declare no competing interest

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Karipidis, K., Mate, R., Urban, D. et al. 5G mobile networks and health—a state-of-the-science review of the research into low-level RF fields above 6 GHz. J Expo Sci Environ Epidemiol 31 , 585–605 (2021). https://doi.org/10.1038/s41370-021-00297-6

Download citation

Received : 30 July 2020

Revised : 23 December 2020

Accepted : 21 January 2021

Published : 16 March 2021

Issue Date : July 2021

DOI : https://doi.org/10.1038/s41370-021-00297-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Epidemiology
  • Health studies

This article is cited by

Effects of radiofrequency field from 5g communication on fecal microbiome and metabolome profiles in mice.

  • Guiqiang Zhou
  • Guirong Ding

Scientific Reports (2024)

What evidence exists on the impact of anthropogenic radiofrequency electromagnetic fields on animals and plants in the environment: a systematic map

  • Ken Karipidis
  • Chris Brzozek
  • Andrew W Wood

Environmental Evidence (2023)

Comment on “5G mobile networks and health-a state-of-the-science review of the research into low-level RF fields above 6 GHz” by Karipidis et al.

  • Steven Weller
  • Igor Belyaev

Journal of Exposure Science & Environmental Epidemiology (2023)

The implications of 5G technology on cardiothoracic surgical services in India

  • Aditya Narsipur Doddamane
  • Arkalgud Sampath Kumar

Indian Journal of Thoracic and Cardiovascular Surgery (2023)

What evidence exists on the impact of anthropogenic radiofrequency electromagnetic fields on animals and plants in the environment? A systematic map protocol

Environmental Evidence (2021)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

essay on 5g technology and its impact

For IEEE Members

Ieee spectrum, follow ieee spectrum, support ieee spectrum, enjoy more free content and benefits by creating an account, saving articles to read later requires an ieee spectrum account, the institute content is only available for members, downloading full pdf issues is exclusive for ieee members, downloading this e-book is exclusive for ieee members, access to spectrum 's digital edition is exclusive for ieee members, following topics is a feature exclusive for ieee members, adding your response to an article requires an ieee spectrum account, create an account to access more content and features on ieee spectrum , including the ability to save articles to read later, download spectrum collections, and participate in conversations with readers and editors. for more exclusive content and features, consider joining ieee ., join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of spectrum’s articles, archives, pdf downloads, and other benefits. learn more →, join the world’s largest professional organization devoted to engineering and applied sciences and get access to this e-book plus all of ieee spectrum’s articles, archives, pdf downloads, and other benefits. learn more →, access thousands of articles — completely free, create an account and get exclusive content and features: save articles, download collections, and talk to tech insiders — all free for full access and benefits, join ieee as a paying member., 5g: the future of communications networks, a new ieee initiative is working to improve the next generation of wireless.

Illustration: iStockphoto

THE INSTITUTE Fifth-generation wireless technology is causing a lot of excitement in the telecommunications industry, and differences of opinions. Some see 5G as the next evolution in wireless data communications, promising higher bandwidth and data rates, with significantly fewer transmission delays. Others, however, say the technology will be revolutionary, enabling a host of new applications including humanoid robots , connected cars, and the Internet of Things, with its billions of devices laden with embedded sensors.

Wireless carriers have started building 5G networks even though issues—like defining standards to ensure interoperability and outlining security requirements—are still being worked out. How the first 5G networks, expected to debut in 2020, will be built is important because of the effect they will have on cellular-based businesses and multimedia services.

Concerned that vital issues aren’t being addressed, the IEEE Future Directions Committee , the organization’s R&D arm, in December launched the IEEE 5G Initiative . Its purpose is to engage industry, government, and academia to work together and lay the foundation so that the opportunities envisioned for 5G can be realized. The initiative is run by a steering committee and organized by working groups that cover education, events, publications, standards, and other areas. The IEEE Standards Association and 16 IEEE societies and organizational units are participating.

“IEEE has a special role to play because it’s a neutral organization,” says IEEE Fellow Gerhard Fettweis, the initiative’s cochair. “IEEE can collect ideas and feedback about 5G from operators, researchers, and government regulators to understand the different proposals in the works, identify any problems, and propose solutions.” Fettweis is a professor at Technische Universität in Dresden, Germany, and a senior research scientist with the International Computer Science Institute, an independent nonprofit in Berkeley, Calif.

“IEEE is in a unique position to collect input from around the world and contribute to the whole 5G ecosystem,” adds Fettweis’s cochair, IEEE Senior Member Ashutosh Dutta. “That’s because among its societies and regions are members who are experts in signal processing, network communication, software engineering, antennas, and other related technologies covering all layers of a communication system. It’s a true global initiative.” Dutta is a lead member of the AT&T technical staff in Middletown, N.J.

NEW NETWORKS

Throughout the history of mobile communications, data speeds have jumped incrementally within each generation of the network. That will be the case with 5G as well, but much more is expected of it, including improved performance, capacity, and speed, and a network that operates the world over, no matter where or from which device a user connects.

Carriers will be working to reduce delays in transmission time. The 5G latency is expected to be less than 1 millisecond; 4G networks have a latency of 25 milliseconds. (Latency is the amount of time it takes for a packet of data to get from one forwarding point to another.) Low latency is particularly important for such applications as self-driving cars and robot-aided surgeries, where the slightest delay in transmission time could mean life or death.

But simply updating hardware and software with the latest technologies won’t be enough. The new networks will need to handle billions of devices expected from the Internet of Things and other new applications. It must provide connections that are 100 times faster than current network speeds.

That’s where software-defined networks (SDNs) and network functions virtualization (NFV) fit in. They support the flexibility and dynamics of the growing number of advanced terminals and intelligent machines at the networks’ edges. SDNs can provide improved speeds and lower latency while eliminating bottlenecks.

SDNs decouple hardware (that, say, forwards IP packets) from software (the control plane that carries signaling traffic for routing through network devices). Software is executed not necessarily in the equipment but maybe in the cloud or in clusters of distributed servers. That means networks could be built and reconfigured centrally in an automated fashion, rather than having network managers hop from device to device to make changes manually, according to Dutta.

NFV is often paired with SDNs. The concept uses CPU and resource virtualization and other cloud-computing technologies such as orchestration, network slicing, and mobile edge computing to migrate network functions from dedicated hardware to virtual machines running on general-purpose hardware. NFV can boost speed, flexibility, and efficiency when deployed with the new services expected to be ushered in by 5G. Components can be upgraded to accommodate a service provider’s needs.

SPREADING THE WORD

To help people get a better understanding of 5G and its capabilities as well as uncover issues and concerns, IEEE has been holding summits around the world since 2015. Events have been held in Canada, China, Denmark, Germany, India, and the United States. More are scheduled this year in Finland, Jamaica, Japan, Morocco, Portugal, and elsewhere. At the 5G summits, which are open to anyone, experts discuss topics such as applications for smart cities, bandwidth limitations, network architecture, management challenges, and the need for standards.

“We are working with each IEEE region and section to bring these summits to their doorsteps,” Dutta says. “Each country has different wireless spectrums and resource allocations.”

The IEEE 5G Initiative is developing a road map to help carriers, network operators, service providers, and others find the best path forward. The initiative aims to identify trends in innovation and technology, as well as report on research being conducted in areas such as application services, millimeter waves, the mobile edge cloud, and security.

“Developed in conjunction with the initiative’s working groups, the road map will be a living document with a clear set of accountable recommendations that will be updated annually,” Fettweis says.

STANDARDS are A MUST

Companies including Cisco and Ericsson have already unveiled NFV infrastructures for 5G SDNs and the IoT. South Korea hopes to introduce 5G services in time for the 2018 Winter Olympics there, and the European Union wants 5G mobile broadband to be available around all its major roads and rail links by 2025.

The dilemma with those projects is that 5G standards have yet to be developed. Se veral standards bodies are working to create them, but Dutta says he fears they might overlook some fundamentals.

“They are focused on developing the architecture and the requirements but not on such things as the under­lying technology aspects,” he says.

IEEE is well-positioned to develop 5G standards, according to Konstantinos Karachalios, managing director of the IEEE Standards Association, in Piscataway, N.J. Nearly all wireless communications, he notes, go through the IEEE 802 suite of standards —which includes Ethernet and Wi-Fi, the universal enablers of wireless and localized Internet access.

“The IEEE 802 ecosystem will play a central role in the next generation of connectivity,” Karachalios says. “This technology has an impact across most of IEEE’s technical societies and standards activities.

“IEEE wants to work together with other groups to develop a vision for how it can help connect the unconnected and improve the connection for those who already have one.”

One technology the initiative is looking at, he says, is so-called frugal 5G, which “will help those who are still using 3G technologies to transition toward the next generation of telecommunications in an effective, interoperable, and standardized way that enables greater innovation. We are also addressing the impact of 5G technology based on regional needs and requirements.

“We welcome others to join us to solve some of the regulatory, technological, economic, and consumer hurdles associated with making 5G happen,” Karachalios says.

For more information on the IEEE 5G Initiative and how to participate, email Harold Tepper, IEEE Future Directions senior program director: [email protected] .

More from The Institute

This ieee society’s secret to boosting student membership, get to know the ieee board of directors, 50 years later, this apollo-era antenna still talks to voyager 2, the legacy of the datapoint 2200 microcomputer, enhance your tech and business skills during ieee education week, this article is for ieee members only. join ieee to access our full archive., membership includes:.

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions
  • Publications

The Impact of 5G: Creating New Value across Industries and Society

essay on 5g technology and its impact

World Economic Forum reports may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License , and in accordance with our Terms of Use .

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Front Public Health

The population health effects from 5G: Controlling the narrative

Introduction.

The development and implementation of the fifth-generation wireless technology (5G) are currently ongoing and have largely been met with enthusiasm from the telecommunication industry, applications industries, national governments, and the public. However, 5G has also been met with resistance from anti-5G campaigning organizations supported by pockets of the general public. Concerns relate to the perception that 5G might increase total exposure to radiofrequency (RF) radiation, with further concerns around the fact that in addition to the frequency bands used in 3G and 4G, 5G will (and in some places already does) also use frequencies of >6 GHz including a new ~ 30–300 GHz “high band” with wavelengths from 10 to 1 mm [millimeter waves (MMWs)] ( 1 ). Further concerns relate to the use of multiple-input multiple-output (MIMO) technologies and beamforming, and to the implications on infrastructure as 5G requires many additional new small cells. A cursory read of popular and social media provides interesting reading and illustrates how different interpretations of the same information can result in widely varying interpretations, not least compounded by 5G-related conspiracy theories ( 2 ). Competing narratives around 5G are also described around geopolitical debates ( 3 ). Ideally, the peer-reviewed evidence synthesis literature should be free of these and other non-scientific influences, but in practice, this is rarely, if ever, the case. To explore the narrative that formed the basis for the evaluation of health risks in the peer-reviewed scientific literature, the publications on the topic published during the first critical period of discussion are briefly reviewed and discussed.

PubMed, Ovid Medline, and Web of Science databases of peer-reviewed literature were searched for reviews, commentaries, and opinion articles related to 5G and health. Inclusion was limited to these publications as these provide overviews of the evidence and/or initiate, drive, or direct the scientific debate, and primary research studies were excluded. Only publications in English language were included, and an a priori cutoff of the first 3 years from the first publication was assumed to describe the initiation and direction of the debate. Included articles were ranked based on the month and year of online publication (often “ahead of print”) to provide a chronological timeline of when information would have become available. Articles were assigned as “industry” or “activism” depending on whether the articles report links between the authors and either industry or campaigning organizations related to 5G in particular or mobile phones more broadly, or as “independent” otherwise. In case no such links were reported, a basic internet search was performed to identify unreported links.

An overview of the 15 articles included in this review is provided in Table 1 . The set of articles covered the period of 2018–2021, thus providing an overview of the first 3 years of publications on 5G and health.

Overview of included publications.

The first review was published in February 2018 by Di Ciaula ( 4 ) and was based on a systematic search of epidemiological, in vivo , and in vitro studies identified in the PubMed database. Di Ciaula reported no funding or conflict of interest (CoI), but an internet search identified membership of the International Society of Doctors for Environment (ISDE), which published a 5G appeal for a moratorium on the development of 5G ( https://www.isde.org/5G_appeal.pdf ). Di Ciaula discussed the evidence for cancer, reproductive effects, neurologic effects, and microbiological effects and specifically addressed evidence in relation to MMWs. No formal assessment of the quality of the studies was included, and the author concluded that “[the evidence] clearly point to the existence of multi-level interactions between high-frequency EMF and biological systems, and to the possibility of oncologic and non-oncologic (mainly reproductive, metabolic, neurologic, microbiologic) effects” and further raises concerns regarding the increased susceptibility of children. The main aim of the review was to provide the rationale to invoke the precautionary principle, which is mentioned both in the Conclusion section and Abstract.

Russell published a similar review in April 2018 ( 5 ). Despite being the Executive Director of Physicians for Safe Technology, the author reported no affiliation, funding, or CoI. Russell does acknowledge support from Smernoff and Moskowitz; an internet search identifies the latter as being on the Advisory Board of Physicians for Safe Technology as well as being an advisor to the International EMF Scientist Appeal (and its spokesperson for the United States). The review reported effects on cancer, dermal effects, ocular effects, effects on reproduction and neurology, microbiological effects, and effects on the immune system. It further reports specific effects from MMWs, electrohypersensitivity [or, more accurately, idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF)], and effects on children, and discusses how industry bias has obscured these facts. Scientific uncertainty is only mentioned in passing and is largely attributed to industry distortion. Russell concludes that “current radiofrequency radiation wavelengths we are exposed to appear to act as a toxin to biological systems” and “although 5G technology may have many unimagined uses and benefits, it is also increasingly clear that significant negative consequences to human health and ecosystems could occur if it is widely adopted.” It further makes specific policy recommendations that “public health regulations need to be updated to match appropriate independent science with the adoption of biologically based exposure standards prior to further deployment of 4G or 5G technology” and that “a moratorium on the deployment of 5G is warranted, along with the development of independent health and environmental advisory boards that include independent scientists who research biological effects and exposure levels of radiofrequency radiation.”

McClelland and Jaboin, who do not seem to have published on the topic of mobile phones and health before, published a commentary in August 2018 ( 6 ). They reported no CoIs, the commentary was supported by a few references to in vivo studies, and the sole aim of the commentary was to bring a 5G moratorium to the attention of the journal's readership.

Miller et al. published their review on August 2019 ( 7 ). The manuscript was initially developed as a Position Statement of the International Network for Epidemiology in Policy (INEP), but after its board voted to abandon its involvement, the authors decided to publish it regardless. They reported affiliations to universities as well as the campaigning organizations the Environmental Health Trust and the Environment and Cancer Research Foundation, but did not, for example, report their involvement in the Physician's Health Initiative for Radiation and Environment (PHIRE) (Miller, Hardell, Davis) and Oceania Radiofrequency Scientific Advisory Association (ORSAA) (Hardell, Morgan, Davis). No information is provided on the methodology of this narrative review, and no quality assessment of included references is conducted, but scientific uncertainty is discussed. Carcinogenic and reproductive effects are reported as a specific susceptibility of children to RF. Particularly in relation to 5G, skin effects, oxidative stress, altered gene expression, immune function, and other biological endpoints are mentioned. The authors make several policy recommendations, but not specifically in relation to 5G.

In September 2019, Simkó and Mattsson published a pragmatic review of in vivo and in vitro evidence for health and biological effects in relation to 6 to 100 GHz frequency range ( 8 ). Both authors were from SciProof International and reported that their review was funded by Deutsche Telekom Technik GmbH. Although described in opaque language, the review seems to be based on a systematic approach to evidence synthesis and includes an assessment of study quality. Scientific uncertainty is discussed in detail, and the authors conclude that “regarding the health effects of 6–100 GHz at power densities not exceeding the exposure guidelines, the studies provide no clear evidence due to contradictory information from the in vivo and in vitro investigations.” They further highlight that “regarding the quality of the presented studies, a few studies fulfill the minimal quality criteria to allow any further conclusions.”

Hardell and Nyberg published a commentary in January 2020 ( 9 ). Both reported university affiliations and reported that neither funding was received for the work nor do they report any CoIs. However, in addition to unreported associations already mentioned above, it has also been documented that Hardell has previously received direct industry funding as well as funding from pressure groups, while he has also acted as an expert witness for the plaintiff in hearings around brain tumors and mobile phones ( 10 ). He is the spokesperson for the International EMF Scientist Appeal for Sweden and also runs a charity, the Environment and Cancer Research Foundation, which accepts direct donations and is heavily involved in appeals. The commentary includes several strong claims, including that “RF radiation may now be classified as a human carcinogen, Group 1” and that “experience with the EU, and the governments of the Nordic countries suggest that the majority of decision-makers are scientifically uninformed on health risks from RF radiation”, and interestingly and without basis that “they [the EU and governments of Nordic countries] seem to be uninterested to being informed by scientists representing the majority of the scientific community.”

In January 2020, there was also the publication of a review of health effects of 5G under real-life conditions by Kostoff et al. ( 11 ). They reported university affiliations and declared that neither external funding was received for the work nor any CoIs. However, an internet search identified that Héroux is the spokesperson for the International EMF Scientists Appeal for Canada. There is no assessment of study quality or scientific uncertainty. They mentioned that industry influence is the cause of the lack of consensus on health effects of mobile phones. The authors claimed that “there is a large body of data from laboratory and epidemiological studies showing that previous and present generations of wireless networking technology have significant adverse health impacts”, and that, with respect to 5G specifically, “superimposing 5G radiation on an already imbedded toxic wireless radiation environment will exacerbate the adverse health effects shown to exist.”

An information statement from the IEEE Committee on Man and Radiation (COMAR) was published in relation to health and safety issues concerning the exposure of the general public to electromagnetic energy from 5G wireless communication networks in June 2020 ( 1 ). All authors report industry CoIs. The main focus of the review relates to RF exposures from 5G, but some discussion specifically on potential biological and health effects of MMWs is included. Study quality is discussed in detail, including the varying quality of narrative reviews [including ( 4 )], and research gaps regarding the bioeffects of MMWs are highlighted. The authors refer back to ( 8 ) for a discussion on bioeffects and conclude that “… while we acknowledge gaps in the scientific literature, particularly for exposures at MMW frequencies, the likelihood of yet unknown health hazards at exposure levels within current exposure limits is considered to be very low, if they exist at all.”

Hardell contributed a second commentary in this period, with Carlberg as co-author ( 12 ). In this commentary, they reported the Environmental and Cancer Research Foundation as their affiliation, but declared neither CoI nor any external funding for the work. Also, the authors discussed the involvement of certain experts in various committees related to RF health and safety in the EU and internationally and the influence of industry. In addition, they mentioned effects of RF exposure, including 5G, on cancer, reproduction, and neurology; effects on the immune system; and microbiological effects, and also mentioned the susceptibility of children to RF. The claim that “the IARC Category should be upgraded from Group 2B to Group 1, a human carcinogen” is re-iterated, referencing Hardell's earlier contribution as the basis for this claim ( 9 ). Hardell and Carlberg highlighted the appeal for a 5G moratorium sent to the EU in 2017.

Leszczynski published a review on the physiological effects of MMWs on the skin and skin cells in August 2020 ( 13 ). He reports a university affiliation, neither external funding for the work nor CoI. Leszczynski conducted a systematic review of several databases for studies of >6 GHz. The quality and uncertainty of the available evidence are specifically discussed, and he concludes that “this evidence is currently insufficient to claim that any effects have been proven or disproven”. Leszczynski addresses policy and argues that “deployment for industrial use should be the first, but the further broader deployment for the non-industrial use should preferably await for the results of the biomedical research”.

Frank published an essay on 5G and the precautionary principle in January 2021 ( 14 ). He declares neither external funding nor CoI. He is, however, a member of the PHIRE team. Frank has no previous track record in radiation epidemiology, but he has reviewed the evidence and provided support for the work by Miller et al. ( 7 ). He concluded that the precautionary principle should be applied and recommended a moratorium on 5G development.

A team from the Swinburne University of Technology and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) published two studies in March 2021: a comprehensive review of the literature for experimental studies of bioeffects of RF fields between 6 and 300 GHz and a complementary meta-analysis ( 15 , 16 ). The authors reported Australian government and National Health and Medical Research Council funding, but no CoIs. Of relevance is that Karipidis is a member of the International Commission on Non-Ionizing Radiation Protection (ICRNIRP). The included studies in these publications were identified in a systematic literature search, and the authors have explicitly discussed study quality. They concluded that many studies have low-quality methods and that experimental data do not provide evidence that low-level MMWs are associated with biological effects relevant to human health.

Jargin published a letter to the editor in March 2021 ( 17 ) in which he has argued that various publications claiming there are health harms related to 5G published by interest groups overestimate any health risks from RF-EMF to hamper the technological advancement of developed nations. He further argued that excessive restrictions would only be unfavorable for the economy and add difficulties to daily life. As such, it advocates a policy recommendation of no action. He has reported neither external funding for the work nor any CoI.

Hardell also contributed a third publication ( 18 ). In this opinion piece/review, Hardell argued that evaluations by the Health Council of the Netherlands, the WHO, ICNIRP, and the Swedish Radiation Safety Authority are not impartial and that a moratorium on the implementation of 5G is urgently required. He has reported both university and foundation affiliations, but has reported neither external funding nor any of the above identified CoI.

This chronological overview of the publications published during the initial critical phase of discussions around 5G and health leads to the interesting observation that publications by authors with links to anti-5G campaigning organizations dominated the early phase in which adverse effects related to 5G were discussed. Over half of the 15 publications had links to such organizations in the initial 3-year period covered here. Such patterns of efforts to control the narrative during critical periods have been studied elsewhere, for example, in the sugar-sweetened beverage research ( 19 ); although in this example, the opposite pattern was observed in which the contribution of industry-related studies was high at the start and decreased significantly with time.

With the increasing contribution from independent and industry-linked authors over the covered time period, the narrative shifts from the exclusive reporting of increased risks of all biological or health effects covered to predominantly descriptions of mixed results and conclusions not supporting increased risks. This difference in the interpretation of the same evidence depending on the affiliation in RF research has been mentioned previously, specifically in relation to the funding source of primary studies ( 20 , 21 ), but the current overview is indicative of a similar pattern in other types of peer-reviewed publications. Reviews from independent and industry-linked authors were systematic-style reviews, rather than narrative reviews, and were of higher methodological quality because they based their inferences on a more systematic approach to the identification of relevant literature and also explicitly included some forms of assessment of the quality of these studies. They also had a narrower aim in terms of exposures or health outcomes, which will have facilitated a more systematic approach. There is evidence from various industries, including the telecommunications industry ( 20 , 21 ), of a correlation between industry funding of research and null findings. However, there is much less discussion of its mirror image: the phenomenon that independently funded studies may be biased if the authors have strong a priori beliefs about the question under study. This “white hat bias” is observable in the literature as selective referencing and the acceptance of a lower standard of scientific evidence for studies supporting the authors' beliefs ( 22 ), and was first explored in obesity research ( 23 , 24 ). The non-systematic inclusion of references (or “cherry picking”) and lack of explicit assessment of study quality observed in the publications in the current work were most prominent in the narrative reviews by authors with links to campaigning organizations and likely will have resulted in biased inferences. Importantly, since these publications made up most of the earliest publications during the critical window, these inferences will have disproportionally influenced the narrative. Given that all of these articles had the specific aim to influence policy and, in most cases, advocated for a moratorium on 5G, this provides further support for the presence of “white hat bias” influencing the initial peer-reviewed and, through that, lay literature.

Given the observed differences between publications by authors with links to campaigning organizations and those with industry-linked or independent authors, the reporting of CoI becomes more important. Direct industry funding and other financial CoIs are generally considered the main sources of potential bias, and these were reported by the publications with links to industry (either as a CoI or as a funding source) and by one of the papers with links to activism. However, no other financial CoIs were reported; for example, it is recorded that Hardell, who has contributed three publications in this critical time period, has previously received direct industry funding as well as funding from pressure groups, while he has also acted as an expert witness for the plaintiff in hearings around brain tumors and mobile phones ( 10 ). Importantly, industry and other financial CoIs are not the only potential source of CoI bias ( 25 ), and a variety of non-financial CoIs have been described, for instance, originating from particular concerns, ideals, and predilections ( 26 ). Membership of campaigning organizations or their advisory or expert boards would, presumably, constitute such non-financial CoIs and, therefore, should have been reported. Despite internet searches by the authors identifying quite a number of such CoIs, only a few of these were reported by the authors (or could be inferred from affiliations). Likewise, the membership of national or international expert organizations constitutes non-financial CoIs that ideally should have been reported, and Karipidis' membership of ICNIRP is relevant in the context of these publications.

Although the discussed timeline of publications highlights some interesting trends and areas of concern, this work has a number of limitations. Although the selected manuscripts were identified through a systematic search, it was not a systematic review of the literature, and publications that did not specifically mention 5G in the title, abstract, or keywords might have been missed. Furthermore, the search was also limited to publications in English language. Although the wider debate about health effects of 5G is much larger and also includes gray literature, popular, and social media, these were not included in this overview. It would be an interesting future exercise to evaluate similar trends in these media. Although several non-reported CoIs were identified, these were identified following cursory internet searches only and do not constitute an exhaustive list. It is likely that a more thorough systematic search would reveal additional links not reported here. It is also possible that some such CoIs did not exist yet at the time of publication.

In conclusion, the discussion around 5G as a significant human health risk in the peer-reviewed literature was initially largely driven by authors from, or with links to, various campaigning organizations and linked publications directly to appeals for a moratorium on 5G. Commentaries and letters are personal opinions and are rarely based upon a methodological appraisal of the evidence, but the narrative of the initial period covered in the current review, relied mostly on reviews of lower methodological quality compared, with the subsequently published reviews by independent researchers and researchers with links to industry. It is likely that articles in the popular media, therefore, were influenced more heavily by the initial advocacy publications than by the later higher quality contributions. Importantly, there is no clear answer (yet) whether the resulting narrative from the peer-reviewed literature describes an overestimation of risks as a result of articles with links to campaigning organizations, or whether later contributions from authors with links to industry, and possibly most independent authors, at the latter stages of the critical window describe an underestimation of true causal associations, or whether their combined evaluation will inform future evidence synthesis closer to “the truth”. It is, however, well established that not including explicit evaluation of the quality of studies included in evidence synthesis, and which was most evident in publications classified as “activism”, makes such reviews more susceptible to biased inferences. In addition to issues related to controlling the narrative and the impact of “white hat bias”, the current work further describes undisclosed non-financial CoIs that are likely to have influenced the interpretation of evidence. This was also observed particularly for those publications associated with campaigning organizations. The narrative around 5G and potential human health effects should be interpreted through this lens, in particular because many of the authors with links to various campaigning organizations in this article (Hardell, Héroux, Miller, and Moskowitz) as well as others who published works after the covered period have recently joined up formally in a new advocacy group ICBE-EMF ( 27 ).

Author contributions

FdV conceived of the study and wrote the first version of the manuscript. FdV and PA conducted the analyses. All authors contributed to the article and approved the submitted version.

Acknowledgments

The authors would like to thank Tabitha Pring, whose MSc dissertation partly informed the current work.

Conflict of interest

FdV is a member of the Committee on Medical Aspects of Radiation in the Environment COMARE, IRPA NIR Task Group, SRP EMFOR, and EMF Group of the Health Council of the Netherlands. FdV consulted for EPRI not directly related to this work. The remaining author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

essay on 5g technology and its impact

25,000+ students realised their study abroad dream with us. Take the first step today

Meet top uk universities from the comfort of your home, here’s your new year gift, one app for all your, study abroad needs, start your journey, track your progress, grow with the community and so much more.

essay on 5g technology and its impact

Verification Code

An OTP has been sent to your registered mobile no. Please verify

essay on 5g technology and its impact

Thanks for your comment !

Our team will review it before it's shown to our readers.

Leverage Edu

  • School Education /

Essay On 5g Technology: Free Samples Available for Students

' src=

  • Updated on  
  • Dec 29, 2023

Essay on 5g Technology

Congratulations to the world on the evolution of technology; from the first general-public computer named INIAC in 1945 to 5g technology in 2022, technology has greatly improved and has eased our lives. 5g technology is the advanced version of the 4g LTE (Long Term Evolution) mobile broadband service. We have all grown up from traditional mobile top-ups to digital recharges. According to sources, 5g is 10 times faster than 4g; a 4g connection has a download speed of 1 GBPS (Gigabyte Per Sec) and 5g has 10 GBPS. Below we have highlighted some sample essay on 5g technology.

essay on 5g technology and its impact

Table of Contents

  • 1 Essay on 5G Technology in 250 words
  • 2.0.1 Conclusion
  • 3 Benefits of 5G
  • 4 10 Lines to Add to Your Essay on Technology

Also Read: Short Speech on Technology for School Students Short Essay on 5g Technology

The fifth generation or 5g technology for mobile networks was deployed all over the world in 2019, with South Korea becoming the first country to adopt it on a large scale. In mobile or cellular networks, the service or operating areas are divided into geographical units termed cells. The radio waves connect all the 5g mobile devices in a cell with the telephone network and the Internet. 

5g is 10 times faster than its predecessor, 4g, and can connect more devices in a particular area. Not only this, it also introduces new technologies such as Massive MIMO (Multiple Input, Multiple Output), beamforming, and network slicing. Before switching to 5g, make sure to remember that 5g is not compatible with 4g devices.

Also Read: Essay on Health and Fitness for Students

Essay on 5G Technology in 250 words

The fifth generation of networks is the 5G network and this network promises to bring faster internet speed, lower latency, and improved reliability to mobile devices. In India, it is expected to have a significant impact on several industries such as healthcare, education, agriculture, entertainment, etc.

5G carries a lot of features such as:-

  • Higher speeds: – The 5G network will have wider bandwidth which will allow for more data to flow. Hence, it will result in higher download and upload speeds.
  • More capacity :- 5G network, in comparison to 4G, will have greater capacity to hold more network devices. This is very essential as the number of network devices increases each day.
  • Lower latency: – 5G network will have much lower latency. This is essential for many tasks such as video conferencing or even online gaming which is a known profession these days. 

Due to all these, a lot of things will have a positive impact. Connectivity will improve and enable even the most rural areas to become connected to the rest of the world. 5G technology will help revolutionise the healthcare industry in India in ways such as telemedicine, remote surgeries, real-time patient monitoring, etc. 

However, like any other innovation, 5G does come with some concerns. There are certain concerns regarding the security of the 5G network, hence Indian Government needs to ensure that this network is safe from all the cyber threats. Also, although not proven, there are some concerns regarding the effects of 5G radiation on health. 

There is no doubt that 5G technology holds immense potential for India. And although there are many challenges to its deployment, the Indian Government and other industry experts should work together to over come these challenges and make the most of this technology.

350 Word Essay on 5g Technology

How significantly technology has improved. 50 years back nobody would have imagined that a mobile connection would allow us to connect anywhere in the world. With 5g technology, we can connect virtually anywhere with anyone in real-time. This advanced broadband connection offers us a higher internet speed, which can reach up to two-digit gigabits per second (Gbps). This increase in internet speed is achieved through the use of higher-frequency radio waves and advanced technologies.

The world of telecommunication is evolving at a very fast pace. 3g connectivity was adopted in 2003, 4g in 2009, and 5g in 2019. the advent of 5G technology represents an enormous leap forward, promising to reshape the way we connect, communicate, and interact with the digital world. 

The 5th Generation of mobile networks stands out from its predecessors in speed, latency, and the capacity to support a larger array of devices and applications. 5g speed is one of the most remarkable features, which allows us to download large amounts of files from the internet in mere seconds. Not only this, it also allows us smoother streaming of HD content and opens the door to transformative technologies.  Augmented reality (AR) and virtual reality (VR) experiences, which demand substantial data transfer rates, will become more immersive and accessible with 5G.

What is the difference between 5g and 4g?

The difference between 5g and 4g technologies clearly highlighted in their speed, latency, frequency bands, capacity and multiple other uses.

  • The average downloading speed of 4g connectivity was 5 to 1000 Mbps (megabytes per sec). But with 5g, this speed increases 10 times.
  • 4G networks had a latency of around 30-50 milliseconds and 5g reduces latency to as low as 1 millisecond or even less.
  • 4G networks mainly use lower frequency bands below 6 GHz, but,  5g utilizes a broader range of frequencies, including lower bands (sub-6 GHz) and higher bands (millimeter waves or mmWave).
  • 4g was well-suited for broadband applications like web browsing, video streaming, and voice calls. 5g is capable of supporting a large number of applications from smart cities, critical communication services, and applications that demand ultra-reliable low-latency communication.

Benefits of 5G

  • Lower Latency: 5G Network will have extremely lower latency compared to that of 4G LTE. This will result in a much more smoother experience in terms of real time communication such as video conferencing or online gaming.
  • Faster Speeds : 5G Network is expected to peak at high speeds of around 10 Gbps which is extremely high as compared to that of 4G LTE. This will result in high download as well as upload speeds and much smoother video streaming, etc.
  • New Applications: Some applications that were not possible with 4G LTE will now be possible because of 5G such as remote surgery, augmented reality, etc.
  • More Capacity: 5G bands can support Much more devices as compared to 4G LTE networks. This is extremely important as the number of connected grows everyday.

Also Read: Essay on Farmer for School Students

10 Lines to Add to Your Essay on Technology

Here are 10 simple and easy quotes on 5g technology. You can add them to your essay on 5g technology or any related writing topic to impress your readers.

  • 5g technology is the fifth generation of mobile or cellular networks.
  • 5g offers significantly higher download speeds, reaching several gigabits per second.
  • 5g technology’s ultra-low latency is one of the most striking features, which can reduce delays to as little as 1 millisecond.
  • 5G utilizes a diverse spectrum, including both lower bands (sub-6 GHz) and higher bands (mmWave).
  • The increased speed and low latency of 5G support emerging technologies like augmented reality (AR) and virtual reality (VR).
  • It enables a massive Internet of Things (IoT) ecosystem, connecting a vast number of devices simultaneously.
  • 5G is essential for applications requiring real-time responsiveness, such as autonomous vehicles and remote surgery.
  • The deployment of 5G networks is underway globally, transforming how we connect and communicate.
  • Smart cities leverage 5G to enhance efficiency through interconnected systems and sensors.
  • As the backbone of the digital era, 5G technology is driving innovation and shaping the future of connectivity.

Related Articles

Ans: 5g technology is the advanced generation of the 4g technology. It’s a mobile broadband service, which allows users to have faster access to the internet. Our everyday tasks on the internet will be greatly improved using 5g technology. 5g is 10 times faster than its predecessor, 4g and can connect more devices in a particular area. Not only this, it also introduces new technologies such as Massive MIMO (Multiple Input, Multiple Output), beamforming, and network slicing. Before switching to 5g, make sure to remember that 5g is not compatible with 4g devices.

Ans: 4g technology has a download speed of 5 to 10 Gbps. This broadband service is 10 times faster than its predecessor, 4g.

Ans: 5g is an advanced version of the 4g connectivity in terms of speed, latency, frequency bands, capability, and uses. 4G networks had a latency of around 30-50 milliseconds and 5g reduces latency to as low as 1 millisecond or even less.

For more information on such interesting topics to help you with your school, visit our essay writing page and follow Leverage Edu .

' src=

Shiva Tyagi

With an experience of over a year, I've developed a passion for writing blogs on wide range of topics. I am mostly inspired from topics related to social and environmental fields, where you come up with a positive outcome.

Leave a Reply Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Contact no. *

essay on 5g technology and its impact

Connect With Us

essay on 5g technology and its impact

25,000+ students realised their study abroad dream with us. Take the first step today.

essay on 5g technology and its impact

Resend OTP in

essay on 5g technology and its impact

Need help with?

Study abroad.

UK, Canada, US & More

IELTS, GRE, GMAT & More

Scholarship, Loans & Forex

Country Preference

New Zealand

Which English test are you planning to take?

Which academic test are you planning to take.

Not Sure yet

When are you planning to take the exam?

Already booked my exam slot

Within 2 Months

Want to learn about the test

Which Degree do you wish to pursue?

When do you want to start studying abroad.

January 2024

September 2024

What is your budget to study abroad?

essay on 5g technology and its impact

How would you describe this article ?

Please rate this article

We would like to hear more.

Have something on your mind?

essay on 5g technology and its impact

Make your study abroad dream a reality in January 2022 with

essay on 5g technology and its impact

India's Biggest Virtual University Fair

essay on 5g technology and its impact

Essex Direct Admission Day

Why attend .

essay on 5g technology and its impact

Don't Miss Out

essay on 5g technology and its impact

Move fast, think slow: How financial services can strike a balance with GenAI

essay on 5g technology and its impact

Take on Tomorrow @ the World Economic Forum in Davos: Energy demand

essay on 5g technology and its impact

PwC’s Global Investor Survey 2023

essay on 5g technology and its impact

Climate risk, resilience and adaptation

essay on 5g technology and its impact

Business transformation

essay on 5g technology and its impact

Sustainability assurance

essay on 5g technology and its impact

The Leadership Agenda

essay on 5g technology and its impact

PwC and TED

essay on 5g technology and its impact

Built to give leaders the right tools to make tough decisions

essay on 5g technology and its impact

The New Equation

essay on 5g technology and its impact

PwC’s Global Annual Review

essay on 5g technology and its impact

Committing to Net Zero

essay on 5g technology and its impact

The Solvers Challenge

Loading Results

No Match Found

The Impact of 5G: Creating New Value across Industries and Society

The impact of 5g.

The positive impact of the Fourth Industrial Revolution and its related emerging technologies will be fully realized through the wide-scale deployment of 5G communication networks in combination with other connectivity solutions. The key functional drivers of 5G will unlock a broad range of opportunities, including the optimization of service delivery, decision-making, and end-user experience. This will result in $13.2 trillion in global economic value by 2035, generating 22.3 million jobs in the 5G global value chain alone.

To better understand how to realise this large estimated economic output potential, PwC collaborated with the World Economic Forum on a new report, which proposes a bottom-up approach analyzing 40 use cases that identified key industrial advances and social impact areas in addition to the main functional drivers of 5G and the required maturity levels of these drivers. Additionally, it maps the 5G ecosystem to identify its components, its stakeholders and interdependencies, and the actions needed to accelerate 5G deployment and fully realize the potential.

Read our report 

“5G will be critical because it will enable unprecedented levels of connectivity, upgrading 4G networks with five key functional drivers: superfast broadband, ultra-reliable low latency communication, massive machine-type communications, high reliability/availability and efficient energy usage.” Hazem Galal Global Leader, Cities & Local Government, PwC Middle East

Related content

Making 5g pay: monetizing the impending revolution in communications infrastructure.

Monetizing the impending revolution in communications infrastructure.

The promise of 5G

Consumers are intrigued, but will they pay?

Hazem Galal

Hazem Galal

Partner, Global Cities and Local Government Leader, and Global Smart Mobility Co-Leader, PwC Middle East

Facebook Follow

© 2017 - 2024 PwC. All rights reserved. PwC refers to the PwC network and/or one or more of its member firms, each of which is a separate legal entity. Please see www.pwc.com/structure for further details.

  • Legal notices
  • Cookie policy
  • Legal disclaimer
  • Terms and conditions
  • IBPS RRB Exam 2023 - Free Course

Current Affairs

  • General Knowledge
  • SSC CGL Pre.Yrs.Papers
  • SSC CGL Practice Papers
  • SBI Clerk PYQ
  • IBPS PO PYQ
  • IBPS Clerk PYQ
  • SBI PO Practice Paper
  • SBI PO General Awareness 2022

Banking Awareness

  • Reserve Bank of India (RBI) And Its Functions
  • SEBI - Objectives, Structure and Functions
  • Insurance Regulatory and Development Authority of India
  • Financial Stability and Development Council (FSDC)
  • Bank Board Bureau (BBB) and Financial Services Institutions Bureau (FSIB)
  • Small Industries Development Bank of India (SIDBI)
  • What is National Stock Exchange of India (NSEI)?
  • What are the functions of NABARD?
  • International Bank of Reconstruction and Development (IBRD)
  • International Monetary Fund (IMF): Objectives and Functions

Banking Terminologies Knowledge

  • List of Important Economy Terms
  • Important Terms on Tax and Market Economics

Financial Awareness

  • Private Sector Banks and their Headquarters
  • Public Sector Banks And Their Headquarters
  • Difference between Life Insurance and General Insurance
  • Types of Economic Systems and their Importance
  • Important Features of Indian Economy
  • Different Branches of Economics
  • How to Get Your CPA License?
  • Characteristics of Monopolistic Competition
  • Perfect Competition : Functions, Features and Examples
  • How to Set up Google Ads?
  • Marshallian Approach to Price Determination
  • Importance of LIC in India
  • FDI Limits in Various Sectors in India
  • How Much Google Ads Cost?
  • Meaning and Determinants of Demand
  • Production Possibilities Curve (PPC) : Meaning, Assumptions, Properties and Example
  • MCQs on Basic Economics
  • Importance of Securities and Exchange Board of India
  • Role of Reserve Bank of India
  • Methods of Economic Analysis
  • Basic Concepts Related To Economics
  • Indian Financial System - Overview and Components
  • Types of Taxes
  • Discuss Supply and Demand Reversal Of Environmental Resources
  • Tokenization of Card

Static Awareness

  • Computer Networking Aptitude Questions for Bank Exams
  • MCQ on Computer Networking for Bank Exams
  • Computer Awareness MCQ for Bank Exams
  • Important Questions on Computer Operating System for Bank Exams
  • MCQ on Computer Operating System for Bank Exams
  • Important Questions on Computer Hardware for Bank Exams
  • MCQ on Computer Hardware for Bank Exams
  • Important Questions on Computer Software for Bank Exams
  • MCQ on Computer Software for Bank Exams
  • MS Office MCQ for Competitive Exams
  • Important Computer Abbreviations for Bank Exams
  • Computer Abbreviations Questions for Bank PO/Clerk Exams
  • Important Questions for Computer Keyboard Shortcuts
  • Practice Questions for Computer Keyboard Shortcuts
  • Important Questions on Computer Memory for Bank Exams
  • Practice Questions on Internet for Bank Exams
  • Important Features of Microsoft Word
  • Important Questions On Computer Internet For Bank Exam
  • National Park in India 2023 with State-wise List

General Knowledge (India & World GK)

  • List of Prime Ministers of India (1947-2024)
  • What are the functions of Lok Sabha and Rajya Sabha?
  • List of Ramsar Sites in India
  • List of Important Wildlife Sanctuaries in India
  • Bordering Countries of India
  • List of all Dams of India
  • Agnipath Scheme
  • List of Indian Presidents: Presidents of India (1950 to 2022)
  • List of Vice Presidents of India (1952 to 2023)
  • Constitution of India
  • Fundamental Rights (Articles 12-35): A Comprehensive Guide
  • Fundamental Duties In Indian Constitution
  • List of Bharat Ratna Award Winners : Updated Full List Till 2024
  • List of Tiger Reserves in India 2023, Names, Schemes and Map
  • Indian Nobel Prize Winners from 1913 to 2023
  • List of International Organizations and their Headquarters
  • 7 Continents Name List in Order with Countries, Oceans, & Size
  • Neighbouring Countries of India - Full List
  • Principles of Insurance
  • Khelo India
  • Most important National Sports Awards in India
  • MCQ of Important Discoveries and Invention
  • Studentship Program for Ayurveda Research Ken (SPARK)
  • What is NOPEC Bill and its Concerns
  • The Indian made Light Combat Helicopter Prachand
  • Chief of Defence Staff
  • What is NDMA and its Functions
  • VyomMitra and its Importance
  • Green Accounting System and its Importance
  • Jal Jeevan Mission (Rural and Urban)
  • Gig Economy India and its Challenges
  • Cyber Security in India: Challenges and Measures
  • INS Vikrant : Features and its Importance
  • Light Combat Helicopter and its Features
  • Food Security and Its Challenges
  • What is Card Tokenization and its Benefits
  • Malthusian Trap and its Importance
  • Central Bureau of Investigation (CBI) and its Major Issues
  • What are Carbon Markets and their Importance
  • Features of National Logistics Policy 2022
  • INS Vikrant
  • Kuno National Park
  • Dharamshala Declaration and its Importance
  • Lumpy Skin Disease Virus
  • Universal Basic Income: Its Advantages and Concerns
  • Single Use Plastics - Meaning, Impact, and Ban in India
  • Agnipath Scheme and its Features
  • Sanskritization and Its Importance
  • Electric Vehicle
  • CRISPR Technology and its Importance

5G Technology and Its Significance

  • The National Family Benefits Scheme
  • Non-Fungible Tokens and their Significance
  • Important Challenges in the Renewable Energy Sector
  • Important Global Initiatives to Combat Climate Change
  • List of Towns Associated with Important Industries
  • Indian Nuclear Programme and Its Importance
  • MCQ on Important Books and Authors
  • MCQs on Important Lakes in India
  • Types of Missiles, List, Range, Facts
  • Different Types of Gallantry Awards
  • Different Branches of Science and their Studies
  • Important Indian Satellites Launched by ISRO
  • List of Recipients of Dadasaheb Phalke Award
  • List of Important Indian Airforce Training Institutes
  • Important Indian Naval Training Centre
  • Ramon Magsaysay Award Winners from India
  • Importance of Scientific Instruments in the World
  • Top 10 Groundbreaking Inventions by Female Innovators in History
  • Important Questions on Agriculture Economics
  • List of Different Forms of Martial Arts
  • Important Questions on Scientists and Their Contributions
  • List of Padma Awardees 2022
  • Some Important Foreign Writers and their Books
  • List of Important Books and Authors
  • List of Jnanpith Award Winners (1965-2024), Prize Money
  • How Important are Dates in History?
  • List of Important Indian Army Training Centre
  • International Airlines of All Major Countries
  • List of Important Days in History
  • Important Inventions and Their Inventors
  • List of Scientific Instruments and Their Uses
  • List of Research Institutes in India
  • Intelligence Agencies of Different Countries
  • List of Countries and Their Parliaments
  • List of Gandhi Peace Prize Winners
  • Famous Elephant Reserves in India
  • The United Nations - Sustainable Development Goals
  • List of Biosphere Reserves in India
  • Space Centres Of World And Indian Space Centres
  • List of Major Tribes In India
  • Non-Constitutional Bodies Of India
  • List of Countries in Europe with Capitals and Interesting Facts
  • Missiles Of India
  • List Of Important Medieval History Books And Their Writer
  • Important Ancient Indian History Books and their Writer
  • List of the Joint Military Exercise of India
  • Women Empowerment Schemes In India
  • United Nations Agencies And Their Roles
  • Types Of Reservoirs And Its Significance
  • Important Summit 2021-22
  • Shyama Prasad Mukherji Rurban Mission
  • Most Important Questions on Indian Dance forms
  • Popular Folk Dances Of India
The 5G era has arrived! The technology that has become a hot topic in recent years is finally being deployed in various countries such as China, the United States, Japan, and even South Korea. This topic is very important from an exam perspective because nowadays, exams such as UPSC, SSC, Railways, Banking, and others are current affairs oriented.

5-G Technology: An Introduction

  • 5G is the fifth generation of cellular technology, which not only improves download and upload speeds over cellular networks (1 Gbps speed) but also reduces latency. The time it takes for the network to respond. It also improves energy efficiency and provides a more stable network connection.  
  • 5G is also designed to deliver signals more reliably than previous cellular networks.  
  • 5G will provide a wider range of frequency spectrum (frequency range) to prevent network congestion. In addition, the connection to the perfect circle is also guaranteed. Everything is connected to everything.  
  • 5G will facilitate the Internet of Things (IoT) ecosystem, and integrate artificial intelligence (AI) into our daily lives. To reap the benefits of 5G, users will have to buy new phones and carriers will have to install new transmission equipment to provide faster service.  
  • 5G mainly works in three bands: low, medium, and high-frequency spectrum. All of these have uses and limitations.  
  • The low-band spectrum is promising in terms of coverage but is limited to 100Mbps maximum speeds. This means that while carriers can use and install very fast internet for commercial mobile phone users with no special needs, the low-band spectrum may not be optimal for the specific needs of the industry.    
  • The mid-band spectrum , on the other hand, offers higher speeds than the low-band but is limited in terms of coverage area and signal penetration. The 5G leading carriers and enterprises are customizing this band to meet the needs of specific industries. It shows that it can be used by industry and professional factory units to build their networks that can be used.  
  • The high-band spectrum offers the highest speed of all three bands, but has very limited coverage and signal penetration strength. Internet speeds on 5G’s high-band spectrum have been tested at up to 20 Gbit/s (Gigabits per second), while 4G’s maximum Internet data speed is mostly recorded at 1 Gbit/s.

Important Pillers of 5-G 

1. millimeter-wave:.

  • mmWave 5G will ingest massive amounts of data, enabling data transfer speeds exceeding 1 Gbps.  
  • This form of technology is currently used in the United States by carriers such as Verizon and AT&T.  

2. Small cell:

  • Since mmWave cannot overcome obstacles, many mini-cell towers are placed in the area to relay the signal from the main cell towers.  
  • These small cells have to be placed closer compared to traditional masts to allow the user to receive his 5G signal without interruption.  

3. Massive MIMO (multiple input multiple outputs):

  • This technology is used in large cell towers to handle large amounts of traffic. A typical cell tower delivering 4G has 12 antennas handling all cell traffic in the area.  
  • MIMO can support 100 antennas simultaneously, increasing the tower’s total capacity to handle more traffic.  
  • This technology will help make the transmission of 5G signals smoother.  

4. Beamforming:

  • Beamforming is a technology that can periodically monitor multiple frequency sources and switch to a stronger, faster tower when the signal is blocked.  
  • This ensures that certain data is only sent in certain directions. Something like a data traffic light.  

5. Full duplex

  • Full-duplex is a technology that allows nodes to transmit and receive data simultaneously on the same frequency band.  
  • Landlines and shortwave radios use this type of technology.  
  • It’s like a one-way street, allowing the same amount of traffic in either direction.

Major Advantages

1. Fast: Imagine being able to download a full HD movie in less than 3 seconds. This is the download speed on 5G. 5G will deliver speeds of up to 20 Gbps, increasing traffic capacity and network efficiency by a factor of 100.

2. Low latency: In addition, mmWave can also achieve latency as low as 1 ms. This establishes a connection instantly and reduces network traffic afterwards.

3. State-of-the-art technology foundation: 5G’s full potential is envisioned to provide speeds that enable real-time reproduction of augmented reality. This will further lead to the development of more hardware to work with augmented reality. This technology is also the basis for virtual reality, autonomous driving, and the Internet of Things.

4. Ripple Effect: The benefits of 5g will not only improve the smartphone experience but also open up opportunities for progress in other areas such as healthcare, infrastructure, and even manufacturing. 

Major Concerns

1. Capital intensive: Deploying 5G technology is costly. This will require frequencies beyond 3.5GHz, a wider bandwidth than 3G and 4G, forcing carriers to dismantle the current ecosystem.

2. Bandwidth limitation: The sub-6 GHz spectrum is bandwidth limited, so its speed may be slower than mmWave provides. Requires hardware implementation: In addition, mmWave is only effective at short distances and cannot pass through obstacles. It also tends to be absorbed by trees and rain, so a lot of hardware needs to be deployed for 5G to work effectively.

3. Unknown security issues: 5G technology may also have security and privacy issues, but these issues will become more apparent as the technology becomes more accessible.

4. Growing skepticism: 5G is growing, but not as fast as expected. Even at current speeds, multiple reports suggest 5G won’t overtake 4G and 3G by 2025. However, Qualcomm predicts that 5G smartphone shipments will exceed 750 million units by 2022 and 5G connections will exceed 1 billion units by 2023, 2 more than 4G will reach that number. I’m getting older. 

5. Domestic Industry Stress: India’s telecommunications sector has been under stress recently due to the intense competition unleashed by Jio’s entry. Without government support (bank loans and low-band fees), businesses will struggle to adopt 5G shortly.  

Please Login to comment...

Similar reads.

author

  • Banking General Awareness
  • SSC General Awareness
  • SSC/Banking

advertisewithusBannerImg

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

News from the Columbia Climate School

The Coming 5G Revolution: How Will It Affect the Environment?

essay on 5g technology and its impact

COVID-19 has made one thing crystal clear: Society needs the Internet to function. During the pandemic, the Internet has been critical for buying groceries, working, educating children, getting medical care, accessing news and being entertained. The health and safety of the population depends on the reliability of the network. Since January, the daily broadband use of individual Americans has increased 3 gigabytes —enough capacity to browse the Internet for 90 hours or watch HD movies for an hour. All this demand for fast, reliable and diversified communication has increased pressure on countries to quickly adopt 5G—the latest generation of digital technology.

The promise of 5G

Approximately every ten years, new wireless mobile technology emerges that improves on the previous generation. 1G, which came out in the 1980s, supported only voice calls. 2G, born in the 1990s as cell phones went from analog to digital, enabled messaging and call and text encryption to keep communications secure.

essay on 5g technology and its impact

In 1998, 3G made video calling and mobile Internet access possible. 4G, introduced in 2008, supports HD TV via mobile, video conferencing and gaming. Today most cell phones use 3G and 4G technology.

5G, which began deployment in 2019, can deliver enhanced broadband for cell phones, super fast and reliable communication, and machine-to-machine communication. It promises to be 100 times faster than 4G. But beyond speed and connectivity, 5G also has ultra low latency—latency is any delay in communications—and 1,000 times more capacity because it is expanding into new frequencies of the spectrum. This will eventually make wireless Internet possible everywhere, from smart cars to the Internet of Things (IoT), which can connect all kinds of devices and sensors through the Internet and allow them to communicate without human involvement.

How does 5G work?

The spectrum

To understand what 5G is, it’s important to first understand the spectrum. The electromagnetic spectrum is the range of all types of electromagnetic radiation. The radio spectrum is the part of the spectrum used for telecommunication, broadcast, aircraft communication and more, and ranges from 30 hertz (Hz) to 300 gigahertz (1 GHz is equal to 1 billion hertz). The overall spectrum also includes visible light, gamma rays, x-rays, microwaves, etc. Spectrum on the lower end, called low-band (600 million hertz (MHz) to 900 MHz) has longer waves and can travel farther. As waves range from mid-band (2.5GHz to 4.2GHz) to high-band—also known as millimeter wave (24GHz to 47GHz)—they get shorter and shorter, enabling more bandwidth (the amount of data that can be transmitted in a specific amount of time) but losing the ability to travel as far.

While low-band can penetrate walls well, its speed is limited to 100 megabytes per second (Mbps). Mid-band spectrum speed can reach 1 billion bytes or 1 gigabyte per second (Gbps); it has lower latency than low-band, but it cannot go through buildings as easily. High-band or millimeter wave (mmWave) has very low latency and is super fast, up to 10 Gbps. These high frequency mmWaves also offer increased transmission space so more devices can be connected at once. The drawback is that they are weaker and cannot easily penetrate solids. 5G operates on all three spectrum bands.

essay on 5g technology and its impact

Government agencies in every country control the spectrum and designate who can use which frequencies. In the United States, the Federal Communications Commission (FCC) controls the spectrum and separates it into different chunks, which are then assigned or sold to companies and industries. In 2016, the FCC opened up large amounts of high-band spectrum for 5G.

Infrastructure and data transmission

Because mmWaves can travel only a short distance, small cell towers, about the size of a medium suitcase, will need to be placed 250 meters apart, such as on rooftops, telephone poles, trees, and street lights to ensure comprehensive coverage in cities.

essay on 5g technology and its impact

Unlike tall 4G cell towers that transmit longer frequency waves over longer distances, the small cell base stations, containing the equipment that transmits data to and from devices, need a direct line of sight to the devices with which they communicate.

The base stations house a large number of antennae, which increases the capacity of the network. These antennae use “beamforming” to coordinate the numerous transmissions, prevent them from interfering with each other, and send focused data to the specific individual user. This enables the small cell to handle many different data streams at the same time. The small cells are connected to the 5G network and Internet usually via fiber optic cable or wireless microwave. They also need a power source. A typical small cell may require 200 to 1,000 watts of power.

essay on 5g technology and its impact

To enable the network to respond to all types of demands, “network slicing” creates self-contained networks or slices that meet different needs and requirements. For example, one network slice could require only low -security and low bandwidth while another needs high security and high reliability.

Satellites can provide 5G coverage where it is difficult to build enough cell towers, as well as take over critical functions if a natural disaster or terrorist attack knocks out the communication infrastructure on land. Recently, SpaceX, Elon Musk’s company, launched 595 small satellites (with an ultimate goal of 30,000) that orbit in low Earth orbit (LEO), 500 to 2,000 kilometers above Earth. The FCC has approved other LEO satellite systems including Amazon’s Kuiper System of 3,236 satellites; and a number of systems have been approved by other countries as well. The constellations of LEO satellites will hand off transmission between the individual satellites to provide extensive coverage in the air, at sea and in remote areas. But larger satellites that already operate in orbits farther from Earth can also handle 5G transmission. The various satellite systems differ in their coverage, power requirements, latency and economic viability.

How can 5G help the environment?

The speed, capacity and connectivity of 5G will provide many opportunities to protect and preserve the environment. 5G technology with IoT will be able to increase energy efficiency, reduce greenhouse gas emissions and enable more use of renewable energy. It can help reduce air and water pollution, minimize water and food waste, and protect wildlife. It can also expand our understanding of and hence improve decision-making about weather, agriculture, pests, industry, waste reduction and much more.

According to the UN, 68 percent of the world’s population will live in cities by 2050. City governments and businesses are looking to 5G, artificial intelligence (AI) and IoT technology to create smart cities where sensors, cameras and smart phones will be linked; the connectivity and speed of these networks will enable cities to be better managed and more efficient and sustainable.

Here are just some of the ways, 5G can benefit the environment.

Reducing energy consumption and emissions

International standards have called for 5G to require much less energy to run than 4G, which means using less power while transmitting more data. For example, one kilowatt-hour (kWh) of electricity is needed to download 300 high-definition movies in 4G; with 5G, one kWh can download 5,000 ultra-high-definition movies.

essay on 5g technology and its impact

5G linked with IoT will also cut energy use, because devices will be able to power up and shut down automatically when not needed. Sensors in appliances, transportation networks, buildings, factories, street lights, residences and more will monitor and analyze their energy needs and consumption in real time and automatically optimize energy use. For example, smart electricity meters installed in the Empire State Building have helped cut energy costs by 38 percent. GE’s Digital Power Plant for Steam in France, equipped with 10,000 sensors to improve plant efficiency, got the Guinness World Record for the world’s most efficient power plant.

Because saving energy also means cutting greenhouse gas emissions, GE’s Digital Power Plant software is expected to reduce carbon emissions by 3 percent and fuel use by 67,000 tons of coal per year. A study done by Ericcson, a leading information and communication technology provider, projects that IoT could cut carbon emissions 15 percent by 2030.

5G and the IoT will enable microgrids to be brought on line when the main grid fails or is unavailable. This will make it possible to better integrate intermittent renewable energy sources such as wind and solar into the grid. Ameresco, a Massachusetts-based company, replaced an old steam plant with a fully automated plant supported by 20,000 solar modules and its own microgrid at the U.S. Marine Corps Recruit Depot on Parris Island, S.C. The system reduced energy use by 75 percent.

By enabling more people to work or access entertainment remotely and avoid commuting and flying for business, 5G will save energy and reduce greenhouse gas emissions from vehicles and airplanes.

If driving is a necessity, 5G can save time, fuel and vehicle emissions by reducing traffic congestion and idling. With sensors and cameras, 5G uses real time data to keep traffic flowing, changing traffic lights to avoid delay. Carnegie Mellon’s Metro21: Smart Cities Institute’s smart traffic control system, which employs radar and cameras to reduce idling, has resulted in 20 percent fewer greenhouse gas emissions in Pittsburgh. 5G can also reduce the number of cars on the road by helping drivers find parking spaces and enabling ride sharing.

Reducing water and food waste

According to the EPA, U.S. households waste one trillion gallons each year due to leaks. Smart water sensors can detect leaks, as well as water pollution and contamination.

Sensors can also optimize agricultural water use. Arable, an innovative agricultural company, uses smart agricultural sensors that incorporate weather information and soil and crop conditions to better manage irrigation and make it more efficient. The systems also monitor plant stress, nutrients and pests to help plan harvests.

The UN has estimated that about one-third of the food produced globally is wasted, which also wastes the energy and water that went into it. Agricultural sensors can detect when a plant is wilting, so they can help ensure that crops are harvested at the right time. Other sensors can detect food freshness and spoilage, so that consumers know when food is safe to eat without depending on expiration dates. 5G could eventually be used to tag all food where it’s produced, track harvest dates or identify specific animals, and then trace the smart tags as food is transported to the factory. Other sensor systems could monitor conditions in the factory, assessing the food for quality and compliance with regulations. An automated and transparent system could make sure that the correct ingredients are delivered at the right time and packaged properly. This would help reduce food waste, maximize food safety, evaluate a food’s sustainability, and allow a supply chain to respond more quickly to supply and demand issues.

Protecting nature

To keep sewage from polluting the St. Joseph River in South Bend, Ind., smart sewer technology was installed in manholes. The technology reduced sewage overflows by 70 percent —over one billion gallons a year—and saved the city more than $500 million.

essay on 5g technology and its impact

Toxic blue-green algae bloom when water temperatures are warmer than usual. Nokia used 5G drones with cameras and sensors over the Baltic Sea to detect blue-green algae growth in real time. While algae are normally monitored by observation from shore, the drones made it possible to detect algae blooms in more remote areas. Getting timely information enables experts to rapidly take actions to prevent such environmental hazards.

Australian start-up Myriota and the Australian Institute of Marine Science (AIMS) are using marine buoys with satellite-connected IoT sensors to track ocean currents, sea surface water temperatures, and the barometric pressure of the ocean in real time. This helps researchers better monitor changing conditions in the ocean and understand how the ocean behaves.

Rainforest Connection, a nonprofit fighting illegal deforestation, is working with 5G and AI to protect the rainforest in Costa Rica. AI recorders recognize the sounds of chainsaws and other machinery, so they can alert rangers about illegal logging in real time. They can also distinguish the sounds of animals under stress so that rangers can respond quickly to illegal poaching.

The International Union for Conservation of Nature uses 5G geolocation technology to track the location and movements of endangered animals. And at the Chengdu Research Base of Giant Panda Breeding in China, 5G is being used to monitor panda conditions and encourage breeding. Pandas only ovulate once a year and are fertile for only 24 to 36 hours so breeding them is challenging. The technology identifies panda mating calls and plays them back to the pandas to encourage them to mate with each other.

5G’s potentially negative impacts on the environment

Since 5G is a new technology, its long-term effects on the environment are unknown. However, there are already concerns that 5G could have negative effects on the environment because of its energy use, and the impacts of manufacturing new infrastructure and a multitude of new devices.

More energy consumption and emissions

Currently, information and communications technology is responsible for about 4 percent of global electricity consumption, and 1.4 percent of global carbon emissions.  But an Ericcson report projects that by the end of 2025, 5G will have 2.6 billion subscribers; total global mobile subscriptions are expected to reach 5.8 billion by then. By 2030, IoT devices around the world could number 125 billion. At that point, information technology is expected to be responsible for one-fifth of all global electricity consumption and by 2040, it could generate 14 percent of worldwide greenhouse gas emissions. If the entire system is not energy efficient, 5G will ultimately not be sustainable.

essay on 5g technology and its impact

Data storage centers that handle cloud computing and websites, and store our information use enormous amounts of energy—as much as 80 percent of total network energy use. About half of this goes towards keeping transmission equipment in base stations cool. A Berkeley Lab report found that U.S. data centers consumed 70 billion kWh in 2014; this year they are projected to consume 73 billion kWh. Small cell base stations may devour three times as much power as 4G base stations.

Life cycle impacts

In 2019, the president of The Shift Project, a French think tank advocating the shift to a post-carbon economy, said, “…behind each byte we have mining and metal processing, oil extraction and petrochemicals, manufacturing and intermediate transports, public works (to bury the cables) and power generation with coal and gas. As a result, the carbon footprint of the global digital system is already four percent of the global greenhouse gas emissions, and its energy consumption rises by nine percent per year.”

The increase in greenhouse gas emissions will be due in part to the fact that consumers will need to buy new 5G mobile phones in order to take full advantage of 5G. A Swedish study calculated that a smart phone produced 45 kg of CO2 during its entire lifetime, with most of it coming from the production phase—the manufacture of integrated circuits, sourcing the raw material, production of the phone shell, then assembly and distribution. If accessories and the mobile network are included, the total life cycle impact is 68 kg CO2.

The manufacture of more IoT devices and cell phones, and small cells also means more mining and use of many nonrenewable metals that are difficult to recycle.

essay on 5g technology and its impact

As consumers around the world move to 5G phones, many older phones and IoT devices will be discarded if there are no buy back or recycling plans for them. This will result in enormous amounts of e-waste , which is already a huge global problem.

The full deployment of 5G could have a disruptive impact on ecosystems. A Punjab University study found that sparrows exposed to cell tower radiation for five to 30 minutes produced disfigured eggs. In Spain, the nesting, breeding and roosting of birds were disturbed by microwave radiation from a cell tower. Wireless frequencies have also been found to interfere with the navigational systems and circadian rhythms of birds, affecting migration.

Another study found that bees exposed to low-band spectrum radiation for 10 minutes suffered colony collapse disorder. And some research has found that insects, including honeybees, absorb more radiation from the mid-band and 5G spectrum. This could lead to changes in insect behavior and functions over time.

With 5G expected to require the installation of 70.2 million small cell towers by 2025—one survey found that many operators expect to deploy between 100 and 350 small cells per square kilometer (indoors and outdoors)—it is unknown what effect ubiquitous mmWave radiation could have on birds, bees and other species.

Making 5G more sustainable

There are strategies that can and should be employed to lessen the environmental impacts of 5G and make it more sustainable.

Decarbonization

Steve Cohen, director of the Master of Public Administration Program in Environmental Science and Policy at Columbia University’s School of International and Public Affairs, stressed that since 5G will consume a great deal of electricity, decarbonizing our electrical system is critical.

essay on 5g technology and its impact

This means replacing fossil fuels with renewable energy, improving grid flexibility and storage, and using carbon-capture strategies with any remaining fossil fuel power plants.

More efficient cooling

Some companies are implementing new technologies to reduce the amount of energy networks consume to cool their base stations. In Hangzhou, China, new base stations using intelligent voltage boosting and cooling, and solar modules can save 4,310 KWh of power per site each year, cutting 1,125 kilograms of CO2 emissions. NTT DOCOMO, a Japanese mobile phone company, has developed Green Base Stations with solar photo-voltaic panels and smart power control, reducing commercial power consumption by 40 percent.

Nokia deployed a liquid-cooled base station in Finland; using water to cool the station instead of air consumed 10 percent of the energy of traditional air cooling. With water cooling, it was also possible to use the waste heat from the base stations for water or space heating in the buildings next to the base stations. In addition, data centers cooled with liquid reduced carbon emissions by 90 percent.

Biodegradable sensors

Most of the sensors incorporated into phones, computers and other electronic devices are composed of precious metals that can be harmful to the environment or human health. Some scientists are working on developing biodegradable sensors that dissolve when they are no longer needed. Such sensors could be based on paper or polylactic acid, which are biodegradable, and are already used in medical applications. Researchers at École Polytechnique Fédérale de Lausanne have developed printed humidity and temperature sensors and transistors on biodegradable substances, which could eventually be applied to smart packaging.

Recycling toxic materials

“The biggest danger [about 5G] that I see is the toxics of electronic waste,” said Cohen, “Some of the rare earths and other substances inside of phones can be reused fairly easily and can be mined. The companies that sell them should be required to buy them back at the end—it’s called producer responsibility.” He expects there will be more mining of existing electronic devices by companies that give consumers a discount for trading in their old one, as Apple now does.

Network sharing

Some companies are sharing 5G network infrastructure to potentially cut 30 percent of their costs. McKinsey, the management consulting firm, found that costs to set up small cell base stations could be reduced by half if three players share the network. In China, two companies have agreed to build a 5G network together and share the network infrastructure. Vodafone and Telecom Italia are sharing a network, as are three mobile network operators in South Korea. Beyond cutting costs, network sharing can also reduce environmental impacts by avoiding overlapping dense networks of small cells and reducing the need for equipment and construction in cities.

When will 5G arrive?

The full potential of 5G in cities will be realized only when there is full indoor and outdoor 5G. This will require transmission equipment for IoT to be installed in buildings, on city streets, as well as along transportation routes so that traffic and autonomous vehicles can be managed.

However, because it doesn’t yet make economic sense to build completely new 5G infrastructure, 5G’s rollout will be “evolutionary.” 5G will initially piggyback on the existing 4G network. This entails allowing mobile operators to replace the older equipment in a frequency band with newer equipment. To accommodate 5G, 4G networks will be upgraded to their most advanced versions; some of these advanced 4G cell towers have the capability of being upgraded via software in the future. It is only when both the network infrastructure and the device being used support the same standard that it will be possible for consumers to access all the benefits of 5G; otherwise the service will default to the network that both connections support.

As of June 2020, 5G was available to some degree in 38 countries. In the United States, the three major cell phone carriers (T-Mobile/Sprint, Verizon, AT&T) have deployed some 5G in major cities, and this week, the White House and the Defense Department opened up a new chunk of the spectrum to help speed the 5G rollout. But the extent of 5G service still depends on the availability of more new devices—cell phones and smart sensors. These are expected to be launched late this year and into 2021. The prevailing thinking is that worldwide adoption of 5G is three years away.

Whether or not 5G will be a boon or a bane for the environment remains to be seen. The calculus is complex. “You can’t just look at the technology, use of energy, and use of toxics,” said Cohen. “It’s not a straightforward analysis. I think that, in general, people spending more and more of their time consuming information and entertainment has a lower environmental impact than many of the other things people do, like shopping or driving around. We have to look at this activity compared to what else you’d be doing with your time, and what other environmental impact you’d be having if you weren’t doing this. What would that something else be?”

Related Posts

All in the Family: One Environmental Science and Policy Student’s Path to Columbia

All in the Family: One Environmental Science and Policy Student’s Path to Columbia

Why New Yorkers Long for the Natural World

Why New Yorkers Long for the Natural World

Could April’s Eclipse Impact the Power Grid? Our Energy Expert Says Not To Worry

Could April’s Eclipse Impact the Power Grid? Our Energy Expert Says Not To Worry

Earth Month 2024 Banner

Celebrate over 50 years of Earth Day with us all month long! Visit our Earth Day website for ideas, resources, and inspiration.

guest

“Keep It Short For Them 5G Metal Poles” is My Recommendation.

I Can’t Read The U.S. Chart Photo On My iPhone From Wikipedia, Because It’s Too Blurry For My Vision!

Helen Weckerly

5g network is bad for the enviorment to much radiation

murcuryvapor

“I agree to help cultivate an open and respectful discussion. I understand rude and/or profane comments, and comments that spread misinformation, will be automatically deleted.”

I’m waiting for this policy to be applied.

Erick

It is not misinformation. Scientific Research on 5G, 4G Small Cells, Wireless Radiation and Health – Environmental Health Trust (ehtrust.org)

Mateo Alcaraz Candela

it is misinformation.

“There’s often confusion between ionizing and non-ionizing radiation because the term radiation is used for both,” said Kenneth Foster, a professor of bio engineering at Pennsylvania State University. “All light is radiation because it is simply energy moving through space. It’s ionizing radiation that is dangerous because it can break chemical bonds.”-livescience.com

Outra fonte Final RF Charts power density Rev Sep14.xlsx (bioinitiative.org)

nope it isn’t bad for anyone because the are non ionized waves(for the easier explanation there is no evidence/scientists don’t see any bad effect because they don’t cause harm.)

N. Anurag Tuti

Very well written, informative and balanced article. Benefits listed would be better realised, if it’s negative impacts, which are equally important, are well managed. We need well informed, responsible and effective governments and policy making bodies to make that happen, and equally effective executive bodies to implement it, else we will end up doing more damage to ourselves than reap it’s benefits. So, the big question is how do we ensure, we get such governments and what are the do’s and don’ts for such governments? What policies should we have in place?

Anush Tuti

Good read, very interesting

Lee

Why is 5G towers creating a low pressure and making bad storms, get ready for the epic 5G hurricane season

Jon Flatt

I have lived in a Class I wetland, 2500 acres for 50 years this year. Since 5G was turned on (here) this winter we have had ZERO ducks in our wetland. Not a coot, hell diver, Merganser, wood duck, black duck or mallard. The only ducks that passed through were sea ducks in March and April. The last sea duck I saw was April 28.

Tushar Borbora

Even though the Audubon society had debunked that 5G was harming wildlife (birds to be more specific), there are speculations the cell frequencies may affect how Migratory birds navigate, though it is not a harmful degree. This could be the reason that the ducks haven’t should up last winter. (Not a Hate comment, I am just trying to give a possible reason)

Sandra Sanibel

…so the goal of all this is to get us all doing nothing but “consuming information and entertainment”. Malevolently suspect.

Teri Lea Yzaguirre

Can 5G towers close to you affect my ground water ? I have a well 400ft deep. I have been wondering about this.

Maria Politzer

“With 5G expected to require the installation of 70.2 million small cell towers by 2025—one survey found that many operators expect to deploy between 100 and 350 small cells per square kilometer (indoors and outdoors)—it is unknown what effect ubiquitous mmWave radiation could have on birds, bees and other species.”

Seriously, the time to find out what effect these devices have on ourselves and our wildlife and fauna is BEFORE they are deployed. Not once we are economically, politically, academically, and socially committed to and addicted to them.

Get the Columbia Climate School Newsletter →

essay on 5g technology and its impact

Transforming last mile – connectivity in India through aviation

essay on 5g technology and its impact

Strengthening India’s maritime sector: The role of GIFT IFSC

essay on 5g technology and its impact

How India shops online

essay on 5g technology and its impact

Deals at a glance

essay on 5g technology and its impact

Net-zero banking: Creating a long-term and sustainable financial services economy

essay on 5g technology and its impact

Partnering with a private equity fund: Benefits and considerations for business owners

essay on 5g technology and its impact

Unlocking opportunities in tax using GenAI

essay on 5g technology and its impact

Mastering the art of long-term value creation

essay on 5g technology and its impact

Transforming India’s mining landscape with autonomous technology

Chairperson’s Awards: Our Changemakers

essay on 5g technology and its impact

Building a better future of work

Loading Results

No Match Found

5G technology: A primer

The development of 5G technology has prompted much anticipation among the tech community and the masses. 5G has been dubbed as the next revolution in cellular technology, which will bring the people of this world even closer. The technology marks an evolutionary jump in terms of connectivity speeds, utility and business use cases of 5G. In 2021, the global services market value of 5G technology was estimated to be USD 83.24 billion. It is expected to grow at a CAGR of 23% to reach USD 188 billion by the year 2025.

What is 5G?

5G is the fifth generation of cellular networks. It is the latest in a line of mobile technologies that started with the introduction of 1G in the 1980s. In theory, 5G technology aims to connect devices, machines and people who use them through high-speed and low-latency data connections. Business trends of 5G  technology predict a boom of the internet of things (IoT) in a big way by creating an ecosystem of connected devices and machines.

Playback of this video is not currently available

Business trendspotting

How will the revolutionary 5G technology impact consumers and businesses? How will it bring people together and specifically impact India’s growth? Our Advisory leader Arnab Basu explores the possibilities in the launch episode of our new series Business Trendspotting.

Evolution to 5G

  • 1G – first generation This technology was introduced in the 1980s and was the standard used for analogue telecommunication.
  • 2G – second generation (typical time taken to download a 30 MB file – 40 minutes) 2 Successor to the 1G technology, it introduced digital telecommunication in the 1990s over cellular networks.
  • 3G – third generation (typical time taken to download a 30 MB file – 1 minute) 3 Introduced in the 2000s, this technology marked the advent of the internet on mobile devices as it offered improved data speeds.
  • 4G – fourth generation (typical time taken to download a 30 MB file – 8 seconds) 4 The next decade saw the rise of even faster mobile data communication with 4G Long Term Evolution (LTE). 4

The next decade saw the rise of even faster mobile data communication with 4G Long Term Evolution (LTE).

This decade marks the arrival of a new technology, 5G – the latest in a line of cellular network technologies. Each generation shift has ushered in a significant change in the nature of service, technology, transfer speeds and usage. With the evolution to 5G, this trend continues by providing much more reliable and faster connectivity, offering customers and businesses a superior user experience.

The impact of 4G vs 5G will be felt in all industries that use the internet, especially in healthcare, agriculture and logistics, which were underserved due to the low speeds of the previous generations of cellular connections and expand the range of use cases of 5G.

Why is it better?

While 4G networks provide a maximum speed of 100–200 Mbps, speed of 5G peaks  around 10 Gbps – a hundred-fold increase in speed. 5G accomplishes this task by utilising a wide array of the spectrum from lower bands (frequency <1 GHz) to higher bands called millimetre wave (mmWave; frequency >24 GHz). The capacity of these mmWave frequencies is many times higher than that of existing technology, hence improving the efficiency of 5G.

5G tech has also seen communication of very minimal latency (<1 millisecond). This would mean that there would be no significant delay times associated with the network, making it much more reliable and enabling seamless real-time access to technology.

5G Impact India - PwC India

Technological trends under 5g.

5G technology has a few unique characteristics which are part of the 5G New Radio (NR) standards, set up by the 3GPP (3rd Generation Partnership Project).

eMBB: Enhanced mobile broadband

eMBB is one of the use cases whereby 5G will be able to deliver its full potential to the masses. Through eMBB, 5G will be able to provide gigabits of data speed through mobile broadband. A real ‘hotspot’ situation could be where hundreds and thousands of fans are utilising limited broadband and connectivity during a sports event or a concert, and eMBB could deliver the required speeds to provide connectivity to the crowd.

urLLC: Ultra-reliable low-latency communication

Quicker response time has been an ask with each evolution of cellular technology, and 5G will be able to meet this demand in a remarkable way. Latency has been a barrier for technologies dependent on processing huge amounts of data with near to no delay. Through urLLC, 5G will empower technology to do just that. Thanks to 5G, technology like self-driven vehicles or augmented reality (AR) supported surgery will become possible in the near future.

mMMTC: Massive machine-to-machine communication

mMMTC is the 5G use case focusing on a large number of IoT-connected systems. It could help in large-scale deployment of machines that perform simple functions and have low power utilisation.

5G and its effect on the market

5G is ushering in development and revenue in industries across the world. A recent analysis shows that by 2035, 5G technology will transform industries worldwide, with the market value of 5G generating output worth USD 13.2 trillion globally and creating job opportunities for more than 22 million people. 5

5G is also impacting areas like IoT, virtual reality (VR) and artificial intelligence (AI) due to its improved connectivity, speeds, reliability and low latency. It is opening new avenues and experiences such as instant access to cloud services, real-time collaboration, medical consultation and low-latency cloud gaming, as some of the use cases of 5G.

What’s in it for you?

5G is just around the corner and it offers a plethora of opportunities to multiple industries to better connect and engage with customers. Smart city projects are starting to realise the impact 5G will have on day-to-day tracking of the city’s law and order, traffic and other basic functions. Similarly, the manufacturing industry, which is looking at automation, stands to benefit considerably from the real-time access and control that 5G can provide through IoT. The low latency will also allow the healthcare industry to adopt AR and VR for real-time procedures. The opportunities for people to collaborate and contribute to industries are immense.

What value does it add to business? 

1. Handling growing data volumes By facilitating the growth of AI, IoT and automation in the industry, 5G is bound to generate more data. 5G will also aid in managing the transfer of these large amounts of data through eMBB.

2. Flexible offices 5G provides the opportunity to build ‘smart buildings’ where lighting, temperature and more could be controlled through occupancy monitoring. The technology essentially helps process large amounts of real-time data and make automated decisions. This can help in creating more secure, efficient and cost-effective workplaces.

3. Remote working 5G can also aid remote working by making sure that poor connectivity does not impede either the business or the employee. AR and VR can also bring in an atmosphere of collaboration and reduce other overhead costs.

Enterprises and industries go through a myriad of aspects in order to explore and utilise the full potential of the 5G ecosystem. A tectonic shift in the business strategy and operations calls for a 5G framework that can enable enterprises understand their digital maturity. Thus, use cases, roll-out strategy and digital adoption of 5G need to be carefully assessed and gauged to derive its true value. Any vertical or industrial entity, in order to be fully 5G compliant or even have the basics ready, must weigh its potential and limitations on a standardised scale. Conceptual aspects such as cloud native, automation, edge computing and artificial intelligence (AI)/machine learning (ML) need to be evaluated from the strategic, architectural and governance aspects. Therefore, a holistic viewpoint regarding 5G adoption will help enterprises know where they stand in the 5G ecosystem.

Use cases of 5G

  • Automobiles
  • Recruitment

5G will quite literally be the ‘driver’ for the autonomous vehicle industry by enabling instantaneous real-time communication and response. A British telecommunications provider has announced an initiative to test autonomous cars in London using its 5G network. The company has partnered with a research organisation to create a highly advanced driverless testbed. The initiative’s main objective is to create a traffic management system that reduces commute times.

A Chinese multinational technology corporation, in partnership with a government organisation and a hospital, has spearheaded a self-driven vehicle system to transport medical supplies through 5G technology .

Drones continue to gain more momentum with emerging use cases. For instance, a company specialising in electric multirotor helicopter design is currently working on ready-to-be-used air taxis. Through 5G and IoT, the company plans to control the location, avoid collisions and improve battery life for the aircraft. This will enable fleets of air taxis to be utilised while preventing accidents and reducing fuel consumption.

A US-based remote recruitment company has come up with a hiring solution that uses gamified evaluation and video-based interviews to collect unbiased behavioural data on applicants. This solution was used by an FMCG major to recruit over 280,000 candidates. The recruitment company used low-latency technology to aid the real-time machine learning model. 5G will bolster this technology.

5G will usher in transformation for government and commercial entities in unimaginable ways, moving swiftly from pilot runs to large-scale implementation. The 5G revolution has already begun, and this technology is catering to the ever-increasing demands from a host of industries – from warehouses to ports and from manufacturing plants to smart cities. With technologies like cloud and edge computing, and IoT, 5G is set to play an integral role in Industry 4.0. It’s time to get ahead with 5G.

{{filterContent.facetedTitle}}

{{item.publishDate}}

{{item.title}}

1. 5G Services Global Market Report 2021: COVID-19 Growth and Change to 2030

2. https://rantcell.com/comparison-of-2g-3g-4g-5g.html

3. The 5G Economy in a Post-COVID-19 Era

Facebook Follow

We welcome your comments

Your request has been submitted and one of our team members will get in touch with you soon! Should you need to reference this in the future we have assigned it the reference number "refID" .

Required fields are marked with an asterisk( * )

Please correct the errors and send your information again.

By submitting your contact information you acknowledge that you have read the privacy statement and that you consent to our processing the data in accordance with that privacy statement including international transfers. If you change your mind at any time about wishing to receive material from us you can send an e-mail to [email protected] .

Ashootosh Chand

Ashootosh Chand

Partner, Digital and Emerging Technologies, PwC India

Mohammed Ali Kizer

Mohammed Ali Kizer

Associate Director, Digital and Emerging Technologies, PwC India

© 2018 - 2024 PwC. All rights reserved. PwC refers to the PwC network and/or one or more of its member firms, each of which is a separate legal entity. Please see www.pwc.com/structure for further details.

  • Cookies info
  • About Site Provider
  • Insider Reviews
  • Tech Buying Guides
  • Personal Finance
  • Insider Explainers
  • Sustainability
  • United States
  • International
  • Deutschland & Österreich
  • South Africa

profile icon

  • Home ›
  • insider explainers »

5G Technology and Its Impact

5g unleashed.

5G Unleashed

Welcome to the high-speed world of 5G Technology and its Impact. Get ready to zoom into the future of connectivity faster than a speeding bullet!

Supercharged Connectivity

Supercharged Connectivity

  • 5G is the fifth generation of wireless technology. It's like the Autobahn for data, allowing you to download, stream, and communicate at lightning speeds.
  • With ultra-low latency and massive bandwidth, 5G opens doors to innovations like augmented reality, autonomous vehicles, and more.
  • It's not just faster; it's a technological leap into a new era of connectivity.

The Need for Speed

The Need for Speed

Think of 5G as a magical highway for information. It's so fast that you can download an entire movie in seconds and have seamless video calls without buffering.

Imagine streaming games with no lag or surgeons performing remote surgery with almost no delay. That's the power of 5G.

It's like upgrading from a bicycle to a spaceship in the digital universe.

Building a Smarter World

Building a Smarter World

  • 5G isn't just about faster downloads; it's the foundation of smart cities, remote work, and the Internet of Things (IoT).
  • It's a game-changer for industries, from healthcare to transportation, enabling real-time data and automation.
  • 5G fuels innovation, economic growth, and global connectivity. It's the future of technology.

5G in Action

5G in Action

  • Imagine a self-driving car that uses 5G to instantly react to traffic changes, making roads safer.
  • In a smart home, your refrigerator orders groceries when it senses you're running low, thanks to 5G-connected devices.
  • For gamers, you can play high-definition, lag-free games on your smartphone, wherever you are.

Redefining Connectivity

Redefining Connectivity

With 5G, we're taking the express lane to the future. It's more than just a network; it's a catalyst for innovation.

essay on 5g technology and its impact

  • JNK India IPO allotment date
  • JioCinema New Plans
  • Realme Narzo 70 Launched
  • Apple Let Loose event
  • Elon Musk Apology
  • RIL cash flows
  • Charlie Munger
  • Feedbank IPO allotment
  • Tata IPO allotment
  • Most generous retirement plans
  • Broadcom lays off
  • Cibil Score vs Cibil Report
  • Birla and Bajaj in top Richest
  • Nestle Sept 2023 report
  • India Equity Market
  • Best printers for Home
  • Best Mixer Grinder
  • Best wired Earphones
  • Best 43 Inch TV in India
  • Best Wi Fi Routers
  • Best Vacuum Cleaner
  • Best Home Theatre in India
  • Smart Watch under 5000
  • Best Laptops for Education
  • Best Laptop for Students

essay on 5g technology and its impact

  • Advertising
  • Write for Us
  • Privacy Policy
  • Policy News
  • Personal Finance News
  • Mobile News
  • Business News
  • Ecommerce News
  • Startups News
  • Stock Market News
  • Finance News
  • Entertainment News
  • Economy News
  • Careers News
  • International News
  • Politics News
  • Education News
  • Advertising News
  • Health News
  • Science News
  • Retail News
  • Sports News
  • Personalities News
  • Corporates News
  • Environment News
  • JNK India IPO allotment
  • JioCinema New Subscription Plans
  • Realme 70X 5G Launched
  • Apple Let Loose Launch event
  • Top 10 Richest people
  • Top 10 Largest Economies
  • Lucky Color for 2023
  • How to check pan and Aadhaar
  • Deleted Whatsapp Messages
  • How to restore deleted messages
  • 10 types of Drinks
  • Instagram Sad Face Filter
  • Unlimited Wifi Plans
  • Recover Whatsapp Messages
  • Google Meet
  • Check Balance in SBI
  • How to check Vodafone Balance
  • Transfer Whatsapp Message
  • NSE Bank Holidays

Copyright © 2024 . Times Internet Limited. All rights reserved.For reprint rights. Times Syndication Service.

A Review on the Analysis of 5G Technology and its Impact on Humans

Ieee account.

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

IMAGES

  1. 5G Technologies, Key For More Effective Mission Critical Communications

    essay on 5g technology and its impact

  2. The Impact of 5G

    essay on 5g technology and its impact

  3. Infographic: Visualizing the Impact of 5G Around the World

    essay on 5g technology and its impact

  4. [INFORGRAPHIC] 5G TECHNOLOGY: ENORMOUS POTENTIAL

    essay on 5g technology and its impact

  5. What you need to know about 5G

    essay on 5g technology and its impact

  6. The Rise of 5G and Its Impact on the Classroom

    essay on 5g technology and its impact

VIDEO

  1. Accelerating Industrial Digitalization with 5G Technology

  2. Essay on impact of technology on society #shorts #essay

  3. Essay on 5G technology

  4. Essay on 5g technologies for NABARD, RBI, SEBI, IB ACIO, IBPS

  5. what is 5G technology explained ll in telugu ll by prasad ll

  6. 5g Technology and impact 2024

COMMENTS

  1. Study and Investigation on 5G Technology: A Systematic Review

    1.1. Evolution from 1G to 5G. First generation (1G): 1G cell phone was launched between the 1970s and 80s, based on analog technology, which works just like a landline phone. It suffers in various ways, such as poor battery life, voice quality, and dropped calls. In 1G, the maximum achievable speed was 2.4 Kbps.

  2. What is 5G technology?

    Fifth time's the charm: 5G—or fifth-generation wireless technology— is powering the Fourth Industrial Revolution. Sure, 5G is faster than 4G. But 5G is more than just (a lot) faster: the connectivity made possible with 5G is significantly more secure and more stable than its predecessors. Plus, 5G enables data to travel from one place to ...

  3. 5G mobile networks and health—a state-of-the-science review of the

    The increased use of radiofrequency (RF) fields above 6 GHz, particularly for the 5 G mobile phone network, has given rise to public concern about any possible adverse effects to human health.

  4. 5G: The Future of Communications Networks

    THE INSTITUTE Fifth-generation wireless technology is causing a lot of excitement in the telecommunications industry, and differences of opinions. Some see 5G as the next evolution in wireless ...

  5. The Impact of 5G: Creating New Value across Industries and Society

    The positive impact of the Fourth Industrial Revolution and its related emerging technologies will be fully realized through the wide-scale deployment of 5G communication networks in combination with other connectivity solutions. The key functional drivers of 5G will unlock a broad range of opportunities, including the optimization of service delivery, decision-making and end-user experience.

  6. The population health effects from 5G: Controlling the narrative

    The development and implementation of the fifth-generation wireless technology (5G) are currently ongoing and have largely been met with enthusiasm from the telecommunication industry, applications industries, national governments, and the public. However, 5G has also been met with resistance from anti-5G campaigning organizations supported by ...

  7. Advancements and Challenges in 5G Networks

    Abstract: Fifth generation (5G) wireless communication technology in wireless networks, has the ability to dramatically transform how, we connect to the internet and interact. In this essay, we examine the most recent developments in 5G wireless transmission technologies as well as their uses. We give a quick overview of the development of wireless transmission networks towards 5G throughout ...

  8. A Study on 5G Technology and Its Applications in Telecommunications

    Abstract: As the fifth generation of mobile networks climbs above the horizon, this technology's transformational impact and is set to have on the world is commendable. The 5G network is a promising technology that revolutionizes and connects the global world through seamless connectivity. This paper presents a survey on 5G networks on how, in particular, it to address the drawbacks of ...

  9. 5G Technology: An Overview of Applications, Prospects, Challenges and

    This paper provides a comprehensive overview of an emerging mobile wireless communication technology, i.e., 5G, and group existing approaches and provide a critical overview of the underlying details adapted by the 5G technology. This paper provides a comprehensive overview of an emerging mobile wireless communication technology, i.e., 5G. We provide a concise view of the advancements which ...

  10. Essay On 5g Technology: Free Samples Available for Students

    Essay on 5G Technology in 250 words. The fifth generation of networks is the 5G network and this network promises to bring faster internet speed, lower latency, and improved reliability to mobile devices. In India, it is expected to have a significant impact on several industries such as healthcare, education, agriculture, entertainment, etc.

  11. The Impact of 5G: Creating New Value across Industries and Society

    The key functional drivers of 5G will unlock a broad range of opportunities, including the optimization of service delivery, decision-making, and end-user experience. This will result in $13.2 trillion in global economic value by 2035, generating 22.3 million jobs in the 5G global value chain alone. To better understand how to realise this ...

  12. The Future Of 5G: Benefits And Challenges

    • Economic Impact: The deployment of 5G technology may result in some job losses, particularly in industries that are disrupted by the technology. • Security Risks: ...

  13. 5G Technology and Its Significance

    5G is the fifth generation of cellular technology, which not only improves download and upload speeds over cellular networks (1 Gbps speed) but also reduces latency. The time it takes for the network to respond. It also improves energy efficiency and provides a more stable network connection. 5G is also designed to deliver signals more reliably ...

  14. 5G Technology-Its Applications and Challenges

    Abstract: This paper covers the basics and fundamentals of emerging new technologies and evolutions in 5G technology. It covers all the new and old technologies used and how it is creating an impact on the day to day life of users. The paper demonstrates the applications in which this technology has made its significance and also the challenges faced by the research organizations to meet the ...

  15. The Coming 5G Revolution: How Will It Affect the Environment?

    The prevailing thinking is that worldwide adoption of 5G is three years away. Whether or not 5G will be a boon or a bane for the environment remains to be seen. The calculus is complex. "You can't just look at the technology, use of energy, and use of toxics," said Cohen. "It's not a straightforward analysis.

  16. 5G Technology Impact & Benefits

    5G Impact India - PwC India Technological trends under 5G. 5G technology has a few unique characteristics which are part of the 5G New Radio (NR) standards, set up by the 3GPP (3rd Generation Partnership Project).. eMBB: Enhanced mobile broadband. eMBB is one of the use cases whereby 5G will be able to deliver its full potential to the masses.

  17. Research on 5G Wireless Networks and Evolution

    According to the GSMA forecast, 5G networks will cover one-third of the world's population in 2025, which impact on the mobile industry and its customers will be profound. Due to the huge cost of 5G network construction, many operators are seeking for a cost-saving way to upgrade existing 4G networks to 5G networks. Based on the detailed study of 5G wireless network architecture, this article ...

  18. The Impact of 5G Technology on Communication and Connectivity

    Conclusion. Overall, the impact of 5G technology on communication and connectivity is vast and exciting. With faster data transfer speeds and improved connectivity, we can expect to see a variety ...

  19. 5G Technology and Its Impact

    5G is the fifth generation of wireless technology. It's like the Autobahn for data, allowing you to download, stream, and communicate at lightning speeds. With ultra-low latency and massive ...

  20. The 5G Wireless Technology and a Significant Economic Growth and

    5G technology can create millions of new jobs in many economic and industry sectors. It needs an in-depth study between the engineering sector, business, moneymen, and economists to introduce new ideas and develop a road map to benefit from this technology. Also, learn from the experiences of pioneers in this sector. Mobile phone networks are no longer a means of social media, entertainment ...

  21. 13 Big Impacts 5G Has Already Had On Business And Consumer Life

    5. Improving The Performance Of Apps. 5G already provides substantial application predictability advancements. This equates to more reliability and less data loss for consumers using business ...

  22. A Review on the Analysis of 5G Technology and its Impact on Humans

    This paper is made to clarify the detailed information of 5G radiation. An overview on the information on the consequences of 5G radiation on the human body and its architecture in 5G with related to its security. There are numerous organizations set up to highlight the negative effects of 5G in a human's day-to-day life. This acknowledges the public's understanding of 5G radiation and ...