- Privacy Policy

Buy Me a Coffee

Home » Sampling Methods – Types, Techniques and Examples

## Sampling Methods – Types, Techniques and Examples

Table of Contents

Sampling refers to the process of selecting a subset of data from a larger population or dataset in order to analyze or make inferences about the whole population.

In other words, sampling involves taking a representative sample of data from a larger group or dataset in order to gain insights or draw conclusions about the entire group.

## Sampling Methods

Sampling methods refer to the techniques used to select a subset of individuals or units from a larger population for the purpose of conducting statistical analysis or research.

Sampling is an essential part of the Research because it allows researchers to draw conclusions about a population without having to collect data from every member of that population, which can be time-consuming, expensive, or even impossible.

## Types of Sampling Methods

Sampling can be broadly categorized into two main categories:

## Probability Sampling

This type of sampling is based on the principles of random selection, and it involves selecting samples in a way that every member of the population has an equal chance of being included in the sample.. Probability sampling is commonly used in scientific research and statistical analysis, as it provides a representative sample that can be generalized to the larger population.

Type of Probability Sampling :

- Simple Random Sampling: In this method, every member of the population has an equal chance of being selected for the sample. This can be done using a random number generator or by drawing names out of a hat, for example.
- Systematic Sampling: In this method, the population is first divided into a list or sequence, and then every nth member is selected for the sample. For example, if every 10th person is selected from a list of 100 people, the sample would include 10 people.
- Stratified Sampling: In this method, the population is divided into subgroups or strata based on certain characteristics, and then a random sample is taken from each stratum. This is often used to ensure that the sample is representative of the population as a whole.
- Cluster Sampling: In this method, the population is divided into clusters or groups, and then a random sample of clusters is selected. Then, all members of the selected clusters are included in the sample.
- Multi-Stage Sampling : This method combines two or more sampling techniques. For example, a researcher may use stratified sampling to select clusters, and then use simple random sampling to select members within each cluster.

## Non-probability Sampling

This type of sampling does not rely on random selection, and it involves selecting samples in a way that does not give every member of the population an equal chance of being included in the sample. Non-probability sampling is often used in qualitative research, where the aim is not to generalize findings to a larger population, but to gain an in-depth understanding of a particular phenomenon or group. Non-probability sampling methods can be quicker and more cost-effective than probability sampling methods, but they may also be subject to bias and may not be representative of the larger population.

Types of Non-probability Sampling :

- Convenience Sampling: In this method, participants are chosen based on their availability or willingness to participate. This method is easy and convenient but may not be representative of the population.
- Purposive Sampling: In this method, participants are selected based on specific criteria, such as their expertise or knowledge on a particular topic. This method is often used in qualitative research, but may not be representative of the population.
- Snowball Sampling: In this method, participants are recruited through referrals from other participants. This method is often used when the population is hard to reach, but may not be representative of the population.
- Quota Sampling: In this method, a predetermined number of participants are selected based on specific criteria, such as age or gender. This method is often used in market research, but may not be representative of the population.
- Volunteer Sampling: In this method, participants volunteer to participate in the study. This method is often used in research where participants are motivated by personal interest or altruism, but may not be representative of the population.

## Applications of Sampling Methods

Applications of Sampling Methods from different fields:

- Psychology : Sampling methods are used in psychology research to study various aspects of human behavior and mental processes. For example, researchers may use stratified sampling to select a sample of participants that is representative of the population based on factors such as age, gender, and ethnicity. Random sampling may also be used to select participants for experimental studies.
- Sociology : Sampling methods are commonly used in sociological research to study social phenomena and relationships between individuals and groups. For example, researchers may use cluster sampling to select a sample of neighborhoods to study the effects of economic inequality on health outcomes. Stratified sampling may also be used to select a sample of participants that is representative of the population based on factors such as income, education, and occupation.
- Social sciences: Sampling methods are commonly used in social sciences to study human behavior and attitudes. For example, researchers may use stratified sampling to select a sample of participants that is representative of the population based on factors such as age, gender, and income.
- Marketing : Sampling methods are used in marketing research to collect data on consumer preferences, behavior, and attitudes. For example, researchers may use random sampling to select a sample of consumers to participate in a survey about a new product.
- Healthcare : Sampling methods are used in healthcare research to study the prevalence of diseases and risk factors, and to evaluate interventions. For example, researchers may use cluster sampling to select a sample of health clinics to participate in a study of the effectiveness of a new treatment.
- Environmental science: Sampling methods are used in environmental science to collect data on environmental variables such as water quality, air pollution, and soil composition. For example, researchers may use systematic sampling to collect soil samples at regular intervals across a field.
- Education : Sampling methods are used in education research to study student learning and achievement. For example, researchers may use stratified sampling to select a sample of schools that is representative of the population based on factors such as demographics and academic performance.

## Examples of Sampling Methods

Probability Sampling Methods Examples:

- Simple random sampling Example : A researcher randomly selects participants from the population using a random number generator or drawing names from a hat.
- Stratified random sampling Example : A researcher divides the population into subgroups (strata) based on a characteristic of interest (e.g. age or income) and then randomly selects participants from each subgroup.
- Systematic sampling Example : A researcher selects participants at regular intervals from a list of the population.

Non-probability Sampling Methods Examples:

- Convenience sampling Example: A researcher selects participants who are conveniently available, such as students in a particular class or visitors to a shopping mall.
- Purposive sampling Example : A researcher selects participants who meet specific criteria, such as individuals who have been diagnosed with a particular medical condition.
- Snowball sampling Example : A researcher selects participants who are referred to them by other participants, such as friends or acquaintances.

## How to Conduct Sampling Methods

some general steps to conduct sampling methods:

- Define the population: Identify the population of interest and clearly define its boundaries.
- Choose the sampling method: Select an appropriate sampling method based on the research question, characteristics of the population, and available resources.
- Determine the sample size: Determine the desired sample size based on statistical considerations such as margin of error, confidence level, or power analysis.
- Create a sampling frame: Develop a list of all individuals or elements in the population from which the sample will be drawn. The sampling frame should be comprehensive, accurate, and up-to-date.
- Select the sample: Use the chosen sampling method to select the sample from the sampling frame. The sample should be selected randomly, or if using a non-random method, every effort should be made to minimize bias and ensure that the sample is representative of the population.
- Collect data: Once the sample has been selected, collect data from each member of the sample using appropriate research methods (e.g., surveys, interviews, observations).
- Analyze the data: Analyze the data collected from the sample to draw conclusions about the population of interest.

## When to use Sampling Methods

Sampling methods are used in research when it is not feasible or practical to study the entire population of interest. Sampling allows researchers to study a smaller group of individuals, known as a sample, and use the findings from the sample to make inferences about the larger population.

Sampling methods are particularly useful when:

- The population of interest is too large to study in its entirety.
- The cost and time required to study the entire population are prohibitive.
- The population is geographically dispersed or difficult to access.
- The research question requires specialized or hard-to-find individuals.
- The data collected is quantitative and statistical analyses are used to draw conclusions.

## Purpose of Sampling Methods

The main purpose of sampling methods in research is to obtain a representative sample of individuals or elements from a larger population of interest, in order to make inferences about the population as a whole. By studying a smaller group of individuals, known as a sample, researchers can gather information about the population that would be difficult or impossible to obtain from studying the entire population.

Sampling methods allow researchers to:

- Study a smaller, more manageable group of individuals, which is typically less time-consuming and less expensive than studying the entire population.
- Reduce the potential for data collection errors and improve the accuracy of the results by minimizing sampling bias.
- Make inferences about the larger population with a certain degree of confidence, using statistical analyses of the data collected from the sample.
- Improve the generalizability and external validity of the findings by ensuring that the sample is representative of the population of interest.

## Characteristics of Sampling Methods

Here are some characteristics of sampling methods:

- Randomness : Probability sampling methods are based on random selection, meaning that every member of the population has an equal chance of being selected. This helps to minimize bias and ensure that the sample is representative of the population.
- Representativeness : The goal of sampling is to obtain a sample that is representative of the larger population of interest. This means that the sample should reflect the characteristics of the population in terms of key demographic, behavioral, or other relevant variables.
- Size : The size of the sample should be large enough to provide sufficient statistical power for the research question at hand. The sample size should also be appropriate for the chosen sampling method and the level of precision desired.
- Efficiency : Sampling methods should be efficient in terms of time, cost, and resources required. The method chosen should be feasible given the available resources and time constraints.
- Bias : Sampling methods should aim to minimize bias and ensure that the sample is representative of the population of interest. Bias can be introduced through non-random selection or non-response, and can affect the validity and generalizability of the findings.
- Precision : Sampling methods should be precise in terms of providing estimates of the population parameters of interest. Precision is influenced by sample size, sampling method, and level of variability in the population.
- Validity : The validity of the sampling method is important for ensuring that the results obtained from the sample are accurate and can be generalized to the population of interest. Validity can be affected by sampling method, sample size, and the representativeness of the sample.

## Advantages of Sampling Methods

Sampling methods have several advantages, including:

- Cost-Effective : Sampling methods are often much cheaper and less time-consuming than studying an entire population. By studying only a small subset of the population, researchers can gather valuable data without incurring the costs associated with studying the entire population.
- Convenience : Sampling methods are often more convenient than studying an entire population. For example, if a researcher wants to study the eating habits of people in a city, it would be very difficult and time-consuming to study every single person in the city. By using sampling methods, the researcher can obtain data from a smaller subset of people, making the study more feasible.
- Accuracy: When done correctly, sampling methods can be very accurate. By using appropriate sampling techniques, researchers can obtain a sample that is representative of the entire population. This allows them to make accurate generalizations about the population as a whole based on the data collected from the sample.
- Time-Saving: Sampling methods can save a lot of time compared to studying the entire population. By studying a smaller sample, researchers can collect data much more quickly than they could if they studied every single person in the population.
- Less Bias : Sampling methods can reduce bias in a study. If a researcher were to study the entire population, it would be very difficult to eliminate all sources of bias. However, by using appropriate sampling techniques, researchers can reduce bias and obtain a sample that is more representative of the entire population.

## Limitations of Sampling Methods

- Sampling Error : Sampling error is the difference between the sample statistic and the population parameter. It is the result of selecting a sample rather than the entire population. The larger the sample, the lower the sampling error. However, no matter how large the sample size, there will always be some degree of sampling error.
- Selection Bias: Selection bias occurs when the sample is not representative of the population. This can happen if the sample is not selected randomly or if some groups are underrepresented in the sample. Selection bias can lead to inaccurate conclusions about the population.
- Non-response Bias : Non-response bias occurs when some members of the sample do not respond to the survey or study. This can result in a biased sample if the non-respondents differ from the respondents in important ways.
- Time and Cost : While sampling can be cost-effective, it can still be expensive and time-consuming to select a sample that is representative of the population. Depending on the sampling method used, it may take a long time to obtain a sample that is large enough and representative enough to be useful.
- Limited Information : Sampling can only provide information about the variables that are measured. It may not provide information about other variables that are relevant to the research question but were not measured.
- Generalization : The extent to which the findings from a sample can be generalized to the population depends on the representativeness of the sample. If the sample is not representative of the population, it may not be possible to generalize the findings to the population as a whole.

## About the author

## Muhammad Hassan

Researcher, Academic Writer, Web developer

## You may also like

## Stratified Random Sampling – Definition, Method...

## Purposive Sampling – Methods, Types and Examples

## Non-probability Sampling – Types, Methods and...

## Cluster Sampling – Types, Method and Examples

## Systematic Sampling – Types, Method and Examples

## Snowball Sampling – Method, Types and Examples

- En español – ExME
- Em português – EME

## What are sampling methods and how do you choose the best one?

Posted on 18th November 2020 by Mohamed Khalifa

This tutorial will introduce sampling methods and potential sampling errors to avoid when conducting medical research.

## Introduction to sampling methods

Examples of different sampling methods, choosing the best sampling method.

It is important to understand why we sample the population; for example, studies are built to investigate the relationships between risk factors and disease. In other words, we want to find out if this is a true association, while still aiming for the minimum risk for errors such as: chance, bias or confounding .

However, it would not be feasible to experiment on the whole population, we would need to take a good sample and aim to reduce the risk of having errors by proper sampling technique.

## What is a sampling frame?

A sampling frame is a record of the target population containing all participants of interest. In other words, it is a list from which we can extract a sample.

## What makes a good sample?

A good sample should be a representative subset of the population we are interested in studying, therefore, with each participant having equal chance of being randomly selected into the study.

We could choose a sampling method based on whether we want to account for sampling bias; a random sampling method is often preferred over a non-random method for this reason. Random sampling examples include: simple, systematic, stratified, and cluster sampling. Non-random sampling methods are liable to bias, and common examples include: convenience, purposive, snowballing, and quota sampling. For the purposes of this blog we will be focusing on random sampling methods .

Example: We want to conduct an experimental trial in a small population such as: employees in a company, or students in a college. We include everyone in a list and use a random number generator to select the participants

Advantages: Generalisable results possible, random sampling, the sampling frame is the whole population, every participant has an equal probability of being selected

Disadvantages: Less precise than stratified method, less representative than the systematic method

Example: Every nth patient entering the out-patient clinic is selected and included in our sample

Advantages: More feasible than simple or stratified methods, sampling frame is not always required

Disadvantages: Generalisability may decrease if baseline characteristics repeat across every nth participant

Example: We have a big population (a city) and we want to ensure representativeness of all groups with a pre-determined characteristic such as: age groups, ethnic origin, and gender

Advantages: Inclusive of strata (subgroups), reliable and generalisable results

Disadvantages: Does not work well with multiple variables

Example: 10 schools have the same number of students across the county. We can randomly select 3 out of 10 schools as our clusters

Advantages: Readily doable with most budgets, does not require a sampling frame

Disadvantages: Results may not be reliable nor generalisable

## How can you identify sampling errors?

Non-random selection increases the probability of sampling (selection) bias if the sample does not represent the population we want to study. We could avoid this by random sampling and ensuring representativeness of our sample with regards to sample size.

An inadequate sample size decreases the confidence in our results as we may think there is no significant difference when actually there is. This type two error results from having a small sample size, or from participants dropping out of the sample.

In medical research of disease, if we select people with certain diseases while strictly excluding participants with other co-morbidities, we run the risk of diagnostic purity bias where important sub-groups of the population are not represented.

Furthermore, measurement bias may occur during re-collection of risk factors by participants (recall bias) or assessment of outcome where people who live longer are associated with treatment success, when in fact people who died were not included in the sample or data analysis (survivors bias).

By following the steps below we could choose the best sampling method for our study in an orderly fashion.

## Research objectiveness

Firstly, a refined research question and goal would help us define our population of interest. If our calculated sample size is small then it would be easier to get a random sample. If, however, the sample size is large, then we should check if our budget and resources can handle a random sampling method.

## Sampling frame availability

Secondly, we need to check for availability of a sampling frame (Simple), if not, could we make a list of our own (Stratified). If neither option is possible, we could still use other random sampling methods, for instance, systematic or cluster sampling.

## Study design

Moreover, we could consider the prevalence of the topic (exposure or outcome) in the population, and what would be the suitable study design. In addition, checking if our target population is widely varied in its baseline characteristics. For example, a population with large ethnic subgroups could best be studied using a stratified sampling method.

## Random sampling

Finally, the best sampling method is always the one that could best answer our research question while also allowing for others to make use of our results (generalisability of results). When we cannot afford a random sampling method, we can always choose from the non-random sampling methods.

To sum up, we now understand that choosing between random or non-random sampling methods is multifactorial. We might often be tempted to choose a convenience sample from the start, but that would not only decrease precision of our results, and would make us miss out on producing research that is more robust and reliable.

## References (pdf)

## Mohamed Khalifa

Leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

## No Comments on What are sampling methods and how do you choose the best one?

Thank you for this overview. A concise approach for research.

really helps! am an ecology student preparing to write my lab report for sampling.

I learned a lot to the given presentation.. It’s very comprehensive… Thanks for sharing…

Very informative and useful for my study. Thank you

Oversimplified info on sampling methods. Probabilistic of the sampling and sampling of samples by chance does rest solely on the random methods. Factors such as the random visits or presentation of the potential participants at clinics or sites could be sufficiently random in nature and should be used for the sake of efficiency and feasibility. Nevertheless, this approach has to be taken only after careful thoughts. Representativeness of the study samples have to be checked at the end or during reporting by comparing it to the published larger studies or register of some kind in/from the local population.

Thank you so much Mr.mohamed very useful and informative article

## Subscribe to our newsletter

You will receive our monthly newsletter and free access to Trip Premium.

## Related Articles

## How to read a funnel plot

This blog introduces you to funnel plots, guiding you through how to read them and what may cause them to look asymmetrical.

## Internal and external validity: what are they and how do they differ?

Is this study valid? Can I trust this study’s methods and design? Can I apply the results of this study to other contexts? Learn more about internal and external validity in research to help you answer these questions when you next look at a paper.

## Cluster Randomized Trials: Concepts

This blog summarizes the concepts of cluster randomization, and the logistical and statistical considerations while designing a cluster randomized controlled trial.

## Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

- Knowledge Base
- Methodology
- Sampling Methods | Types, Techniques, & Examples

## Sampling Methods | Types, Techniques, & Examples

Published on 3 May 2022 by Shona McCombes . Revised on 10 October 2022.

When you conduct research about a group of people, it’s rarely possible to collect data from every person in that group. Instead, you select a sample. The sample is the group of individuals who will actually participate in the research.

To draw valid conclusions from your results, you have to carefully decide how you will select a sample that is representative of the group as a whole. There are two types of sampling methods:

- Probability sampling involves random selection, allowing you to make strong statistical inferences about the whole group. It minimises the risk of selection bias .
- Non-probability sampling involves non-random selection based on convenience or other criteria, allowing you to easily collect data.

You should clearly explain how you selected your sample in the methodology section of your paper or thesis.

## Table of contents

Population vs sample, probability sampling methods, non-probability sampling methods, frequently asked questions about sampling.

First, you need to understand the difference between a population and a sample , and identify the target population of your research.

- The population is the entire group that you want to draw conclusions about.
- The sample is the specific group of individuals that you will collect data from.

The population can be defined in terms of geographical location, age, income, and many other characteristics.

It is important to carefully define your target population according to the purpose and practicalities of your project.

If the population is very large, demographically mixed, and geographically dispersed, it might be difficult to gain access to a representative sample.

## Sampling frame

The sampling frame is the actual list of individuals that the sample will be drawn from. Ideally, it should include the entire target population (and nobody who is not part of that population).

You are doing research on working conditions at Company X. Your population is all 1,000 employees of the company. Your sampling frame is the company’s HR database, which lists the names and contact details of every employee.

## Sample size

The number of individuals you should include in your sample depends on various factors, including the size and variability of the population and your research design. There are different sample size calculators and formulas depending on what you want to achieve with statistical analysis .

## Prevent plagiarism, run a free check.

Probability sampling means that every member of the population has a chance of being selected. It is mainly used in quantitative research . If you want to produce results that are representative of the whole population, probability sampling techniques are the most valid choice.

There are four main types of probability sample.

## 1. Simple random sampling

In a simple random sample , every member of the population has an equal chance of being selected. Your sampling frame should include the whole population.

To conduct this type of sampling, you can use tools like random number generators or other techniques that are based entirely on chance.

You want to select a simple random sample of 100 employees of Company X. You assign a number to every employee in the company database from 1 to 1000, and use a random number generator to select 100 numbers.

## 2. Systematic sampling

Systematic sampling is similar to simple random sampling, but it is usually slightly easier to conduct. Every member of the population is listed with a number, but instead of randomly generating numbers, individuals are chosen at regular intervals.

All employees of the company are listed in alphabetical order. From the first 10 numbers, you randomly select a starting point: number 6. From number 6 onwards, every 10th person on the list is selected (6, 16, 26, 36, and so on), and you end up with a sample of 100 people.

If you use this technique, it is important to make sure that there is no hidden pattern in the list that might skew the sample. For example, if the HR database groups employees by team, and team members are listed in order of seniority, there is a risk that your interval might skip over people in junior roles, resulting in a sample that is skewed towards senior employees.

## 3. Stratified sampling

Stratified sampling involves dividing the population into subpopulations that may differ in important ways. It allows you draw more precise conclusions by ensuring that every subgroup is properly represented in the sample.

To use this sampling method, you divide the population into subgroups (called strata) based on the relevant characteristic (e.g., gender, age range, income bracket, job role).

Based on the overall proportions of the population, you calculate how many people should be sampled from each subgroup. Then you use random or systematic sampling to select a sample from each subgroup.

The company has 800 female employees and 200 male employees. You want to ensure that the sample reflects the gender balance of the company, so you sort the population into two strata based on gender. Then you use random sampling on each group, selecting 80 women and 20 men, which gives you a representative sample of 100 people.

## 4. Cluster sampling

Cluster sampling also involves dividing the population into subgroups, but each subgroup should have similar characteristics to the whole sample. Instead of sampling individuals from each subgroup, you randomly select entire subgroups.

If it is practically possible, you might include every individual from each sampled cluster. If the clusters themselves are large, you can also sample individuals from within each cluster using one of the techniques above. This is called multistage sampling .

This method is good for dealing with large and dispersed populations, but there is more risk of error in the sample, as there could be substantial differences between clusters. It’s difficult to guarantee that the sampled clusters are really representative of the whole population.

The company has offices in 10 cities across the country (all with roughly the same number of employees in similar roles). You don’t have the capacity to travel to every office to collect your data, so you use random sampling to select 3 offices – these are your clusters.

In a non-probability sample , individuals are selected based on non-random criteria, and not every individual has a chance of being included.

This type of sample is easier and cheaper to access, but it has a higher risk of sampling bias . That means the inferences you can make about the population are weaker than with probability samples, and your conclusions may be more limited. If you use a non-probability sample, you should still aim to make it as representative of the population as possible.

Non-probability sampling techniques are often used in exploratory and qualitative research . In these types of research, the aim is not to test a hypothesis about a broad population, but to develop an initial understanding of a small or under-researched population.

## 1. Convenience sampling

A convenience sample simply includes the individuals who happen to be most accessible to the researcher.

This is an easy and inexpensive way to gather initial data, but there is no way to tell if the sample is representative of the population, so it can’t produce generalisable results.

You are researching opinions about student support services in your university, so after each of your classes, you ask your fellow students to complete a survey on the topic. This is a convenient way to gather data, but as you only surveyed students taking the same classes as you at the same level, the sample is not representative of all the students at your university.

## 2. Voluntary response sampling

Similar to a convenience sample, a voluntary response sample is mainly based on ease of access. Instead of the researcher choosing participants and directly contacting them, people volunteer themselves (e.g., by responding to a public online survey).

Voluntary response samples are always at least somewhat biased, as some people will inherently be more likely to volunteer than others.

You send out the survey to all students at your university and many students decide to complete it. This can certainly give you some insight into the topic, but the people who responded are more likely to be those who have strong opinions about the student support services, so you can’t be sure that their opinions are representative of all students.

## 3. Purposive sampling

Purposive sampling , also known as judgement sampling, involves the researcher using their expertise to select a sample that is most useful to the purposes of the research.

It is often used in qualitative research , where the researcher wants to gain detailed knowledge about a specific phenomenon rather than make statistical inferences, or where the population is very small and specific. An effective purposive sample must have clear criteria and rationale for inclusion.

You want to know more about the opinions and experiences of students with a disability at your university, so you purposely select a number of students with different support needs in order to gather a varied range of data on their experiences with student services.

## 4. Snowball sampling

If the population is hard to access, snowball sampling can be used to recruit participants via other participants. The number of people you have access to ‘snowballs’ as you get in contact with more people.

You are researching experiences of homelessness in your city. Since there is no list of all homeless people in the city, probability sampling isn’t possible. You meet one person who agrees to participate in the research, and she puts you in contact with other homeless people she knows in the area.

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

Samples are used to make inferences about populations . Samples are easier to collect data from because they are practical, cost-effective, convenient, and manageable.

Probability sampling means that every member of the target population has a known chance of being included in the sample.

Probability sampling methods include simple random sampling , systematic sampling , stratified sampling , and cluster sampling .

In non-probability sampling , the sample is selected based on non-random criteria, and not every member of the population has a chance of being included.

Common non-probability sampling methods include convenience sampling , voluntary response sampling, purposive sampling , snowball sampling , and quota sampling .

Sampling bias occurs when some members of a population are systematically more likely to be selected in a sample than others.

## Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, October 10). Sampling Methods | Types, Techniques, & Examples. Scribbr. Retrieved 20 March 2024, from https://www.scribbr.co.uk/research-methods/sampling/

## Is this article helpful?

## Shona McCombes

Other students also liked, what is quantitative research | definition & methods, a quick guide to experimental design | 5 steps & examples, controlled experiments | methods & examples of control.

Educational resources and simple solutions for your research journey

## What are Sampling Methods? Techniques, Types, and Examples

Every type of research includes samples from which inferences are drawn. The sample could be biological specimens or a subset of a specific group or population selected for analysis. The goal is often to conclude the entire population based on the characteristics observed in the sample. Now, the question comes to mind: how does one collect the samples? Answer: Using sampling methods. Various sampling strategies are available to researchers to define and collect samples that will form the basis of their research study.

In a study focusing on individuals experiencing anxiety, gathering data from the entire population is practically impossible due to the widespread prevalence of anxiety. Consequently, a sample is carefully selected—a subset of individuals meant to represent (or not in some cases accurately) the demographics of those experiencing anxiety. The study’s outcomes hinge significantly on the chosen sample, emphasizing the critical importance of a thoughtful and precise selection process. The conclusions drawn about the broader population rely heavily on the selected sample’s characteristics and diversity.

Table of Contents

## What is sampling?

Sampling involves the strategic selection of individuals or a subset from a population, aiming to derive statistical inferences and predict the characteristics of the entire population. It offers a pragmatic and practical approach to examining the features of the whole population, which would otherwise be difficult to achieve because studying the total population is expensive, time-consuming, and often impossible. Market researchers use various sampling methods to collect samples from a large population to acquire relevant insights. The best sampling strategy for research is determined by criteria such as the purpose of the study, available resources (time and money), and research hypothesis.

For example, if a pet food manufacturer wants to investigate the positive impact of a new cat food on feline growth, studying all the cats in the country is impractical. In such cases, employing an appropriate sampling technique from the extensive dataset allows the researcher to focus on a manageable subset. This enables the researcher to study the growth-promoting effects of the new pet food. This article will delve into the standard sampling methods and explore the situations in which each is most appropriately applied.

## What are sampling methods or sampling techniques?

Sampling methods or sampling techniques in research are statistical methods for selecting a sample representative of the whole population to study the population’s characteristics. Sampling methods serve as invaluable tools for researchers, enabling the collection of meaningful data and facilitating analysis to identify distinctive features of the people. Different sampling strategies can be used based on the characteristics of the population, the study purpose, and the available resources. Now that we understand why sampling methods are essential in research, we review the various sample methods in the following sections.

## Types of sampling methods

Before we go into the specifics of each sampling method, it’s vital to understand terms like sample, sample frame, and sample space. In probability theory, the sample space comprises all possible outcomes of a random experiment, while the sample frame is the list or source guiding sample selection in statistical research. The sample represents the group of individuals participating in the study, forming the basis for the research findings. Selecting the correct sample is critical to ensuring the validity and reliability of any research; the sample should be representative of the population.

There are two most common sampling methods:

- Probability sampling: A sampling method in which each unit or element in the population has an equal chance of being selected in the final sample. This is called random sampling, emphasizing the random and non-zero probability nature of selecting samples. Such a sampling technique ensures a more representative and unbiased sample, enabling robust inferences about the entire population.
- Non-probability sampling: Another sampling method is non-probability sampling, which involves collecting data conveniently through a non-random selection based on predefined criteria. This offers a straightforward way to gather data, although the resulting sample may or may not accurately represent the entire population.

Irrespective of the research method you opt for, it is essential to explicitly state the chosen sampling technique in the methodology section of your research article. Now, we will explore the different characteristics of both sampling methods, along with various subtypes falling under these categories.

## What is probability sampling?

The probability sampling method is based on the probability theory, which means that the sample selection criteria involve some random selection. The probability sampling method provides an equal opportunity for all elements or units within the entire sample space to be chosen. While it can be labor-intensive and expensive, the advantage lies in its ability to offer a more accurate representation of the population, thereby enhancing confidence in the inferences drawn in the research.

## Types of probability sampling

Various probability sampling methods exist, such as simple random sampling, systematic sampling, stratified sampling, and clustered sampling. Here, we provide detailed discussions and illustrative examples for each of these sampling methods:

- Simple random sampling: In simple random sampling, each individual has an equal probability of being chosen, and each selection is independent of the others. Because the choice is entirely based on chance, this is also known as the method of chance selection. In the simple random sampling method, the sample frame comprises the entire population.

For example, A fitness sports brand is launching a new protein drink and aims to select 20 individuals from a 200-person fitness center to try it. Employing a simple random sampling approach, each of the 200 people is assigned a unique identifier. Of these, 20 individuals are then chosen by generating random numbers between 1 and 200, either manually or through a computer program. Matching these numbers with the individuals creates a randomly selected group of 20 people. This method minimizes sampling bias and ensures a representative subset of the entire population under study.

- Systematic sampling: The systematic sampling approach involves selecting units or elements at regular intervals from an ordered list of the population. Because the starting point of this sampling method is chosen at random, it is more convenient than essential random sampling. For a better understanding, consider the following example.

For example, considering the previous model, individuals at the fitness facility are arranged alphabetically. The manufacturer then initiates the process by randomly selecting a starting point from the first ten positions, let’s say 8. Starting from the 8th position, every tenth person on the list is then chosen (e.g., 8, 18, 28, 38, and so forth) until a sample of 20 individuals is obtained.

- Stratified sampling: Stratified sampling divides the population into subgroups (strata), and random samples are drawn from each stratum in proportion to its size in the population. Stratified sampling provides improved representation because each subgroup that differs in significant ways is included in the final sample.

For example, Expanding on the previous simple random sampling example, suppose the manufacturer aims for a more comprehensive representation of genders in a sample of 200 people, consisting of 90 males, 80 females, and 30 others. The manufacturer categorizes the population into three gender strata (Male, Female, and Others). Within each group, random sampling is employed to select nine males, eight females, and three individuals from the others category, resulting in a well-rounded and representative sample of 200 individuals.

- Clustered sampling: In this sampling method, the population is divided into clusters, and then a random sample of clusters is included in the final sample. Clustered sampling, distinct from stratified sampling, involves subgroups (clusters) that exhibit characteristics similar to the whole sample. In the case of small clusters, all members can be included in the final sample, whereas for larger clusters, individuals within each cluster may be sampled using the sampling above methods. This approach is referred to as multistage sampling. This sampling method is well-suited for large and widely distributed populations; however, there is a potential risk of sample error because ensuring that the sampled clusters truly represent the entire population can be challenging.

For example, Researchers conducting a nationwide health study can select specific geographic clusters, like cities or regions, instead of trying to survey the entire population individually. Within each chosen cluster, they sample individuals, providing a representative subset without the logistical challenges of attempting a nationwide survey.

## Use s of probability sampling

Probability sampling methods find widespread use across diverse research disciplines because of their ability to yield representative and unbiased samples. The advantages of employing probability sampling include the following:

- Representativeness

Probability sampling assures that every element in the population has a non-zero chance of being included in the sample, ensuring representativeness of the entire population and decreasing research bias to minimal to non-existent levels. The researcher can acquire higher-quality data via probability sampling, increasing confidence in the conclusions.

- Statistical inference

Statistical methods, like confidence intervals and hypothesis testing, depend on probability sampling to generalize findings from a sample to the broader population. Probability sampling methods ensure unbiased representation, allowing inferences about the population based on the characteristics of the sample.

- Precision and reliability

The use of probability sampling improves the precision and reliability of study results. Because the probability of selecting any single element/individual is known, the chance variations that may occur in non-probability sampling methods are reduced, resulting in more dependable and precise estimations.

- Generalizability

Probability sampling enables the researcher to generalize study findings to the entire population from which they were derived. The results produced through probability sampling methods are more likely to be applicable to the larger population, laying the foundation for making broad predictions or recommendations.

- Minimization of Selection Bias

By ensuring that each member of the population has an equal chance of being selected in the sample, probability sampling lowers the possibility of selection bias. This reduces the impact of systematic errors that may occur in non-probability sampling methods, where data may be skewed toward a specific demographic due to inadequate representation of each segment of the population.

## What is non-probability sampling?

Non-probability sampling methods involve selecting individuals based on non-random criteria, often relying on the researcher’s judgment or predefined criteria. While it is easier and more economical, it tends to introduce sampling bias, resulting in weaker inferences compared to probability sampling techniques in research.

## Types of Non-probability Sampling

Non-probability sampling methods are further classified as convenience sampling, consecutive sampling, quota sampling, purposive or judgmental sampling, and snowball sampling. Let’s explore these types of sampling methods in detail.

- Convenience sampling: In convenience sampling, individuals are recruited directly from the population based on the accessibility and proximity to the researcher. It is a simple, inexpensive, and practical method of sample selection, yet convenience sampling suffers from both sampling and selection bias due to a lack of appropriate population representation.

For example, imagine you’re a researcher investigating smartphone usage patterns in your city. The most convenient way to select participants is by approaching people in a shopping mall on a weekday afternoon. However, this convenience sampling method may not be an accurate representation of the city’s overall smartphone usage patterns as the sample is limited to individuals present at the mall during weekdays, excluding those who visit on other days or never visit the mall.

- Consecutive sampling: Participants in consecutive sampling (or sequential sampling) are chosen based on their availability and desire to participate in the study as they become available. This strategy entails sequentially recruiting individuals who fulfill the researcher’s requirements.

For example, In researching the prevalence of stroke in a hospital, instead of randomly selecting patients from the entire population, the researcher can opt to include all eligible patients admitted over three months. Participants are then consecutively recruited upon admission during that timeframe, forming the study sample.

- Quota sampling: The selection of individuals in quota sampling is based on non-random selection criteria in which only participants with certain traits or proportions that are representative of the population are included. Quota sampling involves setting predetermined quotas for specific subgroups based on key demographics or other relevant characteristics. This sampling method employs dividing the population into mutually exclusive subgroups and then selecting sample units until the set quota is reached.

For example, In a survey on a college campus to assess student interest in a new policy, the researcher should establish quotas aligned with the distribution of student majors, ensuring representation from various academic disciplines. If the campus has 20% biology majors, 30% engineering majors, 20% business majors, and 30% liberal arts majors, participants should be recruited to mirror these proportions.

- Purposive or judgmental sampling: In purposive sampling, the researcher leverages expertise to select a sample relevant to the study’s specific questions. This sampling method is commonly applied in qualitative research, mainly when aiming to understand a particular phenomenon, and is suitable for smaller population sizes.

For example, imagine a researcher who wants to study public policy issues for a focus group. The researcher might purposely select participants with expertise in economics, law, and public administration to take advantage of their knowledge and ensure a depth of understanding.

- Snowball sampling: This sampling method is used when accessing the population is challenging. It involves collecting the sample through a chain-referral process, where each recruited candidate aids in finding others. These candidates share common traits, representing the targeted population. This method is often used in qualitative research, particularly when studying phenomena related to stigmatized or hidden populations.

For example, In a study focusing on understanding the experiences and challenges of individuals in hidden or stigmatized communities (e.g., LGBTQ+ individuals in specific cultural contexts), the snowball sampling technique can be employed. The researcher initiates contact with one community member, who then assists in identifying additional candidates until the desired sample size is achieved.

## Uses of non-probability sampling

Non-probability sampling approaches are employed in qualitative or exploratory research where the goal is to investigate underlying population traits rather than generalizability. Non-probability sampling methods are also helpful for the following purposes:

- Generating a hypothesis

In the initial stages of exploratory research, non-probability methods such as purposive or convenience allow researchers to quickly gather information and generate hypothesis that helps build a future research plan.

- Qualitative research

Qualitative research is usually focused on understanding the depth and complexity of human experiences, behaviors, and perspectives. Non-probability methods like purposive or snowball sampling are commonly used to select participants with specific traits that are relevant to the research question.

- Convenience and pragmatism

Non-probability sampling methods are valuable when resource and time are limited or when preliminary data is required to test the pilot study. For example, conducting a survey at a local shopping mall to gather opinions on a consumer product due to the ease of access to potential participants.

## Probability vs Non-probability Sampling Methods

Frequently asked questions .

- What is multistage sampling ? Multistage sampling is a form of probability sampling approach that involves the progressive selection of samples in stages, going from larger clusters to a small number of participants, making it suited for large-scale research with enormous population lists.
- What are the methods of probability sampling? Probability sampling methods are simple random sampling, stratified random sampling, systematic sampling, cluster sampling, and multistage sampling.
- How to decide which type of sampling method to use? Choose a sampling method based on the goals, population, and resources. Probability for statistics and non-probability for efficiency or qualitative insights can be considered . Also, consider the population characteristics, size, and alignment with study objectives.
- What are the methods of non-probability sampling? Non-probability sampling methods are convenience sampling, consecutive sampling, purposive sampling, snowball sampling, and quota sampling.
- Why are sampling methods used in research? Sampling methods in research are employed to efficiently gather representative data from a subset of a larger population, enabling valid conclusions and generalizations while minimizing costs and time.

R Discovery is a literature search and research reading app that uses your interests to instantly create personalized reading feeds. Researchers can stay updated on the latest, most relevant content from its continually expanding library of 115M+ research articles sourced from trusted aggregators like CrossRef , Unpaywall , PubMed, PubMed Central, Open Alex as well as prestigious publishing houses like Springer Nature , JAMA , IOP, Taylor & Francis , NEJM, BMJ , Karger , SAGE, Emerald Publishing and more. The top-rated app in its space, R Discovery’s carefully curated features give you the power to choose what, where, and how you read research.

Try the app for free or upgrade to R Discovery Prime , which unlocks unlimited access to premium features that let you listen to research on the go, read in your language, invite collaborators, auto sync with top reference managers, multiple feeds, and more. It’s like having the world of research at your fingertips ! Choose a simpler, smarter way to find and read research – Get R Discovery Prime now at just US $39 a year!

## Related Posts

## What is Inductive Reasoning? Definition, Types and Examples

## Independent vs Dependent Variables: Definitions & Examples

## Sampling Methods & Strategies 101

Everything you need to know (including examples)

By: Derek Jansen (MBA) | Expert Reviewed By: Kerryn Warren (PhD) | January 2023

If you’re new to research, sooner or later you’re bound to wander into the intimidating world of sampling methods and strategies. If you find yourself on this page, chances are you’re feeling a little overwhelmed or confused. Fear not – in this post we’ll unpack sampling in straightforward language , along with loads of examples .

## Overview: Sampling Methods & Strategies

- What is sampling in a research context?
- The two overarching approaches

## Simple random sampling

Stratified random sampling, cluster sampling, systematic sampling, purposive sampling, convenience sampling, snowball sampling.

- How to choose the right sampling method

## What (exactly) is sampling?

At the simplest level, sampling (within a research context) is the process of selecting a subset of participants from a larger group . For example, if your research involved assessing US consumers’ perceptions about a particular brand of laundry detergent, you wouldn’t be able to collect data from every single person that uses laundry detergent (good luck with that!) – but you could potentially collect data from a smaller subset of this group.

In technical terms, the larger group is referred to as the population , and the subset (the group you’ll actually engage with in your research) is called the sample . Put another way, you can look at the population as a full cake and the sample as a single slice of that cake. In an ideal world, you’d want your sample to be perfectly representative of the population, as that would allow you to generalise your findings to the entire population. In other words, you’d want to cut a perfect cross-sectional slice of cake, such that the slice reflects every layer of the cake in perfect proportion.

Achieving a truly representative sample is, unfortunately, a little trickier than slicing a cake, as there are many practical challenges and obstacles to achieving this in a real-world setting. Thankfully though, you don’t always need to have a perfectly representative sample – it all depends on the specific research aims of each study – so don’t stress yourself out about that just yet!

With the concept of sampling broadly defined, let’s look at the different approaches to sampling to get a better understanding of what it all looks like in practice.

## The two overarching sampling approaches

At the highest level, there are two approaches to sampling: probability sampling and non-probability sampling . Within each of these, there are a variety of sampling methods , which we’ll explore a little later.

Probability sampling involves selecting participants (or any unit of interest) on a statistically random basis , which is why it’s also called “random sampling”. In other words, the selection of each individual participant is based on a pre-determined process (not the discretion of the researcher). As a result, this approach achieves a random sample.

Probability-based sampling methods are most commonly used in quantitative research , especially when it’s important to achieve a representative sample that allows the researcher to generalise their findings.

Non-probability sampling , on the other hand, refers to sampling methods in which the selection of participants is not statistically random . In other words, the selection of individual participants is based on the discretion and judgment of the researcher, rather than on a pre-determined process.

Non-probability sampling methods are commonly used in qualitative research , where the richness and depth of the data are more important than the generalisability of the findings.

If that all sounds a little too conceptual and fluffy, don’t worry. Let’s take a look at some actual sampling methods to make it more tangible.

## Need a helping hand?

## Probability-based sampling methods

First, we’ll look at four common probability-based (random) sampling methods:

Importantly, this is not a comprehensive list of all the probability sampling methods – these are just four of the most common ones. So, if you’re interested in adopting a probability-based sampling approach, be sure to explore all the options.

Simple random sampling involves selecting participants in a completely random fashion , where each participant has an equal chance of being selected. Basically, this sampling method is the equivalent of pulling names out of a hat , except that you can do it digitally. For example, if you had a list of 500 people, you could use a random number generator to draw a list of 50 numbers (each number, reflecting a participant) and then use that dataset as your sample.

Thanks to its simplicity, simple random sampling is easy to implement , and as a consequence, is typically quite cheap and efficient . Given that the selection process is completely random, the results can be generalised fairly reliably. However, this also means it can hide the impact of large subgroups within the data, which can result in minority subgroups having little representation in the results – if any at all. To address this, one needs to take a slightly different approach, which we’ll look at next.

Stratified random sampling is similar to simple random sampling, but it kicks things up a notch. As the name suggests, stratified sampling involves selecting participants randomly , but from within certain pre-defined subgroups (i.e., strata) that share a common trait . For example, you might divide the population into strata based on gender, ethnicity, age range or level of education, and then select randomly from each group.

The benefit of this sampling method is that it gives you more control over the impact of large subgroups (strata) within the population. For example, if a population comprises 80% males and 20% females, you may want to “balance” this skew out by selecting a random sample from an equal number of males and females. This would, of course, reduce the representativeness of the sample, but it would allow you to identify differences between subgroups. So, depending on your research aims, the stratified approach could work well.

Next on the list is cluster sampling. As the name suggests, this sampling method involves sampling from naturally occurring, mutually exclusive clusters within a population – for example, area codes within a city or cities within a country. Once the clusters are defined, a set of clusters are randomly selected and then a set of participants are randomly selected from each cluster.

Now, you’re probably wondering, “how is cluster sampling different from stratified random sampling?”. Well, let’s look at the previous example where each cluster reflects an area code in a given city.

With cluster sampling, you would collect data from clusters of participants in a handful of area codes (let’s say 5 neighbourhoods). Conversely, with stratified random sampling, you would need to collect data from all over the city (i.e., many more neighbourhoods). You’d still achieve the same sample size either way (let’s say 200 people, for example), but with stratified sampling, you’d need to do a lot more running around, as participants would be scattered across a vast geographic area. As a result, cluster sampling is often the more practical and economical option.

If that all sounds a little mind-bending, you can use the following general rule of thumb. If a population is relatively homogeneous , cluster sampling will often be adequate. Conversely, if a population is quite heterogeneous (i.e., diverse), stratified sampling will generally be more appropriate.

The last probability sampling method we’ll look at is systematic sampling. This method simply involves selecting participants at a set interval , starting from a random point .

For example, if you have a list of students that reflects the population of a university, you could systematically sample that population by selecting participants at an interval of 8 . In other words, you would randomly select a starting point – let’s say student number 40 – followed by student 48, 56, 64, etc.

What’s important with systematic sampling is that the population list you select from needs to be randomly ordered . If there are underlying patterns in the list (for example, if the list is ordered by gender, IQ, age, etc.), this will result in a non-random sample, which would defeat the purpose of adopting this sampling method. Of course, you could safeguard against this by “shuffling” your population list using a random number generator or similar tool.

## Non-probability-based sampling methods

Right, now that we’ve looked at a few probability-based sampling methods, let’s look at three non-probability methods :

Again, this is not an exhaustive list of all possible sampling methods, so be sure to explore further if you’re interested in adopting a non-probability sampling approach.

First up, we’ve got purposive sampling – also known as judgment , selective or subjective sampling. Again, the name provides some clues, as this method involves the researcher selecting participants using his or her own judgement , based on the purpose of the study (i.e., the research aims).

For example, suppose your research aims were to understand the perceptions of hyper-loyal customers of a particular retail store. In that case, you could use your judgement to engage with frequent shoppers, as well as rare or occasional shoppers, to understand what judgements drive the two behavioural extremes .

Purposive sampling is often used in studies where the aim is to gather information from a small population (especially rare or hard-to-find populations), as it allows the researcher to target specific individuals who have unique knowledge or experience . Naturally, this sampling method is quite prone to researcher bias and judgement error, and it’s unlikely to produce generalisable results, so it’s best suited to studies where the aim is to go deep rather than broad .

Next up, we have convenience sampling. As the name suggests, with this method, participants are selected based on their availability or accessibility . In other words, the sample is selected based on how convenient it is for the researcher to access it, as opposed to using a defined and objective process.

Naturally, convenience sampling provides a quick and easy way to gather data, as the sample is selected based on the individuals who are readily available or willing to participate. This makes it an attractive option if you’re particularly tight on resources and/or time. However, as you’d expect, this sampling method is unlikely to produce a representative sample and will of course be vulnerable to researcher bias , so it’s important to approach it with caution.

Last but not least, we have the snowball sampling method. This method relies on referrals from initial participants to recruit additional participants. In other words, the initial subjects form the first (small) snowball and each additional subject recruited through referral is added to the snowball, making it larger as it rolls along .

Snowball sampling is often used in research contexts where it’s difficult to identify and access a particular population. For example, people with a rare medical condition or members of an exclusive group. It can also be useful in cases where the research topic is sensitive or taboo and people are unlikely to open up unless they’re referred by someone they trust.

Simply put, snowball sampling is ideal for research that involves reaching hard-to-access populations . But, keep in mind that, once again, it’s a sampling method that’s highly prone to researcher bias and is unlikely to produce a representative sample. So, make sure that it aligns with your research aims and questions before adopting this method.

## How to choose a sampling method

Now that we’ve looked at a few popular sampling methods (both probability and non-probability based), the obvious question is, “ how do I choose the right sampling method for my study?”. When selecting a sampling method for your research project, you’ll need to consider two important factors: your research aims and your resources .

As with all research design and methodology choices, your sampling approach needs to be guided by and aligned with your research aims, objectives and research questions – in other words, your golden thread. Specifically, you need to consider whether your research aims are primarily concerned with producing generalisable findings (in which case, you’ll likely opt for a probability-based sampling method) or with achieving rich , deep insights (in which case, a non-probability-based approach could be more practical). Typically, quantitative studies lean toward the former, while qualitative studies aim for the latter, so be sure to consider your broader methodology as well.

The second factor you need to consider is your resources and, more generally, the practical constraints at play. If, for example, you have easy, free access to a large sample at your workplace or university and a healthy budget to help you attract participants, that will open up multiple options in terms of sampling methods. Conversely, if you’re cash-strapped, short on time and don’t have unfettered access to your population of interest, you may be restricted to convenience or referral-based methods.

In short, be ready for trade-offs – you won’t always be able to utilise the “perfect” sampling method for your study, and that’s okay. Much like all the other methodological choices you’ll make as part of your study, you’ll often need to compromise and accept practical trade-offs when it comes to sampling. Don’t let this get you down though – as long as your sampling choice is well explained and justified, and the limitations of your approach are clearly articulated, you’ll be on the right track.

## Let’s recap…

In this post, we’ve covered the basics of sampling within the context of a typical research project.

- Sampling refers to the process of defining a subgroup (sample) from the larger group of interest (population).
- The two overarching approaches to sampling are probability sampling (random) and non-probability sampling .
- Common probability-based sampling methods include simple random sampling, stratified random sampling, cluster sampling and systematic sampling.
- Common non-probability-based sampling methods include purposive sampling, convenience sampling and snowball sampling.
- When choosing a sampling method, you need to consider your research aims , objectives and questions, as well as your resources and other practical constraints .

If you’d like to see an example of a sampling strategy in action, be sure to check out our research methodology chapter sample .

Last but not least, if you need hands-on help with your sampling (or any other aspect of your research), take a look at our 1-on-1 coaching service , where we guide you through each step of the research process, at your own pace.

## Psst… there’s more (for free)

This post is part of our dissertation mini-course, which covers everything you need to get started with your dissertation, thesis or research project.

## You Might Also Like:

Excellent and helpful. Best site to get a full understanding of Research methodology. I’m nolonger as “clueless “..😉

## Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

- Print Friendly

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Sampling is the statistical process of selecting a subset—called a ‘sample’—of a population of interest for the purpose of making observations and statistical inferences about that population. Social science research is generally about inferring patterns of behaviours within specific populations. We cannot study entire populations because of feasibility and cost constraints, and hence, we must select a representative sample from the population of interest for observation and analysis. It is extremely important to choose a sample that is truly representative of the population so that the inferences derived from the sample can be generalised back to the population of interest. Improper and biased sampling is the primary reason for the often divergent and erroneous inferences reported in opinion polls and exit polls conducted by different polling groups such as CNN/Gallup Poll, ABC, and CBS, prior to every US Presidential election.

## The sampling process

As Figure 8.1 shows, the sampling process comprises of several stages. The first stage is defining the target population. A population can be defined as all people or items ( unit of analysis ) with the characteristics that one wishes to study. The unit of analysis may be a person, group, organisation, country, object, or any other entity that you wish to draw scientific inferences about. Sometimes the population is obvious. For example, if a manufacturer wants to determine whether finished goods manufactured at a production line meet certain quality requirements or must be scrapped and reworked, then the population consists of the entire set of finished goods manufactured at that production facility. At other times, the target population may be a little harder to understand. If you wish to identify the primary drivers of academic learning among high school students, then what is your target population: high school students, their teachers, school principals, or parents? The right answer in this case is high school students, because you are interested in their performance, not the performance of their teachers, parents, or schools. Likewise, if you wish to analyse the behaviour of roulette wheels to identify biased wheels, your population of interest is not different observations from a single roulette wheel, but different roulette wheels (i.e., their behaviour over an infinite set of wheels).

The second step in the sampling process is to choose a sampling frame . This is an accessible section of the target population—usually a list with contact information—from where a sample can be drawn. If your target population is professional employees at work, because you cannot access all professional employees around the world, a more realistic sampling frame will be employee lists of one or two local companies that are willing to participate in your study. If your target population is organisations, then the Fortune 500 list of firms or the Standard & Poor’s (S&P) list of firms registered with the New York Stock exchange may be acceptable sampling frames.

Note that sampling frames may not entirely be representative of the population at large, and if so, inferences derived by such a sample may not be generalisable to the population. For instance, if your target population is organisational employees at large (e.g., you wish to study employee self-esteem in this population) and your sampling frame is employees at automotive companies in the American Midwest, findings from such groups may not even be generalisable to the American workforce at large, let alone the global workplace. This is because the American auto industry has been under severe competitive pressures for the last 50 years and has seen numerous episodes of reorganisation and downsizing, possibly resulting in low employee morale and self-esteem. Furthermore, the majority of the American workforce is employed in service industries or in small businesses, and not in automotive industry. Hence, a sample of American auto industry employees is not particularly representative of the American workforce. Likewise, the Fortune 500 list includes the 500 largest American enterprises, which is not representative of all American firms, most of which are medium or small sized firms rather than large firms, and is therefore, a biased sampling frame. In contrast, the S&P list will allow you to select large, medium, and/or small companies, depending on whether you use the S&P LargeCap, MidCap, or SmallCap lists, but includes publicly traded firms (and not private firms) and is hence still biased. Also note that the population from which a sample is drawn may not necessarily be the same as the population about which we actually want information. For example, if a researcher wants to examine the success rate of a new ‘quit smoking’ program, then the target population is the universe of smokers who had access to this program, which may be an unknown population. Hence, the researcher may sample patients arriving at a local medical facility for smoking cessation treatment, some of whom may not have had exposure to this particular ‘quit smoking’ program, in which case, the sampling frame does not correspond to the population of interest.

The last step in sampling is choosing a sample from the sampling frame using a well-defined sampling technique. Sampling techniques can be grouped into two broad categories: probability (random) sampling and non-probability sampling. Probability sampling is ideal if generalisability of results is important for your study, but there may be unique circumstances where non-probability sampling can also be justified. These techniques are discussed in the next two sections.

## Probability sampling

Probability sampling is a technique in which every unit in the population has a chance (non-zero probability) of being selected in the sample, and this chance can be accurately determined. Sample statistics thus produced, such as sample mean or standard deviation, are unbiased estimates of population parameters, as long as the sampled units are weighted according to their probability of selection. All probability sampling have two attributes in common: every unit in the population has a known non-zero probability of being sampled, and the sampling procedure involves random selection at some point. The different types of probability sampling techniques include:

Stratified sampling. In stratified sampling, the sampling frame is divided into homogeneous and non-overlapping subgroups (called ‘strata’), and a simple random sample is drawn within each subgroup. In the previous example of selecting 200 firms from a list of 1,000 firms, you can start by categorising the firms based on their size as large (more than 500 employees), medium (between 50 and 500 employees), and small (less than 50 employees). You can then randomly select 67 firms from each subgroup to make up your sample of 200 firms. However, since there are many more small firms in a sampling frame than large firms, having an equal number of small, medium, and large firms will make the sample less representative of the population (i.e., biased in favour of large firms that are fewer in number in the target population). This is called non-proportional stratified sampling because the proportion of the sample within each subgroup does not reflect the proportions in the sampling frame—or the population of interest—and the smaller subgroup (large-sized firms) is oversampled . An alternative technique will be to select subgroup samples in proportion to their size in the population. For instance, if there are 100 large firms, 300 mid-sized firms, and 600 small firms, you can sample 20 firms from the ‘large’ group, 60 from the ‘medium’ group and 120 from the ‘small’ group. In this case, the proportional distribution of firms in the population is retained in the sample, and hence this technique is called proportional stratified sampling. Note that the non-proportional approach is particularly effective in representing small subgroups, such as large-sized firms, and is not necessarily less representative of the population compared to the proportional approach, as long as the findings of the non-proportional approach are weighted in accordance to a subgroup’s proportion in the overall population.

Cluster sampling. If you have a population dispersed over a wide geographic region, it may not be feasible to conduct a simple random sampling of the entire population. In such case, it may be reasonable to divide the population into ‘clusters’—usually along geographic boundaries—randomly sample a few clusters, and measure all units within that cluster. For instance, if you wish to sample city governments in the state of New York, rather than travel all over the state to interview key city officials (as you may have to do with a simple random sample), you can cluster these governments based on their counties, randomly select a set of three counties, and then interview officials from every office in those counties. However, depending on between-cluster differences, the variability of sample estimates in a cluster sample will generally be higher than that of a simple random sample, and hence the results are less generalisable to the population than those obtained from simple random samples.

Matched-pairs sampling. Sometimes, researchers may want to compare two subgroups within one population based on a specific criterion. For instance, why are some firms consistently more profitable than other firms? To conduct such a study, you would have to categorise a sampling frame of firms into ‘high profitable’ firms and ‘low profitable firms’ based on gross margins, earnings per share, or some other measure of profitability. You would then select a simple random sample of firms in one subgroup, and match each firm in this group with a firm in the second subgroup, based on its size, industry segment, and/or other matching criteria. Now, you have two matched samples of high-profitability and low-profitability firms that you can study in greater detail. Matched-pairs sampling techniques are often an ideal way of understanding bipolar differences between different subgroups within a given population.

Multi-stage sampling. The probability sampling techniques described previously are all examples of single-stage sampling techniques. Depending on your sampling needs, you may combine these single-stage techniques to conduct multi-stage sampling. For instance, you can stratify a list of businesses based on firm size, and then conduct systematic sampling within each stratum. This is a two-stage combination of stratified and systematic sampling. Likewise, you can start with a cluster of school districts in the state of New York, and within each cluster, select a simple random sample of schools. Within each school, you can select a simple random sample of grade levels, and within each grade level, you can select a simple random sample of students for study. In this case, you have a four-stage sampling process consisting of cluster and simple random sampling.

## Non-probability sampling

Non-probability sampling is a sampling technique in which some units of the population have zero chance of selection or where the probability of selection cannot be accurately determined. Typically, units are selected based on certain non-random criteria, such as quota or convenience. Because selection is non-random, non-probability sampling does not allow the estimation of sampling errors, and may be subjected to a sampling bias. Therefore, information from a sample cannot be generalised back to the population. Types of non-probability sampling techniques include:

Convenience sampling. Also called accidental or opportunity sampling, this is a technique in which a sample is drawn from that part of the population that is close to hand, readily available, or convenient. For instance, if you stand outside a shopping centre and hand out questionnaire surveys to people or interview them as they walk in, the sample of respondents you will obtain will be a convenience sample. This is a non-probability sample because you are systematically excluding all people who shop at other shopping centres. The opinions that you would get from your chosen sample may reflect the unique characteristics of this shopping centre such as the nature of its stores (e.g., high end-stores will attract a more affluent demographic), the demographic profile of its patrons, or its location (e.g., a shopping centre close to a university will attract primarily university students with unique purchasing habits), and therefore may not be representative of the opinions of the shopper population at large. Hence, the scientific generalisability of such observations will be very limited. Other examples of convenience sampling are sampling students registered in a certain class or sampling patients arriving at a certain medical clinic. This type of sampling is most useful for pilot testing, where the goal is instrument testing or measurement validation rather than obtaining generalisable inferences.

Quota sampling. In this technique, the population is segmented into mutually exclusive subgroups (just as in stratified sampling), and then a non-random set of observations is chosen from each subgroup to meet a predefined quota. In proportional quota sampling , the proportion of respondents in each subgroup should match that of the population. For instance, if the American population consists of 70 per cent Caucasians, 15 per cent Hispanic-Americans, and 13 per cent African-Americans, and you wish to understand their voting preferences in an sample of 98 people, you can stand outside a shopping centre and ask people their voting preferences. But you will have to stop asking Hispanic-looking people when you have 15 responses from that subgroup (or African-Americans when you have 13 responses) even as you continue sampling other ethnic groups, so that the ethnic composition of your sample matches that of the general American population.

Non-proportional quota sampling is less restrictive in that you do not have to achieve a proportional representation, but perhaps meet a minimum size in each subgroup. In this case, you may decide to have 50 respondents from each of the three ethnic subgroups (Caucasians, Hispanic-Americans, and African-Americans), and stop when your quota for each subgroup is reached. Neither type of quota sampling will be representative of the American population, since depending on whether your study was conducted in a shopping centre in New York or Kansas, your results may be entirely different. The non-proportional technique is even less representative of the population, but may be useful in that it allows capturing the opinions of small and under-represented groups through oversampling.

Expert sampling. This is a technique where respondents are chosen in a non-random manner based on their expertise on the phenomenon being studied. For instance, in order to understand the impacts of a new governmental policy such as the Sarbanes-Oxley Act, you can sample a group of corporate accountants who are familiar with this Act. The advantage of this approach is that since experts tend to be more familiar with the subject matter than non-experts, opinions from a sample of experts are more credible than a sample that includes both experts and non-experts, although the findings are still not generalisable to the overall population at large.

Snowball sampling. In snowball sampling, you start by identifying a few respondents that match the criteria for inclusion in your study, and then ask them to recommend others they know who also meet your selection criteria. For instance, if you wish to survey computer network administrators and you know of only one or two such people, you can start with them and ask them to recommend others who also work in network administration. Although this method hardly leads to representative samples, it may sometimes be the only way to reach hard-to-reach populations or when no sampling frame is available.

## Statistics of sampling

In the preceding sections, we introduced terms such as population parameter, sample statistic, and sampling bias. In this section, we will try to understand what these terms mean and how they are related to each other.

When you measure a certain observation from a given unit, such as a person’s response to a Likert-scaled item, that observation is called a response (see Figure 8.2). In other words, a response is a measurement value provided by a sampled unit. Each respondent will give you different responses to different items in an instrument. Responses from different respondents to the same item or observation can be graphed into a frequency distribution based on their frequency of occurrences. For a large number of responses in a sample, this frequency distribution tends to resemble a bell-shaped curve called a normal distribution , which can be used to estimate overall characteristics of the entire sample, such as sample mean (average of all observations in a sample) or standard deviation (variability or spread of observations in a sample). These sample estimates are called sample statistics (a ‘statistic’ is a value that is estimated from observed data). Populations also have means and standard deviations that could be obtained if we could sample the entire population. However, since the entire population can never be sampled, population characteristics are always unknown, and are called population parameters (and not ‘statistic’ because they are not statistically estimated from data). Sample statistics may differ from population parameters if the sample is not perfectly representative of the population. The difference between the two is called sampling error . Theoretically, if we could gradually increase the sample size so that the sample approaches closer and closer to the population, then sampling error will decrease and a sample statistic will increasingly approximate the corresponding population parameter.

If a sample is truly representative of the population, then the estimated sample statistics should be identical to the corresponding theoretical population parameters. How do we know if the sample statistics are at least reasonably close to the population parameters? Here, we need to understand the concept of a sampling distribution . Imagine that you took three different random samples from a given population, as shown in Figure 8.3, and for each sample, you derived sample statistics such as sample mean and standard deviation. If each random sample was truly representative of the population, then your three sample means from the three random samples will be identical—and equal to the population parameter—and the variability in sample means will be zero. But this is extremely unlikely, given that each random sample will likely constitute a different subset of the population, and hence, their means may be slightly different from each other. However, you can take these three sample means and plot a frequency histogram of sample means. If the number of such samples increases from three to 10 to 100, the frequency histogram becomes a sampling distribution. Hence, a sampling distribution is a frequency distribution of a sample statistic (like sample mean) from a set of samples , while the commonly referenced frequency distribution is the distribution of a response (observation) from a single sample . Just like a frequency distribution, the sampling distribution will also tend to have more sample statistics clustered around the mean (which presumably is an estimate of a population parameter), with fewer values scattered around the mean. With an infinitely large number of samples, this distribution will approach a normal distribution. The variability or spread of a sample statistic in a sampling distribution (i.e., the standard deviation of a sampling statistic) is called its standard error . In contrast, the term standard deviation is reserved for variability of an observed response from a single sample.

Social Science Research: Principles, Methods and Practices (Revised edition) Copyright © 2019 by Anol Bhattacherjee is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

## Share This Book

## Sampling in research

This page outlines key information around sampling methods in both quantitative and qualitative research..

Including a succinct justification for your chosen sample size is important for the Research Ethics Committee to understand that a credible plan is in place, and importantly that participant involvement is required. A detailed academic defence of your approach is not necessary. You may wish to read this paper to find out more.

In research, a sample is a group of people, items or objects taken from a larger population.

There are two major types of sampling, that is, the process and method of selecting your sample: probabilistic and non-probabilistic.

- Probabilistic sampling

Probabilistic sampling refers to any sampling method which involves researchers using some form of random selection of items or individuals, rather than deliberate choice. Examples of probabilistic sampling include random sampling, stratified sampling, and cluster sampling.

- Non-probabilistic sampling

Non-probabilistic sampling methods involve researchers deliberately choosing or selecting items or individuals for the sample, based on specific criteria and/or the specific research objectives. Examples of non-probabilistic sampling include convenience sampling, purposive sampling, and snowball sampling.

- Quantitative research

In quantitative research protocols, the rationale for your sample size should be explained. If appropriate, you should also explain whether you have conducted a formal sample size calculation. This information should be included in your ethics application.

Quantitative sample size calculations should demonstrate exactly what statistical test the calculation is powered for (usually relating to the primary hypothesis/research questions), power, alpha, and effect size.

- Qualitative research

Sample size in qualitative research is very different from quantitative research – there are no power calculations. However, it is important to justify your sample size as part of planning your research and to be transparent when you are reporting the results of the study. Good practice is to justify your sample size with reference to your particular study rather than citing an external norm.

- Further information
- Further information about sampling strategies can be found here
- Further information on sample size calculations can be found here - Sage Research Methods provide various resources which can be accessed via your University of Bath login.
- Information about sampling for survey research can be found here
- For further information and guidance on sample size in qualitative research springer and sage journals
- Related guides
- Ethics Review Process
- A-Z of research ethics guidance

Find out more about research integrity and ethics

## On this page

## Sampling Methods In Reseach: Types, Techniques, & Examples

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Sampling methods in psychology refer to strategies used to select a subset of individuals (a sample) from a larger population, to study and draw inferences about the entire population. Common methods include random sampling, stratified sampling, cluster sampling, and convenience sampling. Proper sampling ensures representative, generalizable, and valid research results.

- Sampling : the process of selecting a representative group from the population under study.
- Target population : the total group of individuals from which the sample might be drawn.
- Sample: a subset of individuals selected from a larger population for study or investigation. Those included in the sample are termed “participants.”
- Generalizability : the ability to apply research findings from a sample to the broader target population, contingent on the sample being representative of that population.

For instance, if the advert for volunteers is published in the New York Times, this limits how much the study’s findings can be generalized to the whole population, because NYT readers may not represent the entire population in certain respects (e.g., politically, socio-economically).

## The Purpose of Sampling

We are interested in learning about large groups of people with something in common in psychological research. We call the group interested in studying our “target population.”

In some types of research, the target population might be as broad as all humans. Still, in other types of research, the target population might be a smaller group, such as teenagers, preschool children, or people who misuse drugs.

Studying every person in a target population is more or less impossible. Hence, psychologists select a sample or sub-group of the population that is likely to be representative of the target population we are interested in.

This is important because we want to generalize from the sample to the target population. The more representative the sample, the more confident the researcher can be that the results can be generalized to the target population.

One of the problems that can occur when selecting a sample from a target population is sampling bias. Sampling bias refers to situations where the sample does not reflect the characteristics of the target population.

Many psychology studies have a biased sample because they have used an opportunity sample that comprises university students as their participants (e.g., Asch ).

OK, so you’ve thought up this brilliant psychological study and designed it perfectly. But who will you try it out on, and how will you select your participants?

There are various sampling methods. The one chosen will depend on a number of factors (such as time, money, etc.).

## Random Sampling

Random sampling is a type of probability sampling where everyone in the entire target population has an equal chance of being selected.

This is similar to the national lottery. If the “population” is everyone who bought a lottery ticket, then everyone has an equal chance of winning the lottery (assuming they all have one ticket each).

Random samples require naming or numbering the target population and then using some raffle method to choose those to make up the sample. Random samples are the best method of selecting your sample from the population of interest.

- The advantages are that your sample should represent the target population and eliminate sampling bias.
- The disadvantage is that it is very difficult to achieve (i.e., time, effort, and money).

## Stratified Sampling

During stratified sampling , the researcher identifies the different types of people that make up the target population and works out the proportions needed for the sample to be representative.

A list is made of each variable (e.g., IQ, gender, etc.) that might have an effect on the research. For example, if we are interested in the money spent on books by undergraduates, then the main subject studied may be an important variable.

For example, students studying English Literature may spend more money on books than engineering students, so if we use a large percentage of English students or engineering students, our results will not be accurate.

We have to determine the relative percentage of each group at a university, e.g., Engineering 10%, Social Sciences 15%, English 20%, Sciences 25%, Languages 10%, Law 5%, and Medicine 15%. The sample must then contain all these groups in the same proportion as the target population (university students).

- The disadvantage of stratified sampling is that gathering such a sample would be extremely time-consuming and difficult to do. This method is rarely used in Psychology.
- However, the advantage is that the sample should be highly representative of the target population, and therefore we can generalize from the results obtained.

## Opportunity Sampling

Opportunity sampling is a method in which participants are chosen based on their ease of availability and proximity to the researcher, rather than using random or systematic criteria. It’s a type of convenience sampling .

An opportunity sample is obtained by asking members of the population of interest if they would participate in your research. An example would be selecting a sample of students from those coming out of the library.

- This is a quick and easy way of choosing participants (advantage)
- It may not provide a representative sample and could be biased (disadvantage).

## Systematic Sampling

Systematic sampling is a method where every nth individual is selected from a list or sequence to form a sample, ensuring even and regular intervals between chosen subjects.

Participants are systematically selected (i.e., orderly/logical) from the target population, like every nth participant on a list of names.

To take a systematic sample, you list all the population members and then decide upon a sample you would like. By dividing the number of people in the population by the number of people you want in your sample, you get a number we will call n.

If you take every nth name, you will get a systematic sample of the correct size. If, for example, you wanted to sample 150 children from a school of 1,500, you would take every 10th name.

- The advantage of this method is that it should provide a representative sample.

## Sample size

The sample size is a critical factor in determining the reliability and validity of a study’s findings. While increasing the sample size can enhance the generalizability of results, it’s also essential to balance practical considerations, such as resource constraints and diminishing returns from ever-larger samples.

## Reliability and Validity

Reliability refers to the consistency and reproducibility of research findings across different occasions, researchers, or instruments. A small sample size may lead to inconsistent results due to increased susceptibility to random error or the influence of outliers. In contrast, a larger sample minimizes these errors, promoting more reliable results.

Validity pertains to the accuracy and truthfulness of research findings. For a study to be valid, it should accurately measure what it intends to do. A small, unrepresentative sample can compromise external validity, meaning the results don’t generalize well to the larger population. A larger sample captures more variability, ensuring that specific subgroups or anomalies don’t overly influence results.

## Practical Considerations

Resource Constraints : Larger samples demand more time, money, and resources. Data collection becomes more extensive, data analysis more complex, and logistics more challenging.

Diminishing Returns : While increasing the sample size generally leads to improved accuracy and precision, there’s a point where adding more participants yields only marginal benefits. For instance, going from 50 to 500 participants might significantly boost a study’s robustness, but jumping from 10,000 to 10,500 might not offer a comparable advantage, especially considering the added costs.

- Skip to main content
- Skip to primary sidebar
- Skip to footer
- QuestionPro

- Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
- Resources Blog eBooks Survey Templates Case Studies Training Help center

Home Market Research

## Sampling Methods: Guide To All Types with Examples

Sampling is an essential part of any research project. The right sampling method can make or break the validity of your research, and it’s essential to choose the right method for your specific question. In this article, we’ll take a closer look at some of the most popular sampling methods and provide real-world examples of how they can be used to gather accurate and reliable data.

LEARN ABOUT: Research Process Steps

From simple random sampling to complex stratified sampling , we’ll explore each method’s pros, cons, and best practices. So, whether you’re a seasoned researcher or just starting your journey, this article is a must-read for anyone looking to master sampling methods. Let’s get started!

Content Index

## What is sampling?

Types of sampling: sampling methods, types of probability sampling with examples:, uses of probability sampling, types of non-probability sampling with examples, uses of non-probability sampling, how do you decide on the type of sampling to use, difference between probability sampling and non-probability sampling methods.

Sampling is a technique of selecting individual members or a subset of the population to make statistical inferences from them and estimate the characteristics of the whole population. Different sampling methods are widely used by researchers in market research so that they do not need to research the entire population to collect actionable insights.

It is also a time-convenient and cost-effective method and hence forms the basis of any research design . Sampling techniques can be used in research survey software for optimum derivation.

For example, suppose a drug manufacturer would like to research the adverse side effects of a drug on the country’s population. In that case, it is almost impossible to conduct a research study that involves everyone. In this case, the researcher decides on a sample of people from each demographic and then researches them, giving him/her indicative feedback on the drug’s behavior.

Learn more about Audience by QuestionPro

Sampling in market action research is of two types – probability sampling and non-probability sampling. Let’s take a closer look at these two methods of sampling.

- Probability sampling: Probability sampling is a sampling technique where a researcher selects a few criteria and chooses members of a population randomly. All the members have an equal opportunity to participate in the sample with this selection parameter.
- Non-probability sampling: In non-probability sampling, the researcher randomly chooses members for research. This sampling method is not a fixed or predefined selection process. This makes it difficult for all population elements to have equal opportunities to be included in a sample.

This blog discusses the various probability and non-probability sampling methods you can implement in any market research study.

LEARN ABOUT: Survey Sampling

Probability sampling is a technique in which researchers choose samples from a larger population based on the theory of probability. This sampling method considers every member of the population and forms samples based on a fixed process.

For example, in a population of 1000 members, every member will have a 1/1000 chance of being selected to be a part of a sample. Probability sampling eliminates sampling bias in the population and allows all members to be included in the sample.

There are four types of probability sampling techniques:

- Simple random sampling: One of the best probability sampling techniques that helps in saving time and resources is the Simple Random Sampling method. It is a reliable method of obtaining information where every single member of a population is chosen randomly, merely by chance. Each individual has the same probability of being chosen to be a part of a sample. For example, in an organization of 500 employees, if the HR team decides on conducting team-building activities, they would likely prefer picking chits out of a bowl. In this case, each of the 500 employees has an equal opportunity of being selected.
- Cluster sampling: Cluster sampling is a method where the researchers divide the entire population into sections or clusters representing a population. Clusters are identified and included in a sample based on demographic parameters like age, sex, location, etc. This makes it very simple for a survey creator to derive effective inferences from the feedback. For example, suppose the United States government wishes to evaluate the number of immigrants living in the Mainland US. In that case, they can divide it into clusters based on states such as California, Texas, Florida, Massachusetts, Colorado, Hawaii, etc. This way of conducting a survey will be more effective as the results will be organized into states and provide insightful immigration data.
- Systematic sampling: Researchers use the systematic sampling method to choose the sample members of a population at regular intervals. It requires selecting a starting point for the sample and sample size determination that can be repeated at regular intervals. This type of sampling method has a predefined range; hence, this sampling technique is the least time-consuming. For example, a researcher intends to collect a systematic sample of 500 people in a population of 5000. He/she numbers each element of the population from 1-5000 and will choose every 10th individual to be a part of the sample (Total population/ Sample Size = 5000/500 = 10).
- Stratified random sampling: Stratified random sampling is a method in which the researcher divides the population into smaller groups that don’t overlap but represent the entire population. While sampling, these groups can be organized, and then draw a sample from each group separately. For example, a researcher looking to analyze the characteristics of people belonging to different annual income divisions will create strata (groups) according to the annual family income. Eg – less than $20,000, $21,000 – $30,000, $31,000 to $40,000, $41,000 to $50,000, etc. By doing this, the researcher concludes the characteristics of people belonging to different income groups. Marketers can analyze which income groups to target and which ones to eliminate to create a roadmap that would bear fruitful results.

LEARN ABOUT: Purposive Sampling

There are multiple uses of probability sampling:

- Reduce Sample Bias: Using the probability sampling method, the research bias in the sample derived from a population is negligible to non-existent. The sample selection mainly depicts the researcher’s understanding and inference. Probability sampling leads to higher-quality data collection as the sample appropriately represents the population.
- Diverse Population: When the population is vast and diverse, it is essential to have adequate representation so that the data is not skewed toward one demographic . For example, suppose Square would like to understand the people that could make their point-of-sale devices. In that case, a survey conducted from a sample of people across the US from different industries and socio-economic backgrounds helps.
- Create an Accurate Sample: Probability sampling helps the researchers plan and create an accurate sample. This helps to obtain well-defined data.

The non-probability method is a sampling method that involves a collection of feedback based on a researcher or statistician’s sample selection capabilities and not on a fixed selection process. In most situations, the output of a survey conducted with a non-probable sample leads to skewed results, which may not represent the desired target population. But, there are situations, such as the preliminary stages of research or cost constraints for conducting research, where non-probability sampling will be much more useful than the other type.

Four types of non-probability sampling explain the purpose of this sampling method in a better manner:

- Convenience sampling: This method depends on the ease of access to subjects such as surveying customers at a mall or passers-by on a busy street. It is usually termed as convenience sampling because of the researcher’s ease of carrying it out and getting in touch with the subjects. Researchers have nearly no authority to select the sample elements, and it’s purely done based on proximity and not representativeness. This non-probability sampling method is used when there are time and cost limitations in collecting feedback. In situations with resource limitations, such as the initial stages of research, convenience sampling is used. For example, startups and NGOs usually conduct convenience sampling at a mall to distribute leaflets of upcoming events or promotion of a cause – they do that by standing at the mall entrance and giving out pamphlets randomly.
- Judgmental or purposive sampling: Judgmental or purposive samples are formed at the researcher’s discretion. Researchers purely consider the purpose of the study, along with the understanding of the target audience. For instance, when researchers want to understand the thought process of people interested in studying for their master’s degree. The selection criteria will be: “Are you interested in doing your masters in …?” and those who respond with a “No” are excluded from the sample.
- Snowball sampling: Snowball sampling is a sampling method that researchers apply when the subjects are difficult to trace. For example, surveying shelterless people or illegal immigrants will be extremely challenging. In such cases, using the snowball theory, researchers can track a few categories to interview and derive results. Researchers also implement this sampling method when the topic is highly sensitive and not openly discussed—for example, surveys to gather information about HIV Aids. Not many victims will readily respond to the questions. Still, researchers can contact people they might know or volunteers associated with the cause to get in touch with the victims and collect information.
- Quota sampling: In Quota sampling , members in this sampling technique selection happens based on a pre-set standard. In this case, as a sample is formed based on specific attributes, the created sample will have the same qualities found in the total population. It is a rapid method of collecting samples.

Non-probability sampling is used for the following:

- Create a hypothesis: Researchers use the non-probability sampling method to create an assumption when limited to no prior information is available. This method helps with the immediate return of data and builds a base for further research.
- Exploratory research: Researchers use this sampling technique widely when conducting qualitative research, pilot studies, or exploratory research .
- Budget and time constraints: The non-probability method when there are budget and time constraints, and some preliminary data must be collected. Since the survey design is not rigid, it is easier to pick respondents randomly and have them take the survey or questionnaire .

For any research, it is essential to choose a sampling method accurately to meet the goals of your study. The effectiveness of your sampling relies on various factors. Here are some steps expert researchers follow to decide the best sampling method.

- Jot down the research goals. Generally, it must be a combination of cost, precision, or accuracy.
- Identify the effective sampling techniques that might potentially achieve the research goals.
- Test each of these methods and examine whether they help achieve your goal.
- Select the method that works best for the research.

Unlock the power of accurate sampling!

We have looked at the different types of sampling methods above and their subtypes. To encapsulate the whole discussion, though, the significant differences between probability sampling methods and non-probability sampling methods are as below:

Now that we have learned how different sampling methods work and are widely used by researchers in market research so that they don’t need to research the entire population to collect actionable insights, let’s go over a tool that can help you manage these insights.

LEARN ABOUT: 12 Best Tools for Researchers

QuestionPro understands the need for an accurate, timely, and cost-effective method to select the proper sample; that’s why we bring QuestionPro Software, a set of tools that allow you to efficiently select your target audience , manage your insights in an organized, customizable repository and community management for post-survey feedback.

Don’t miss the chance to elevate the value of research.

FREE TRIAL LEARN MORE

## MORE LIKE THIS

## Unlocking Creativity With 10 Top Idea Management Software

Mar 23, 2024

## 20 Best Website Optimization Tools to Improve Your Website

Mar 22, 2024

## 15 Best Digital Customer Experience Software of 2024

## 15 Best Product Experience Software of 2024

Other categories.

- Academic Research
- Artificial Intelligence
- Assessments
- Brand Awareness
- Case Studies
- Communities
- Consumer Insights
- Customer effort score
- Customer Engagement
- Customer Experience
- Customer Loyalty
- Customer Research
- Customer Satisfaction
- Employee Benefits
- Employee Engagement
- Employee Retention
- Friday Five
- General Data Protection Regulation
- Insights Hub
- Life@QuestionPro
- Market Research
- Mobile diaries
- Mobile Surveys
- New Features
- Online Communities
- Question Types
- Questionnaire
- QuestionPro Products
- Release Notes
- Research Tools and Apps
- Revenue at Risk
- Survey Templates
- Training Tips
- Uncategorized
- Video Learning Series
- What’s Coming Up
- Workforce Intelligence

Principles of Social Research Methodology pp 415–426 Cite as

## Sampling Techniques for Qualitative Research

- Heather Douglas 4
- First Online: 27 October 2022

2308 Accesses

2 Citations

This chapter explains how to design suitable sampling strategies for qualitative research. The focus of this chapter is purposive (or theoretical) sampling to produce credible and trustworthy explanations of a phenomenon (a specific aspect of society). A specific research question (RQ) guides the methodology (the study design or approach ). It defines the participants, location, and actions to be used to answer the question. Qualitative studies use specific tools and techniques ( methods ) to sample people, organizations, or whatever is to be examined. The methodology guides the selection of tools and techniques for sampling, data analysis, quality assurance, etc. These all vary according to the purpose and design of the study and the RQ. In this chapter, a fake example is used to demonstrate how to apply your sampling strategy in a developing country.

- Phenomenon. Methodology. Research Question. Methods. Tools and Techniques. Purposive Sampling. Sampling Frame. Trustworthiness

This is a preview of subscription content, log in via an institution .

## Buying options

- Available as PDF
- Read on any device
- Instant download
- Own it forever
- Available as EPUB and PDF
- Compact, lightweight edition
- Dispatched in 3 to 5 business days
- Free shipping worldwide - see info
- Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Douglas, H. (2010). Divergent orientations in social entrepreneurship organisations. In K. Hockerts, J. Robinson, & J. Mair (Eds.), Values and opportunities in social entrepreneurship (pp. 71–95). Palgrave Macmillan.

Chapter Google Scholar

Douglas, H., Eti-Tofinga, B., & Singh, G. (2018a). Contextualising social enterprise in Fiji. Social Enterprise Journal, 14 (2), 208–224. https://doi.org/10.1108/SEJ-05-2017-0032

Article Google Scholar

Douglas, H., Eti-Tofinga, B., & Singh, G. (2018b). Hybrid organisations contributing to wellbeing in small Pacific island countries. Sustainability Accounting, Management and Policy Journal, 9 (4), 490–514. https://doi.org/10.1108/SAMPJ-08-2017-0081

Douglas, H., & Borbasi, S. (2009). Parental perspectives on disability: The story of Sam, Anna, and Marcus. Disabilities: Insights from across fields and around the world, 2 , 201–217.

Google Scholar

Douglas, H. (1999). Community transport in rural Queensland: Using community resources effectively in small communities. Paper presented at the 5th National Rural Health Conference, Adelaide, South Australia, pp. 14–17th March.

Douglas, H. (2006). Action, blastoff, chaos: ABC of successful youth participation. Child, Youth and Environments, 16 (1). Retrieved from http://www.colorado.edu/journals/cye

Douglas, H. (2007). Methodological sampling issues for researching new nonprofit organisations. Paper presented at the 52nd International Council for Small Business (ICSB) 13–15 June, Turku, Finland.

Draper, H., Wilson, S., Flanagan, S., & Ives, J. (2009). Offering payments, reimbursement and incentives to patients and family doctors to encourage participation in research. Family Practice, 26 (3), 231–238. https://doi.org/10.1093/fampra/cmp011

Puamua, P. Q. (1999). Understanding Fijian under-achievement: An integrated perspective. Directions, 21 (2), 100–112.

Download references

## Author information

Authors and affiliations.

The University of Queensland, The Royal Society of Queensland, Activation Australia, Brisbane, Australia

Heather Douglas

You can also search for this author in PubMed Google Scholar

## Corresponding author

Correspondence to Heather Douglas .

## Editor information

Editors and affiliations.

Centre for Family and Child Studies, Research Institute of Humanities and Social Sciences, University of Sharjah, Sharjah, United Arab Emirates

M. Rezaul Islam

Department of Development Studies, University of Dhaka, Dhaka, Bangladesh

Niaz Ahmed Khan

Department of Social Work, School of Humanities, University of Johannesburg, Johannesburg, South Africa

Rajendra Baikady

## Rights and permissions

Reprints and permissions

## Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

## About this chapter

Cite this chapter.

Douglas, H. (2022). Sampling Techniques for Qualitative Research. In: Islam, M.R., Khan, N.A., Baikady, R. (eds) Principles of Social Research Methodology. Springer, Singapore. https://doi.org/10.1007/978-981-19-5441-2_29

## Download citation

DOI : https://doi.org/10.1007/978-981-19-5441-2_29

Published : 27 October 2022

Publisher Name : Springer, Singapore

Print ISBN : 978-981-19-5219-7

Online ISBN : 978-981-19-5441-2

eBook Packages : Social Sciences

## Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

- Publish with us

Policies and ethics

- Find a journal
- Track your research

## Find Study Materials for

- Business Studies
- Combined Science
- Computer Science
- Engineering
- English Literature
- Environmental Science
- Human Geography
- Macroeconomics
- Microeconomics
- Social Studies
- Browse all subjects
- Read our Magazine

## Create Study Materials

Do you like free samples? I do too! Unfortunately, this is not an explanation of free samples, but it's an article about something that sounds quite similar - a sampling plan.

Explore our app and discover over 50 million learning materials for free.

- Sampling Plan
- Explanations
- StudySmarter AI
- Textbook Solutions
- Customer Driven Marketing Strategy
- Digital Marketing
- Integrated Marketing Communications
- International Marketing
- Introduction to Marketing
- Marketing Campaign Examples
- Behavioral Targeting
- Customer Relationship Management
- Ethics in Marketing
- Experimental Research
- Focus Groups
- Interview in Research
- Market Calculations
- Market Mapping
- Market Research
- Marketing Analytics
- Marketing Information System
- Marketing KPIs
- Methods of Market Research
- Multi level Marketing
- Neuromarketing
- Observational Research
- Online Focus Groups
- PED and YED
- Primary Market Research
- Research Instrument
- Secondary Market Research
- Survey Research
- Understanding Markets and Customers
- Marketing Management
- Strategic Marketing Planning

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Nie wieder prokastinieren mit unseren Lernerinnerungen.

This might not be a term you are very familiar with, but it is a significant part of marketing. We know how important research is for marketing. We need to know the target audience to plan a successful marketing campaign, and a sampling plan is essential to make it successful. Wondering how? Keep reading to find out!

## Sampling Plan Definition

Knowing the target audience is vital to understanding their needs and wants. Researchers need to study the population to draw conclusions. These conclusions will serve as a basis for constructing a suitable marketing campaign. But observing every person in the selected location is impractical and, at times, impossible. Therefore, researchers select a group of individuals representative of the population. A sampling plan is an outline based on which research is conducted.

A sampling plan outlines the individuals chosen to represent the target population under consideration for research purposes.

It is crucial to verify that the sampling plan is representative of all kinds of people to draw accurate conclusions.

## Sampling Plan Research

The sampling plan is an essential part of the implementation phase in market research - it is the first step of implementing market research.

Check out our explanation of market research to find out more.

Researchers decide the sampling unit, size, and procedure when creating a sampling plan.

Deciding the sampling unit involves defining the target population. The area of interest for the research may contain people that may be out of the scope of the research. Therefore, the researcher must first identify the type of people within the research's parameters.

The sample size will specify how many people from the sampling unit will be surveyed or studied. Usually, in realistic cases, the target population is colossal. Analyzing every single individual is an arduous task. Therefore, the researcher must decide which individuals should be considered and how many people to survey.

The sampling procedure decides how the sample size is chosen. Researchers can do this based on both probability sampling methods and non-probability sampling methods. We will talk about this in more detail in the following sections.

## Sampling Plan Types

The sampling plan mainly consists of two different types of methods - one based on probability methods and the other based on non-probability methods .

In the probability sampling method, the researcher lists a few criteria and then chooses people randomly from the population. In this method, all people of the population have an equal chance to be selected. The probability methods are further classified into:

1. Simple Random Sampling - as the name suggests, this type of sampling picks individuals randomly from the selection.

2. Cluster Sampling - the whole population gets divided into groups or clusters. Researchers then survey people from the selected clusters.

3. Systematic Sampling - researchers select individuals at a regular interval; for example, the researcher will select every 15th person on the list for interviews.

4. Stratified Sampling - researchers divide the group into smaller subgroups called strata based on their characteristics. Researchers then pick individuals at random from the strata.

Difference between cluster sampling and stratified sampling

In cluster sampling, all individuals are put into different groups, and all people in the selected groups are studied.

In stratified sampling, all the individuals are put into different groups, and some people from all groups are surveyed.

A non-probability method involves choosing people at random without any defined criteria. This means that not everybody has an equal chance of being selected for the survey. N on-probability techniques can be further classified into:

1. Convenience Sampling - this depends on the ease of accessing a person of interest.

2. Judgemental Sampling - also known as purposive sampling, includes selecting people with a particular characteristic that supports the scope of the research.

3. Snowball Sampling - used when trying to find people with traits that are difficult to trace. In such cases, the researcher would find one or two people with the traits and then ask them to refer to people with similar characteristics.

4. Quota Sampling - this involves collecting information from a homogenous group.

## Steps of a Sample Plan

A sampling plan helps researchers collect data and get results quicker, as only a group of individuals is selected to be studied instead of the whole population. But how is a sampling plan conducted? What are the steps of a sample plan?

A sampling plan study consists of 5 main steps:

1. Sample Definition - this step involves identifying the research goals or what the research is trying to achieve. Defining the sample will help the researcher identify what they have to look for in the sample.

2. Sample Selection - after the sample definition, researchers now have to obtain a sample frame. The sample frame will give the researchers a list of the population from which the researcher chooses people to sample.

3. Sample Size Determination - the sample size is the number of individuals that will be considered while determining the sampling plan. This step defines the number of individuals that the researcher will survey.

4. Sample Design - in this step, the samples are picked from the population. Researchers can select individuals based on probability or non-probability methods.

5. Sample Assessment - this step ensures that the samples chosen are representative enough of the population and ensures quality data collection.

After these processes are finalized, researchers carry forward with the rest of the research, such as drawing conclusions that form a basis for the marketing campaign.

Probability sampling methods are more complex, costly, and time-consuming than non-probability methods.

## Sampling Plans Example

Different methods of sampling plans help to yield different types of data. The sampling plan will depend on the company's research goals and limitations. Given below are a few examples of companies that use different types of sampling plans:

1. Simple Random Sampling - A district manager wants to evaluate employee satisfaction at a store. Now, he would go to the store, pick a few employees randomly, and ask them about their satisfaction. Every employee has an equal chance of being selected by the district manager for the survey.

2. Cluster Sampling - A reputed private school is planning to launch in a different city. To gain a better insight into the city, they divided the population based on families with school-aged kids and people with high incomes. These insights will help them decide if starting a branch in that particular city would be worth it or not.

3. Systematic Sampling - A supermarket with many branches decides to reallocate its staff to improve efficiency. The manager decides that every third person, chosen per their employee number, would be transferred to a different location.

4. Stratified Sampling - A research startup is trying to understand people's sleep patterns based on different age groups. Therefore, the whole sampling unit gets divided into different age groups (or strata), such as 0-3 months, 4-12 months, 1-2 years, 3-5 years, 6-12 years, and so on. Some people from all the groups are studied.

5. Convenience Sampling - An NGO is trying to get people to sign up for a "street-clean" program as part of the Earth Day campaign. They have stationed themselves on the sidewalks of a busy shopping street, and are approaching people who pass them by to try and pursue them to join the program.

6. Judgemental Sampling - A real estate company is trying to determine how the rental price hike affects people. To find the answer to this question, they would only have to consider people that live in rented houses, meaning that people who own a home would be excluded from this survey.

7. Snowball Sampling - A pharmaceutical company is trying to get a list of patients with leukemia. As the company cannot go to hospitals to ask for patients' information, they would first find a couple of patients with the illness and then ask them to refer patients with the same illness.

8. Quota Sampling - Recruiters that want to hire employees with a degree from a particular school will group them into a separate subgroup. This type of selection is called quota selection.

## Sampling plan - Key takeaways

- During a sampling plan in research, the sampling unit, the sampling size, and the sampling procedure are determined.
- The sample size will specify how many people from the sampling unit will be surveyed or studied.
- The sampling procedure decides how researchers will select the sample size.
- The methods of probability sampling include simple random, cluster, systematic, and stratified sampling.
- The non-probability sampling plan methods include convenience, judgemental, snowball, and quota sampling.
- Sample definition, sample selection, sample size determination, sample design, and sample assessment are the steps of a sample plan.

## Frequently Asked Questions about Sampling Plan

--> what is a sample plan in marketing .

Researchers need to study the population to draw conclusions. But observing every person in the selected location is impractical and, at times, impossible. Therefore, researchers select a group of individuals representative of the population. A sampling plan outlines the individuals chosen to represent the target population under consideration for research purposes.

## --> What is a sampling plan and its types?

The sampling plan mainly consists of two different types of methods - one based on probability methods and the other based on non-probability methods. Probability sampling methods include simple random, cluster, systematic, and stratified sampling. The non-probability sampling methods include convenience, judgemental, snowball, and quota sampling.

## --> Why is the sampling plan important?

The sampling plan is an essential part of the implementation phase in market research - it is the first step of implementing market research. Observing every person in the selected location is impractical. Therefore, researchers select a group of individuals representative of the population called the sampling unit. This is outlined in the sampling plan.

## --> What should a marketing plan include?

A good marketing plan should include the target market, the unique selling proposition, SWOT analysis, marketing strategies, the budget, and the duration of the research.

## --> What are the components of a sampling plan?

The sample definition, sample selection, sample size determination, sample design, and sample assessment are the components of a sampling plan.

## Test your knowledge with multiple choice flashcards

The sampling plan is a part of the _________ phase.

The ___________ involves deciding the target population.

The sample size

Your score:

## Join the StudySmarter App and learn efficiently with millions of flashcards and more!

Learn with 18 sampling plan flashcards in the free studysmarter app.

Already have an account? Log in

Define sampling plan.

A sampling plan outlines the individuals chosen to represent the target population under consideration for research purposes.

During a sampling plan in research, _____________, ___________, and the sampling procedure are decided.

During a sampling plan in research, the sampling unit , the sampling size , and the sampling procedure are decided.

The ___________ involves deciding the target population.

sampling unit

The sample size

will specify how many people from the sampling unit will be surveyed or studied.

What are the two types of sampling plans?

Probability and non-probability sampling .

- Marketing Information Management

of the users don't pass the Sampling Plan quiz! Will you pass the quiz?

How would you like to learn this content?

Free marketing cheat sheet!

Everything you need to know on . A perfect summary so you can easily remember everything.

## Join over 22 million students in learning with our StudySmarter App

The first learning app that truly has everything you need to ace your exams in one place

- Flashcards & Quizzes
- AI Study Assistant
- Study Planner
- Smart Note-Taking

Sign up to highlight and take notes. It’s 100% free.

## This is still free to read, it's not a paywall.

You need to register to keep reading, create a free account to save this explanation..

Save explanations to your personalised space and access them anytime, anywhere!

By signing up, you agree to the Terms and Conditions and the Privacy Policy of StudySmarter.

## Entdecke Lernmaterial in der StudySmarter-App

## Privacy Overview

Marketing91

## What is Sampling plan and its application in Market research?

June 12, 2023 | By Hitesh Bhasin | Filed Under: Marketing

Once you are ready with your market research plan, then comes the implementation part. And the first step of implementation is determining your sampling plan.

A sampling plan basically comprises of different sample units or sample population whom you are going to contact to collect market research data . This sampling unit is a representative of the total population, though it might be a fraction of the total population.

In simple language, if you have 1 lakh customers, you cannot conduct an interview of 1 lakh customers. Instead, you take a sample population of 1000 customers (1 % of your total population). This sample gives you primary data and this is assumed to suit 99% of your customers. Naturally, the 1% whom you have interviewed need to be important to your company . And hence the need of a sampling plan.

There are four steps to making a Sampling plan for Market research .

Table of Contents

## 1) Define the sample population

More commonly known as the Sample unit, it comprises of the type of customers / people that you want to contact for your market research study. To determine the sample population, first you need to decide what the ideal customer for the firm looks like.

If yours is a restaurant, you will like your sample population to comprise of people who have visited at least 5 times to your restaurant. They will be a fair judge of things you can improve on. Or on the other hand, you can interview people who are just walking in, if you want to improve the ambiance of the restaurant and note down their ideas .

Overall, you need to understand that you cannot interview 100% of your customers. Hence the Sample population will be a small population which will be extrapolated later on. So this step is important and you need to choose your customers with care. They should be a strong representative of the type of business you want to become.

## 2) Define the size of the population

In the above example of a restaurant, the market research can have 1 of two objectives

- To find out what makes old customers happy
- To improve the ambiance of the restaurant which can be suggested by new people entering the restaurant.

In the above example, in Case A, you need to approach a hand picked customer base who have visited your restaurant time and time again and you need to implement what they say. This customer base can be anywhere between 50 to 200 of your most valuable customers.

In case B, where you want to improve the ambiance of the restaurant, every new comer who is new to the restaurant will have a different suggestion. And the research will be endless, so you can put a questionnaire right at the table for things the customer will like to improve.

Thus as you can see, the sampling size and the size of the population in the sampling plan changes as per the objective of the market research . If the objective is an ongoing objective to make something better all the time, then the population will be large. If it is something you need to determine within a given time period, then the population will be less but it should be important.

Once your Sampling size is decided you can decide on the contact method for your sampling plan.

## 3) What type of contact options are you using

There are many options in Market research which can be used time and time again to carry out primary data collection . These options include questionnaires, mailers, telephonic interviews and whatnot.

Your contact options depend on your sampling size and your sampling units. If your customers are the busy types and there are a handful of them, then personal interviews with an appointment will serve you perfectly. However, if your customers keep coming and there is a large population of them, then it is manually not possible to touch each and every one personally.

So your sampling plan and its contact method will depend on the size of the population you are going to contact. Mind you, large companies still prefer contacting their customers personally to get personal feedback from them. But smaller companies have various options such as telephonic interview or Forms and questionnaires or mailers to get the work done smoothly .

## 4) Form a sampling frame

So once you have the sampling units, the sample size and the population you are going to contact, you decide on the contact plan. You need to put it on paper whom you are going to contact when. A market research study might take a single day (in which case you dont need a sampling frame) or it may take months (in which case you definitely need a sampling frame).

Think of a sampling frame as an organizer. If you are too busy, then you are better off with an organizer in your sampling plan. However, if the work is going to get done quickly, then you dont need the sampling frame at all. If you expect facing any problems or questions when the process starts, then you can prepare the sampling frame to answer such questions. It can be the FAQ of your market research plan.

How are you going to analyse the results? – In the sampling plan, you need to decide on the analysis part as well. There are two ways to analyse the results of a Market research study

a) Probabilistic sampling – Most likely to be used for quantitative research, it can pin point sampling errors and therefore gives a correct data. However, it is heavy on time consumed for analysis. It uses mainly an objective questionnaire with proper “Yes / No” type questions and statistical answers.

b) Non probability sampling – It is used mainly for qualitative research wherein you can marketing and customer insights as it is not data based but more based on the quality of the answers. This is more of a subjective questionnaire then objective.

The type of analysis you are going to carry out (probability or non probability) has to be determined in the sampling plan because you need to contact the customers accordingly. Do note, that this has to be incorporated in your market research study so you need to decide your population accordingly as well.

Overall, once you are done with the 5 steps of sampling plan given above, then you are done with the following process

- Who are the customers you are going to contact
- How many customers you are going to contact
- How will you contact the customers
- What is the time frame or the contact frame for getting in touch with customers
- What is the analysis method you are going to use later on.

Once you do the above, you are ready with your sampling plan.

Here is a video by Marketing91 on Sampling.

Liked this post? Check out the complete series on Market research

## Related posts:

- Intensive distribution and its application in business
- Usage based segmentation and its application in Marketing
- Geographical pricing and its application in Marketing
- Odd Even Pricing and its application in Marketing
- Cold Canvassing and its Application in Marketing
- What is Survey Research? Objectives, Sampling Process, Types and Advantages
- What is Product Sampling? Types, Methods & Tips
- Quota Sampling – Definition, Meaning, Advantages, Disadvantages
- Convenience Sampling | How to analyze a convenience sample?
- Sampling and Sample Design – Types and Steps Involved

## About Hitesh Bhasin

Hitesh Bhasin is the CEO of Marketing91 and has over a decade of experience in the marketing field. He is an accomplished author of thousands of insightful articles, including in-depth analyses of brands and companies. Holding an MBA in Marketing, Hitesh manages several offline ventures, where he applies all the concepts of Marketing that he writes about.

## All Knowledge Banks (Hub Pages)

- Marketing Hub
- Management Hub
- Marketing Strategy
- Advertising Hub
- Branding Hub
- Market Research
- Small Business Marketing
- Sales and Selling
- Marketing Careers
- Internet Marketing
- Business Model of Brands
- Marketing Mix of Brands
- Brand Competitors
- Strategy of Brands
- SWOT of Brands
- Customer Management
- Top 10 Lists

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

- About Marketing91
- Marketing91 Team
- Privacy Policy
- Cookie Policy
- Terms of Use
- Editorial Policy

WE WRITE ON

- Digital Marketing
- Human Resources
- Operations Management
- Marketing News
- Marketing mix's
- Competitors

- Skip to main content
- Skip to primary sidebar

Business Jargons

A Business Encyclopedia

## Sampling Plan

Definition : A sampling plan provides an outline based on which the researcher performs research. Also, it provides a sketch required for ensuring that the data gathered is a representation of the defined target population. It is widely used in research studies. A researcher designs a sampling plan to prove that the data collected is valid and reliable for the concerned population.

It explains which category the researcher chooses for the survey. Also, it states the right sample size. Additionally, it expresses how the researcher has to be selected out of the population.

## Issues Addressed by Sampling Plan

A sampling plan is the base from which the research starts. It includes the following three major decisions:

## Sampling Unit

The researcher decides what the sampling unit should be. It involves choosing the category of the population to be surveyed. It defines the specific target population.

Example: In the Banking industry, the researcher decides: what should the sampling unit include. It may cover current account holders, saving account holders, or both.

The researcher takes such decisions at the time of designing the sampling frame. They do so to give all the elements of the target population an equal chance of getting included in the sample.

## Sampling unit

The researcher has to determine the sample size. This means how many objects in the sample the researcher will survey. Generally, “the larger the sample size, the more is the reliability”. Therefore, researchers try to cover as many samples as possible.

## Sampling Procedure

Which method should the researcher use to perform sampling ? For that, he must ensure that all the objects of the population have a fair and equal change of selection. Generally, researchers use probability sampling for determining the objects for selection. This is because probability sampling represents the sample more accurately.

In this regard, we are going to learn the two sampling methods :

## Probability Sampling

- Simple Random Sampling : In this, every item of the sample has an equal chance of getting selected.
- Stratified Sampling : Here, the researcher divides the population into mutually exclusive groups, viz., age group. After that, the researcher will choose the elements randomly from each group.
- Cluster Sampling : Another name for cluster sampling is area sampling. In this, the researcher divides the population into existing groups or clusters. After that he chooses a sample of clusters on a random basis from the population.

However, the researcher usually finds probability sampling costly and time-consuming. In such a case, he can make use of non-probability sampling. It is a sampling by means of choice.

## Non-Probability Sampling

- Convenience Sampling : Here, the researcher selects the easiest and most accessible population member.
- Judgment Sampling : Here, the researcher selects those members of the population whom he thinks that will contribute accurate information.
- Quota sampling : Here, the researcher interviews the fixed number of members of each category.

Thus, a researcher can select any kind of sample as per his convenience, subject to it fulfilling the purpose for which research takes place.

## Steps involving Sampling Plan

An ideal sampling plan covers the following steps:

## Define the target population

First of all, the researcher needs to decide and identify the group or batch for the study. The target population must be alloted identity by using descriptors. These descriptors indicate the characteristics of the elements. This will depict the target population frame.

## Choose the data collection method

The researcher must choose a method for collecting the necessary data from the target population elements. For this, he uses information problem definition, data requirements and set research objectives.

## Find out the sampling frames required

Once the researcher decides whom or what should be evaluated. The next step is to bring together a list of eligible sampling units. This list must have enough information about each prospective sampling unit. This allows the researcher can communicate with them. An incomplete sampling frame decreases the possibility of drawing a representative sample.

## Pick the suitable sampling method

The researcher needs to pick any of the two types of sampling methods. The methods are probability and non-probability sampling. Usually, probability sampling yields better results. Also, it provides valid information about the target population’s criteria.

## Ascertain necessary sample sizes and contract rates

The researcher must consider how accurate the sample estimates must be. Also, he needs to take into account how much time and money are available to collect data. To decide the right size of the sample, the researcher has to make the following decisions:

- Variability of population characteristics that is undergoing investigation.
- The confidence level is desired in the estimates.
- Degree of precision needed to estimate the population characteristic.

## Design an operating plan for choosing the sample units

The researcher will design the actual procedures to use. He must include all the prospective respondents who form part of the sample.

## Execute the operational plan

Carrying out data collection activities. This may involve actually talking to the prospective respondents by way of a telephone interview.

## A word from Business Jargons

A sampling plan states the procedure for determining when the group under study is to be accepted or rejected. Further, if the sample gets rejected, the researcher must integrate corrective measures. He should do so after the complete inspection. After that, replacement of defective items with good ones takes place. We call this process a rectifying inspection.

## Related terms:

- Stratified Sampling
- Sampling Methods
- Systematic Sampling
- Sampling Error
- Sampling Distribution of Proportion

## Reader Interactions

nimisha says

July 27, 2017 at 9:18 pm

The content was helpful

## Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

- Publications
- Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

- Advanced Search
- Journal List
- An Bras Dermatol
- v.91(3); May-Jun 2016

## Sampling: how to select participants in my research study? *

Jeovany martínez-mesa.

1 Faculdade Meridional (IMED) - Passo Fundo (RS), Brazil.

## David Alejandro González-Chica

2 University of Adelaide - Adelaide, Australia.

## Rodrigo Pereira Duquia

3 Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) - Porto Alegre (RS), Brazil.

## Renan Rangel Bonamigo

João luiz bastos.

4 Universidade Federal de Santa Catarina (UFSC) - Florianópolis (RS), Brazil.

In this paper, the basic elements related to the selection of participants for a health research are discussed. Sample representativeness, sample frame, types of sampling, as well as the impact that non-respondents may have on results of a study are described. The whole discussion is supported by practical examples to facilitate the reader's understanding.

To introduce readers to issues related to sampling.

## INTRODUCTION

The essential topics related to the selection of participants for a health research are: 1) whether to work with samples or include the whole reference population in the study (census); 2) the sample basis; 3) the sampling process and 4) the potential effects nonrespondents might have on study results. We will refer to each of these aspects with theoretical and practical examples for better understanding in the sections that follow.

## TO SAMPLE OR NOT TO SAMPLE

In a previous paper, we discussed the necessary parameters on which to estimate the sample size. 1 We define sample as a finite part or subset of participants drawn from the target population. In turn, the target population corresponds to the entire set of subjects whose characteristics are of interest to the research team. Based on results obtained from a sample, researchers may draw their conclusions about the target population with a certain level of confidence, following a process called statistical inference. When the sample contains fewer individuals than the minimum necessary, but the representativeness is preserved, statistical inference may be compromised in terms of precision (prevalence studies) and/or statistical power to detect the associations of interest. 1 On the other hand, samples without representativeness may not be a reliable source to draw conclusions about the reference population (i.e., statistical inference is not deemed possible), even if the sample size reaches the required number of participants. Lack of representativeness can occur as a result of flawed selection procedures (sampling bias) or when the probability of refusal/non-participation in the study is related to the object of research (nonresponse bias). 1 , 2

Although most studies are performed using samples, whether or not they represent any target population, census-based estimates should be preferred whenever possible. 3 , 4 For instance, if all cases of melanoma are available on a national or regional database, and information on the potential risk factors are also available, it would be preferable to conduct a census instead of investigating a sample.

However, there are several theoretical and practical reasons that prevent us from carrying out census-based surveys, including:

- Ethical issues: it is unethical to include a greater number of individuals than that effectively required;
- Budgetary limitations: the high costs of a census survey often limits its use as a strategy to select participants for a study;
- Logistics: censuses often impose great challenges in terms of required staff, equipment, etc. to conduct the study;
- Time restrictions: the amount of time needed to plan and conduct a census-based survey may be excessive; and,
- Unknown target population size: if the study objective is to investigate the presence of premalignant skin lesions in illicit drugs users, lack of information on all existing users makes it impossible to conduct a census-based study.

All these reasons explain why samples are more frequently used. However, researchers must be aware that sample results can be affected by the random error (or sampling error). 3 To exemplify this concept, we will consider a research study aiming to estimate the prevalence of premalignant skin lesions (outcome) among individuals >18 years residing in a specific city (target population). The city has a total population of 4,000 adults, but the investigator decided to collect data on a representative sample of 400 participants, detecting an 8% prevalence of premalignant skin lesions. A week later, the researcher selects another sample of 400 participants from the same target population to confirm the results, but this time observes a 12% prevalence of premalignant skin lesions. Based on these findings, is it possible to assume that the prevalence of lesions increased from the first to the second week? The answer is probably not. Each time we select a new sample, it is very likely to obtain a different result. These fluctuations are attributed to the "random error." They occur because individuals composing different samples are not the same, even though they were selected from the same target population. Therefore, the parameters of interest may vary randomly from one sample to another. Despite this fluctuation, if it were possible to obtain 100 different samples of the same population, approximately 95 of them would provide prevalence estimates very close to the real estimate in the target population - the value that we would observe if we investigated all the 4,000 adults residing in the city. Thus, during the sample size estimation the investigator must specify in advance the highest or maximum acceptable random error value in the study. Most population-based studies use a random error ranging from 2 to 5 percentage points. Nevertheless, the researcher should be aware that the smaller the random error considered in the study, the larger the required sample size. 1

## SAMPLE FRAME

The sample frame is the group of individuals that can be selected from the target population given the sampling process used in the study. For example, to identify cases of cutaneous melanoma the researcher may consider to utilize as sample frame the national cancer registry system or the anatomopathological records of skin biopsies. Given that the sample may represent only a portion of the target population, the researcher needs to examine carefully whether the selected sample frame fits the study objectives or hypotheses, and especially if there are strategies to overcome the sample frame limitations (see Chart 1 for examples and possible limitations).

Examples of sample frames and potential limitations as regards representativeness

Sampling can be defined as the process through which individuals or sampling units are selected from the sample frame. The sampling strategy needs to be specified in advance, given that the sampling method may affect the sample size estimation. 1 , 5 Without a rigorous sampling plan the estimates derived from the study may be biased (selection bias). 3

## TYPES OF SAMPLING

In figure 1 , we depict a summary of the main sampling types. There are two major sampling types: probabilistic and nonprobabilistic.

Sampling types used in scientific studies

## NONPROBABILISTIC SAMPLING

In the context of nonprobabilistic sampling, the likelihood of selecting some individuals from the target population is null. This type of sampling does not render a representative sample; therefore, the observed results are usually not generalizable to the target population. Still, unrepresentative samples may be useful for some specific research objectives, and may help answer particular research questions, as well as contribute to the generation of new hypotheses. 4 The different types of nonprobabilistic sampling are detailed below.

Convenience sampling : the participants are consecutively selected in order of apperance according to their convenient accessibility (also known as consecutive sampling). The sampling process comes to an end when the total amount of participants (sample saturation) and/or the time limit (time saturation) are reached. Randomized clinical trials are usually based on convenience sampling. After sampling, participants are usually randomly allocated to the intervention or control group (randomization). 3 Although randomization is a probabilistic process to obtain two comparable groups (treatment and control), the samples used in these studies are generally not representative of the target population.

Purposive sampling: this is used when a diverse sample is necessary or the opinion of experts in a particular field is the topic of interest. This technique was used in the study by Roubille et al, in which recommendations for the treatment of comorbidities in patients with rheumatoid arthritis, psoriasis, and psoriatic arthritis were made based on the opinion of a group of experts. 6

Quota sampling: according to this sampling technique, the population is first classified by characteristics such as gender, age, etc. Subsequently, sampling units are selected to complete each quota. For example, in the study by Larkin et al., the combination of vemurafenib and cobimetinib versus placebo was tested in patients with locally-advanced melanoma, stage IIIC or IV, with BRAF mutation. 7 The study recruited 495 patients from 135 health centers located in several countries. In this type of study, each center has a "quota" of patients.

"Snowball" sampling : in this case, the researcher selects an initial group of individuals. Then, these participants indicate other potential members with similar characteristics to take part in the study. This is frequently used in studies investigating special populations, for example, those including illicit drugs users, as was the case of the study by Gonçalves et al, which assessed 27 users of cocaine and crack in combination with marijuana. 8

## PROBABILISTIC SAMPLING

In the context of probabilistic sampling, all units of the target population have a nonzero probability to take part in the study. If all participants are equally likely to be selected in the study, equiprobabilistic sampling is being used, and the odds of being selected by the research team may be expressed by the formula: P=1/N, where P equals the probability of taking part in the study and N corresponds to the size of the target population. The main types of probabilistic sampling are described below.

Simple random sampling: in this case, we have a full list of sample units or participants (sample basis), and we randomly select individuals using a table of random numbers. An example is the study by Pimenta et al, in which the authors obtained a listing from the Health Department of all elderly enrolled in the Family Health Strategy and, by simple random sampling, selected a sample of 449 participants. 9

Systematic random sampling: in this case, participants are selected from fixed intervals previously defined from a ranked list of participants. For example, in the study of Kelbore et al, children who were assisted at the Pediatric Dermatology Service were selected to evaluate factors associated with atopic dermatitis, selecting always the second child by consulting order. 10

Stratified sampling: in this type of sampling, the target population is first divided into separate strata. Then, samples are selected within each stratum, either through simple or systematic sampling. The total number of individuals to be selected in each stratum can be fixed or proportional to the size of each stratum. Each individual may be equally likely to be selected to participate in the study. However, the fixed method usually involves the use of sampling weights in the statistical analysis (inverse of the probability of selection or 1/P). An example is the study conducted in South Australia to investigate factors associated with vitamin D deficiency in preschool children. Using the national census as the sample frame, households were randomly selected in each stratum and all children in the age group of interest identified in the selected houses were investigated. 11

Cluster sampling: in this type of probabilistic sampling, groups such as health facilities, schools, etc., are sampled. In the above-mentioned study, the selection of households is an example of cluster sampling. 11

Complex or multi-stage sampling: This probabilistic sampling method combines different strategies in the selection of the sample units. An example is the study of Duquia et al. to assess the prevalence and factors associated with the use of sunscreen in adults. The sampling process included two stages. 12 Using the 2000 Brazilian demographic census as sampling frame, all 404 census tracts from Pelotas (Southern Brazil) were listed in ascending order of family income. A sample of 120 tracts were systematically selected (first sampling stage units). In the second stage, 12 households in each of these census tract (second sampling stage units) were systematically drawn. All adult residents in these households were included in the study (third sampling stage units). All these stages have to be considered in the statistical analysis to provide correct estimates.

## NONRESPONDENTS

Frequently, sample sizes are increased by 10% to compensate for potential nonresponses (refusals/losses). 1 Let us imagine that in a study to assess the prevalence of premalignant skin lesions there is a higher percentage of nonrespondents among men (10%) than among women (1%). If the highest percentage of nonresponse occurs because these men are not at home during the scheduled visits, and these participants are more likely to be exposed to the sun, the number of skin lesions will be underestimated. For this reason, it is strongly recommended to collect and describe some basic characteristics of nonrespondents (sex, age, etc.) so they can be compared to the respondents to evaluate whether the results may have been affected by this systematic error.

Often, in study protocols, refusal to participate or sign the informed consent is considered an "exclusion criteria". However, this is not correct, as these individuals are eligible for the study and need to be reported as "nonrespondents".

## SAMPLING METHOD ACCORDING TO THE TYPE OF STUDY

In general, clinical trials aim to obtain a homogeneous sample which is not necessarily representative of any target population. Clinical trials often recruit those participants who are most likely to benefit from the intervention. 3 Thus, the more strict criteria for inclusion and exclusion of subjects in clinical trials often make it difficult to locate participants: after verification of the eligibility criteria, just one out of ten possible candidates will enter the study. Therefore, clinical trials usually show limitations to generalize the results to the entire population of patients with the disease, but only to those with similar characteristics to the sample included in the study. These peculiarities in clinical trials justify the necessity of conducting a multicenter and/or global studiesto accelerate the recruitment rate and to reach, in a shorter time, the number of patients required for the study. 13

In turn, in observational studies to build a solid sampling plan is important because of the great heterogeneity usually observed in the target population. Therefore, this heterogeneity has to be also reflected in the sample. A cross-sectional population-based study aiming to assess disease estimates or identify risk factors often uses complex probabilistic sampling, because the sample representativeness is crucial. However, in a case-control study, we face the challenge of selecting two different samples for the same study. One sample is formed by the cases, which are identified based on the diagnosis of the disease of interest. The other consists of controls, which need to be representative of the population that originated the cases. Improper selection of control individuals may introduce selection bias in the results. Thus, the concern with representativeness in this type of study is established based on the relationship between cases and controls (comparability).

In cohort studies, individuals are recruited based on the exposure (exposed and unexposed subjects), and they are followed over time to evaluate the occurrence of the outcome of interest. At baseline, the sample can be selected from a representative sample (population-based cohort studies) or a non-representative sample. However, in the successive follow-ups of the cohort member, study participants must be a representative sample of those included in the baseline. 14 , 15 In this type of study, losses over time may cause follow-up bias.

Researchers need to decide during the planning stage of the study if they will work with the entire target population or a sample. Working with a sample involves different steps, including sample size estimation, identification of the sample frame, and selection of the sampling method to be adopted.

Financial Support: None.

* Study performed at Faculdade Meridional - Escola de Medicina (IMED) - Passo Fundo (RS), Brazil.

## Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

- Knowledge Base

Methodology

- What Is a Research Design | Types, Guide & Examples

## What Is a Research Design | Types, Guide & Examples

Published on June 7, 2021 by Shona McCombes . Revised on November 20, 2023 by Pritha Bhandari.

A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about:

- Your overall research objectives and approach
- Whether you’ll rely on primary research or secondary research
- Your sampling methods or criteria for selecting subjects
- Your data collection methods
- The procedures you’ll follow to collect data
- Your data analysis methods

A well-planned research design helps ensure that your methods match your research objectives and that you use the right kind of analysis for your data.

## Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, other interesting articles, frequently asked questions about research design.

- Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities—start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed-methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

## Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

- How much time do you have to collect data and write up the research?
- Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
- Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
- Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

## Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

- Academic style
- Vague sentences
- Style consistency

See an example

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

## Types of quantitative research designs

Quantitative designs can be split into four main types.

- Experimental and quasi-experimental designs allow you to test cause-and-effect relationships
- Descriptive and correlational designs allow you to measure variables and describe relationships between them.

With descriptive and correlational designs, you can get a clear picture of characteristics, trends and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

## Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analyzing the data.

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

## Defining the population

A population can be made up of anything you want to study—plants, animals, organizations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

- Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalize your results to the population as a whole.

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

## Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study , your aim is to deeply understand a specific context, not to generalize to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question .

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

## Survey methods

Surveys allow you to collect data about opinions, behaviors, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews .

## Observation methods

Observational studies allow you to collect data unobtrusively, observing characteristics, behaviors or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

## Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what kinds of data collection methods they used.

## Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected—for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are high in reliability and validity.

## Operationalization

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalization means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in—for example, questionnaires or inventories whose reliability and validity has already been established.

## Reliability and validity

Reliability means your results can be consistently reproduced, while validity means that you’re actually measuring the concept you’re interested in.

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

## Sampling procedures

As well as choosing an appropriate sampling method , you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

- How many participants do you need for an adequate sample size?
- What inclusion and exclusion criteria will you use to identify eligible participants?
- How will you contact your sample—by mail, online, by phone, or in person?

If you’re using a probability sampling method , it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method , how will you avoid research bias and ensure a representative sample?

## Data management

It’s also important to create a data management plan for organizing and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymize and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well-organized will save time when it comes to analyzing it. It can also help other researchers validate and add to your findings (high replicability ).

On its own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyze the data.

## Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarize your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarize your sample data in terms of:

- The distribution of the data (e.g., the frequency of each score on a test)
- The central tendency of the data (e.g., the mean to describe the average score)
- The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

- Make estimates about the population based on your sample data.
- Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

## Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

There are many other ways of analyzing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

- Simple random sampling
- Stratified sampling
- Cluster sampling
- Likert scales
- Reproducibility

Statistics

- Null hypothesis
- Statistical power
- Probability distribution
- Effect size
- Poisson distribution

Research bias

- Optimism bias
- Cognitive bias
- Implicit bias
- Hawthorne effect
- Anchoring bias
- Explicit bias

A research design is a strategy for answering your research question . It defines your overall approach and determines how you will collect and analyze data.

A well-planned research design helps ensure that your methods match your research aims, that you collect high-quality data, and that you use the right kind of analysis to answer your questions, utilizing credible sources . This allows you to draw valid , trustworthy conclusions.

Quantitative research designs can be divided into two main categories:

- Correlational and descriptive designs are used to investigate characteristics, averages, trends, and associations between variables.
- Experimental and quasi-experimental designs are used to test causal relationships .

Qualitative research designs tend to be more flexible. Common types of qualitative design include case study , ethnography , and grounded theory designs.

The priorities of a research design can vary depending on the field, but you usually have to specify:

- Your research questions and/or hypotheses
- Your overall approach (e.g., qualitative or quantitative )
- The type of design you’re using (e.g., a survey , experiment , or case study )
- Your data collection methods (e.g., questionnaires , observations)
- Your data collection procedures (e.g., operationalization , timing and data management)
- Your data analysis methods (e.g., statistical tests or thematic analysis )

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

A research project is an academic, scientific, or professional undertaking to answer a research question . Research projects can take many forms, such as qualitative or quantitative , descriptive , longitudinal , experimental , or correlational . What kind of research approach you choose will depend on your topic.

## Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). What Is a Research Design | Types, Guide & Examples. Scribbr. Retrieved March 22, 2024, from https://www.scribbr.com/methodology/research-design/

## Is this article helpful?

## Shona McCombes

Other students also liked, guide to experimental design | overview, steps, & examples, how to write a research proposal | examples & templates, ethical considerations in research | types & examples, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

## IMAGES

## VIDEO

## COMMENTS

Sampling methods are crucial for conducting reliable research. In this article, you will learn about the types, techniques and examples of sampling methods, and how to choose the best one for your study. Scribbr also offers free tools and guides for other aspects of academic writing, such as citation, bibliography, and fallacy.

Sampling methods refer to the techniques used to select a subset of individuals or units from a larger population for the purpose of conducting statistical analysis or research. Sampling is an essential part of the Research because it allows researchers to draw conclusions about a population without having to collect data from every member of ...

We could choose a sampling method based on whether we want to account for sampling bias; a random sampling method is often preferred over a non-random method for this reason. Random sampling examples include: simple, systematic, stratified, and cluster sampling. Non-random sampling methods are liable to bias, and common examples include ...

1. Simple random sampling. In a simple random sample, every member of the population has an equal chance of being selected. Your sampling frame should include the whole population. To conduct this type of sampling, you can use tools like random number generators or other techniques that are based entirely on chance.

Understand sampling methods in research, from simple random sampling to stratified, systematic, and cluster sampling. Learn how these sampling techniques boost data accuracy and representation, ensuring robust, reliable results. Check this article to learn about the different sampling method techniques, types and examples.

Sampling types. There are two major categories of sampling methods ( figure 1 ): 1; probability sampling methods where all subjects in the target population have equal chances to be selected in the sample [ 1, 2] and 2; non-probability sampling methods where the sample population is selected in a non-systematic process that does not guarantee ...

A sampling plan is a formal plan specifying a sampling method, a sample size, and procedure for recruiting participants (Box 1) . A qualitative sampling plan describes how many observations, interviews, focus-group discussions or cases are needed to ensure that the findings will contribute rich data.

Abstract. Knowledge of sampling methods is essential to design quality research. Critical questions are provided to help researchers choose a sampling method. This article reviews probability and non-probability sampling methods, lists and defines specific sampling techniques, and provides pros and cons for consideration.

Simple random sampling. Simple random sampling involves selecting participants in a completely random fashion, where each participant has an equal chance of being selected.Basically, this sampling method is the equivalent of pulling names out of a hat, except that you can do it digitally.For example, if you had a list of 500 people, you could use a random number generator to draw a list of 50 ...

Sampling is the statistical process of selecting a subset—called a 'sample'—of a population of interest for the purpose of making observations and statistical inferences about that population. Social science research is generally about inferring patterns of behaviours within specific populations. We cannot study entire populations because of feasibility and cost constraints, and hence ...

Probabilistic sampling. Probabilistic sampling refers to any sampling method which involves researchers using some form of random selection of items or individuals, rather than deliberate choice. Examples of probabilistic sampling include random sampling, stratified sampling, and cluster sampling.

Sampling methods in psychology refer to strategies used to select a subset of individuals (a sample) from a larger population, to study and draw inferences about the entire population. Common methods include random sampling, stratified sampling, cluster sampling, and convenience sampling. Proper sampling ensures representative, generalizable, and valid research results.

A sampling plan is a detailed outline of which measurements will be taken at what times, on which material, in what manner, and by whom. A statistical sampling plan follows the laws of probability, allowing you to make valid infer ences about a population from the statistics of the samples taken from it.

The sampling method will depend on the research question. For instance, the researcher may want to understand an issue in greater detail for one particular population rather than worry about the ' generalizability' of these results. ... We plan to conduct the study in the outpatient department of our hospital. This is a common scenario for ...

Sampling in market action research is of two types - probability sampling and non-probability sampling. Let's take a closer look at these two methods of sampling. Probability sampling:Probability sampling is a sampling technique where a researcher selects a few criteria and chooses members of a population randomly.

This chapter explains how to design suitable sampling strategies for qualitative research. The focus of this chapter is purposive (or theoretical) sampling to produce credible and trustworthy explanations of a phenomenon (a specific aspect of society). A specific research question (RQ) guides the methodology (the study design or approach).It defines the participants, location, and actions to ...

A sampling plan outlines the individuals chosen to represent the target population under consideration for research purposes. During a sampling plan in research, the sampling unit, the sampling size, and the sampling procedure are determined. The sample size will specify how many people from the sampling unit will be surveyed or studied.

A sampling plan basically comprises of different sample units or sample population whom you are going to contact to collect market research data. This sampling unit is a representative of the total population, though it might be a fraction of the total population. In simple language, if you have 1 lakh customers, you cannot conduct an interview ...

Sampling Plan. Definition: A sampling plan provides an outline based on which the researcher performs research. Also, it provides a sketch required for ensuring that the data gathered is a representation of the defined target population. It is widely used in research studies. A researcher designs a sampling plan to prove that the data collected ...

A sampling plan is a formal plan specifying a sampling method, a sample size, and procedure for recruiting participants (Box 1) [Citation 3]. A qualitative sampling plan describes how many observations, interviews, focus-group discussions or cases are needed to ensure that the findings will contribute rich data.

Sampling can be defined as the process through which individuals or sampling units are selected from the sample frame. The sampling strategy needs to be specified in advance, given that the sampling method may affect the sample size estimation. 1,5 Without a rigorous sampling plan the estimates derived from the study may be biased (selection ...

The study employed purposive sampling, a technique used to deliberately select specific individuals or events, as it is well-suited for gathering data from distinct and targeted sources ...

A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

The execution of our developed MDS sampling plans is a precious area for future research to develop an MDS plans under neutrosophic statistics. Hence, our work can be carried out using neutrosophic statistics as future research. ... function of the MDS sampling plans, and the proposed methodology of the MDS sampling plan under TGHLD are given ...