An official website of the United States government
The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.
The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.
- Publications
- Account settings
- Browse Titles
NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.
StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-.
StatPearls [Internet].
Types of variables and commonly used statistical designs.
Jacob Shreffler ; Martin R. Huecker .
Affiliations
Last Update: March 6, 2023 .
- Definition/Introduction
Suitable statistical design represents a critical factor in permitting inferences from any research or scientific study. [1] Numerous statistical designs are implementable due to the advancement of software available for extensive data analysis. [1] Healthcare providers must possess some statistical knowledge to interpret new studies and provide up-to-date patient care. We present an overview of the types of variables and commonly used designs to facilitate this understanding. [2]
- Issues of Concern
Individuals who attempt to conduct research and choose an inappropriate design could select a faulty test and make flawed conclusions. This decision could lead to work being rejected for publication or (worse) lead to erroneous clinical decision-making, resulting in unsafe practice. [1] By understanding the types of variables and choosing tests that are appropriate to the data, individuals can draw appropriate conclusions and promote their work for an application. [3]
To determine which statistical design is appropriate for the data and research plan, one must first examine the scales of each measurement. [4] Multiple types of variables determine the appropriate design.
Ordinal data (also sometimes referred to as discrete) provide ranks and thus levels of degree between the measurement. [5] Likert items can serve as ordinal variables, but the Likert scale, the result of adding all the times, can be treated as a continuous variable. [6] For example, on a 20-item scale with each item ranging from 1 to 5, the item itself can be an ordinal variable, whereas if you add up all items, it could result in a range from 20 to 100. A general guideline for determining if a variable is ordinal vs. continuous: if the variable has more than ten options, it can be treated as a continuous variable. [7] The following examples are ordinal variables:
- Likert items
- Cancer stages
- Residency Year
Nominal, Categorical, Dichotomous, Binary
Other types of variables have interchangeable terms. Nominal and categorical variables describe samples in groups based on counts that fall within each category, have no quantitative relationships, and cannot be ranked. [8] Examples of these variables include:
- Service (i.e., emergency, internal medicine, psychiatry, etc.)
- Mode of Arrival (ambulance, helicopter, car)
A dichotomous or a binary variable is in the same family as nominal/categorical, but this type has only two options. Binary logistic regression, which will be discussed below, has two options for the outcome of interest/analysis. Often used as (yes/no), examples of dichotomous or binary variables would be:
- Alive (yes vs. no)
- Insurance (yes vs. no)
- Readmitted (yes vs. no)
With this overview of the types of variables provided, we will present commonly used statistical designs for different scales of measurement. Importantly, before deciding on a statistical test, individuals should perform exploratory data analysis to ensure there are no issues with the data and consider type I, type II errors, and power analysis. Furthermore, investigators should ensure appropriate statistical assumptions. [9] [10] For example, parametric tests, including some discussed below (t-tests, analysis of variance (ANOVA), correlation, and regression), require the data to have a normal distribution and that the variances within each group are similar. [6] [11] After eliminating any issues based on exploratory data analysis and reducing the likelihood of committing type I and type II errors, a statistical test can be chosen. Below is a brief introduction to each of the commonly used statistical designs with examples of each type. An example of one research focus, with each type of statistical design discussed, can be found in Table 1 to provide more examples of commonly used statistical designs.
Commonly Used Statistical Designs
Independent Samples T-test
An independent samples t-test allows a comparison of two groups of subjects on one (continuous) variable. Examples in biomedical research include comparing results of treatment vs. control group and comparing differences based on gender (male vs. female).
Example: Does adherence to the ketogenic diet (yes/no; two groups) have a differential effect on total sleep time (minutes; continuous)?
Paired T-test
A paired t-test analyzes one sample population, measuring the same variable on two different occasions; this is often useful for intervention and educational research.
Example : Does participating in a research curriculum (one group with intervention) improve resident performance on a test to measure research competence (continuous)?
One-Way Analysis of Variance (ANOVA)
Analysis of variance (ANOVA), as an extension of the t-test, determines differences amongst more than two groups, or independent variables based on a dependent variable. [11] ANOVA is preferable to conducting multiple t-tests as it reduces the likelihood of committing a type I error.
Example: Are there differences in length of stay in the hospital (continuous) based on the mode of arrival (car, ambulance, helicopter, three groups)?
Repeated Measures ANOVA
Another procedure commonly used if the data for individuals are recurrent (repeatedly measured) is a repeated-measures ANOVA. [1] In these studies, multiple measurements of the dependent variable are collected from the study participants. [11] A within-subjects repeated measures ANOVA determines effects based on the treatment variable alone, whereas mixed ANOVAs allow both between-group effects and within-subjects to be considered.
Within-Subjects Example: How does ketamine effect mean arterial pressure (continuous variable) over time (repeated measurement)?
Mixed Example: Does mean arterial pressure (continuous) differ between males and females (two groups; mixed) on ketamine throughout a surgical procedure (over time; repeated measurement)?
Nonparametric Tests
Nonparametric tests, such as the Mann-Whitney U test (two groups; nonparametric t-test), Kruskal Wallis test (multiple groups; nonparametric ANOVA), Spearman’s rho (nonparametric correlation coefficient) can be used when data are ordinal or lack normality. [3] [5] Not requiring normality means that these tests allow skewed data to be analyzed; they require the meeting of fewer assumptions. [11]
Example: Is there a relationship between insurance status (two groups) and cancer stage (ordinal)?
A Chi-square test determines the effect of relationships between categorical variables, which determines frequencies and proportions into which these variables fall. [11] Similar to other tests discussed, variants and extensions of the chi-square test (e.g., Fisher’s exact test, McNemar’s test) may be suitable depending on the variables. [8]
Example: Is there a relationship between individuals with methamphetamine in their system (yes vs. no; dichotomous) and gender (male or female; dichotomous)?
Correlation
Correlations (used interchangeably with ‘associations’) signal patterns in data between variables. [1] A positive association occurs if values in one variable increase as values in another also increase. A negative association occurs if variables in one decrease while others increase. A correlation coefficient, expressed as r, describes the strength of the relationship: a value of 0 means no relationship, and the relationship strengthens as r approaches 1 (positive relationship) or -1 (negative association). [5]
Example: Is there a relationship between age (continuous) and satisfaction with life survey scores (continuous)?
Linear Regression
Regression allows researchers to determine the degrees of relationships between a dependent variable and independent variables and results in an equation for prediction. [11] A large number of variables are usable in regression methods.
Example: Which admission to the hospital metrics (multiple continuous) best predict the total length of stay (minutes; continuous)?
Binary Logistic Regression
This type of regression, which aims to predict an outcome, is appropriate when the dependent variable or outcome of interest is binary or dichotomous (yes/no; cured/not cured). [12]
Example: Which panel results (multiple of continuous, ordinal, categorical, dichotomous) best predict whether or not an individual will have a positive blood culture (dichotomous/binary)?
The table provides more examples of commonly used statistical designs by providing an example of one research focus and discussing each type of statistical design (see Table. Types of Variables and Statistical Designs).
- Clinical Significance
Though numerous other statistical designs and extensions of methods covered in this article exist, the above information provides a starting point for healthcare providers to become acquainted with variables and commonly used designs. Researchers should study types of variables before determining statistical tests to obtain relevant measures and valid study results. [6] There is a recommendation to consult a statistician to ensure appropriate usage of the statistical design based on the variables and that the assumptions are upheld. [1] With the variety of statistical software available, investigators must a priori understand the type of statistical tests when designing a study. [13] All providers must interpret and scrutinize journal publications to make evidence-based clinical decisions, and this becomes enhanced by a limited but sound understanding of variables and commonly used study designs. [14]
- Nursing, Allied Health, and Interprofessional Team Interventions
All interprofessional healthcare team members need to be familiar with study design and the variables used in studies to accurately evaluate new data and studies as they are published and apply the latest data to patient care and drive optimal outcomes.
- Review Questions
- Access free multiple choice questions on this topic.
- Comment on this article.
Types of Variables and Statistical Designs. Contributed by M Huecker, MD, and J Shreffler, PhD
Disclosure: Jacob Shreffler declares no relevant financial relationships with ineligible companies.
Disclosure: Martin Huecker declares no relevant financial relationships with ineligible companies.
This book is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ), which permits others to distribute the work, provided that the article is not altered or used commercially. You are not required to obtain permission to distribute this article, provided that you credit the author and journal.
- Cite this Page Shreffler J, Huecker MR. Types of Variables and Commonly Used Statistical Designs. [Updated 2023 Mar 6]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-.
In this Page
Bulk download.
- Bulk download StatPearls data from FTP
Related information
- PMC PubMed Central citations
- PubMed Links to PubMed
Recent Activity
- Types of Variables and Commonly Used Statistical Designs - StatPearls Types of Variables and Commonly Used Statistical Designs - StatPearls
Your browsing activity is empty.
Activity recording is turned off.
Turn recording back on
Connect with NLM
National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894
Web Policies FOIA HHS Vulnerability Disclosure
Help Accessibility Careers
Variables in Research | Types, Definiton & Examples
Introduction
What is a variable, what are the 5 types of variables in research, other variables in research.
Variables are fundamental components of research that allow for the measurement and analysis of data. They can be defined as characteristics or properties that can take on different values. In research design , understanding the types of variables and their roles is crucial for developing hypotheses , designing methods , and interpreting results .
This article outlines the the types of variables in research, including their definitions and examples, to provide a clear understanding of their use and significance in research studies. By categorizing variables into distinct groups based on their roles in research, their types of data, and their relationships with other variables, researchers can more effectively structure their studies and achieve more accurate conclusions.
A variable represents any characteristic, number, or quantity that can be measured or quantified. The term encompasses anything that can vary or change, ranging from simple concepts like age and height to more complex ones like satisfaction levels or economic status. Variables are essential in research as they are the foundational elements that researchers manipulate, measure, or control to gain insights into relationships, causes, and effects within their studies. They enable the framing of research questions, the formulation of hypotheses, and the interpretation of results.
Variables can be categorized based on their role in the study (such as independent and dependent variables ), the type of data they represent (quantitative or categorical), and their relationship to other variables (like confounding or control variables). Understanding what constitutes a variable and the various variable types available is a critical step in designing robust and meaningful research.
ATLAS.ti makes complex data easy to understand
Turn to our powerful data analysis tools to make the most of your research. Get started with a free trial.
Variables are crucial components in research, serving as the foundation for data collection , analysis , and interpretation . They are attributes or characteristics that can vary among subjects or over time, and understanding their types is essential for any study. Variables can be broadly classified into five main types, each with its distinct characteristics and roles within research.
This classification helps researchers in designing their studies, choosing appropriate measurement techniques, and analyzing their results accurately. The five types of variables include independent variables, dependent variables, categorical variables, continuous variables, and confounding variables. These categories not only facilitate a clearer understanding of the data but also guide the formulation of hypotheses and research methodologies.
Independent variables
Independent variables are foundational to the structure of research, serving as the factors or conditions that researchers manipulate or vary to observe their effects on dependent variables. These variables are considered "independent" because their variation does not depend on other variables within the study. Instead, they are the cause or stimulus that directly influences the outcomes being measured. For example, in an experiment to assess the effectiveness of a new teaching method on student performance, the teaching method applied (traditional vs. innovative) would be the independent variable.
The selection of an independent variable is a critical step in research design, as it directly correlates with the study's objective to determine causality or association. Researchers must clearly define and control these variables to ensure that observed changes in the dependent variable can be attributed to variations in the independent variable, thereby affirming the reliability of the results. In experimental research, the independent variable is what differentiates the control group from the experimental group, thereby setting the stage for meaningful comparison and analysis.
Dependent variables
Dependent variables are the outcomes or effects that researchers aim to explore and understand in their studies. These variables are called "dependent" because their values depend on the changes or variations of the independent variables.
Essentially, they are the responses or results that are measured to assess the impact of the independent variable's manipulation. For instance, in a study investigating the effect of exercise on weight loss, the amount of weight lost would be considered the dependent variable, as it depends on the exercise regimen (the independent variable).
The identification and measurement of the dependent variable are crucial for testing the hypothesis and drawing conclusions from the research. It allows researchers to quantify the effect of the independent variable , providing evidence for causal relationships or associations. In experimental settings, the dependent variable is what is being tested and measured across different groups or conditions, enabling researchers to assess the efficacy or impact of the independent variable's variation.
To ensure accuracy and reliability, the dependent variable must be defined clearly and measured consistently across all participants or observations. This consistency helps in reducing measurement errors and increases the validity of the research findings. By carefully analyzing the dependent variables, researchers can derive meaningful insights from their studies, contributing to the broader knowledge in their field.
Categorical variables
Categorical variables, also known as qualitative variables, represent types or categories that are used to group observations. These variables divide data into distinct groups or categories that lack a numerical value but hold significant meaning in research. Examples of categorical variables include gender (male, female, other), type of vehicle (car, truck, motorcycle), or marital status (single, married, divorced). These categories help researchers organize data into groups for comparison and analysis.
Categorical variables can be further classified into two subtypes: nominal and ordinal. Nominal variables are categories without any inherent order or ranking among them, such as blood type or ethnicity. Ordinal variables, on the other hand, imply a sort of ranking or order among the categories, like levels of satisfaction (high, medium, low) or education level (high school, bachelor's, master's, doctorate).
Understanding and identifying categorical variables is crucial in research as it influences the choice of statistical analysis methods. Since these variables represent categories without numerical significance, researchers employ specific statistical tests designed for a nominal or ordinal variable to draw meaningful conclusions. Properly classifying and analyzing categorical variables allow for the exploration of relationships between different groups within the study, shedding light on patterns and trends that might not be evident with numerical data alone.
Continuous variables
Continuous variables are quantitative variables that can take an infinite number of values within a given range. These variables are measured along a continuum and can represent very precise measurements. Examples of continuous variables include height, weight, temperature, and time. Because they can assume any value within a range, continuous variables allow for detailed analysis and a high degree of accuracy in research findings.
The ability to measure continuous variables at very fine scales makes them invaluable for many types of research, particularly in the natural and social sciences. For instance, in a study examining the effect of temperature on plant growth, temperature would be considered a continuous variable since it can vary across a wide spectrum and be measured to several decimal places.
When dealing with continuous variables, researchers often use methods incorporating a particular statistical test to accommodate a wide range of data points and the potential for infinite divisibility. This includes various forms of regression analysis, correlation, and other techniques suited for modeling and analyzing nuanced relationships between variables. The precision of continuous variables enhances the researcher's ability to detect patterns, trends, and causal relationships within the data, contributing to more robust and detailed conclusions.
Confounding variables
Confounding variables are those that can cause a false association between the independent and dependent variables, potentially leading to incorrect conclusions about the relationship being studied. These are extraneous variables that were not considered in the study design but can influence both the supposed cause and effect, creating a misleading correlation.
Identifying and controlling for a confounding variable is crucial in research to ensure the validity of the findings. This can be achieved through various methods, including randomization, stratification, and statistical control. Randomization helps to evenly distribute confounding variables across study groups, reducing their potential impact. Stratification involves analyzing the data within strata or layers that share common characteristics of the confounder. Statistical control allows researchers to adjust for the effects of confounders in the analysis phase.
Properly addressing confounding variables strengthens the credibility of research outcomes by clarifying the direct relationship between the dependent and independent variables, thus providing more accurate and reliable results.
Beyond the primary categories of variables commonly discussed in research methodology , there exists a diverse range of other variables that play significant roles in the design and analysis of studies. Below is an overview of some of these variables, highlighting their definitions and roles within research studies:
- Discrete variables : A discrete variable is a quantitative variable that represents quantitative data , such as the number of children in a family or the number of cars in a parking lot. Discrete variables can only take on specific values.
- Categorical variables : A categorical variable categorizes subjects or items into groups that do not have a natural numerical order. Categorical data includes nominal variables, like country of origin, and ordinal variables, such as education level.
- Predictor variables : Often used in statistical models, a predictor variable is used to forecast or predict the outcomes of other variables, not necessarily with a causal implication.
- Outcome variables : These variables represent the results or outcomes that researchers aim to explain or predict through their studies. An outcome variable is central to understanding the effects of predictor variables.
- Latent variables : Not directly observable, latent variables are inferred from other, directly measured variables. Examples include psychological constructs like intelligence or socioeconomic status.
- Composite variables : Created by combining multiple variables, composite variables can measure a concept more reliably or simplify the analysis. An example would be a composite happiness index derived from several survey questions .
- Preceding variables : These variables come before other variables in time or sequence, potentially influencing subsequent outcomes. A preceding variable is crucial in longitudinal studies to determine causality or sequences of events.
Master qualitative research with ATLAS.ti
Turn data into critical insights with our data analysis platform. Try out a free trial today.
IMAGES
VIDEO