Learn Scripting

Coding Knowledge Unveiled: Empower Yourself

Harnessing the Power of Assignment Operator and Template Classes in C++

Introduction: In the realm of C++, template classes and assignment operators stand as pillars of flexibility and extensibility, enabling developers to create generic, reusable code that adapts to various data types and scenarios. Template classes provide a mechanism for defining classes that can work with any data type, while the assignment operator facilitates the assignment of one object to another, ensuring efficient memory management and resource utilization. In this blog post, we’ll explore the symbiotic relationship between template classes and assignment operators in C++, unraveling their capabilities, applications, and best practices.

Understanding Template Classes: Template classes in C++ enable the creation of generic data structures and algorithms that operate uniformly across different data types. By parameterizing classes with one or more type parameters, developers can define classes that are not tied to a specific data type, promoting code reuse and flexibility.

Template classes are defined using the template keyword followed by the class declaration, with one or more template parameters enclosed in angle brackets ( <> ). These parameters can be used within the class definition to specify the types of member variables, member functions, and constructors.

Template classes are instantiated by providing specific data types for the template parameters, allowing developers to create instances of the class tailored to their requirements.

Understanding Assignment Operator Overloading: The assignment operator ( operator= ) in C++ is a special member function that enables one object to be assigned the value of another object of the same type. It is invoked when an assignment statement is used to copy the contents of one object to another, ensuring that the destination object is properly initialized and any necessary resources are managed correctly.

By overloading the assignment operator, developers can customize the behavior of object assignment for user-defined types. This customization is particularly useful for classes that manage dynamic memory or contain complex data structures, ensuring proper copying and cleanup of resources.

Best Practices for Template Classes and Assignment Operator Overloading:

  • Ensure Correctness : When defining template classes, ensure that the class’s functionality is correct and applicable to all supported data types. Test template classes with a variety of data types to validate their behavior and ensure correctness.
  • Follow Resource Management Best Practices : If template classes manage dynamic memory or other resources, adhere to best practices for resource allocation, deallocation, and ownership transfer. Implement proper memory management techniques to avoid memory leaks and resource exhaustion.
  • Implement Deep Copy Semantics : When overloading the assignment operator for classes with dynamic memory allocation, implement deep copy semantics to ensure that the destination object has its own copy of dynamically allocated resources. This prevents resource sharing and ensures proper cleanup.
  • Document Assumptions and Constraints : Document any assumptions or constraints regarding the behavior of template classes and assignment operator overloading. Clearly specify the requirements for user-defined types and any restrictions on their usage to prevent misuse and ambiguity.
  • Consider Efficiency and Performance : Strive for efficiency and performance when implementing template classes and assignment operator overloading. Minimize unnecessary copying and ensure that operations are performed in an optimal manner, especially for large or performance-critical applications.

Conclusion: Template classes and assignment operator overloading are powerful features of C++ that enable developers to create flexible, reusable code with minimal effort. By leveraging template classes, developers can design generic data structures and algorithms that adapt to diverse data types and use cases. Meanwhile, assignment operator overloading facilitates efficient and correct object assignment, ensuring proper resource management and memory cleanup.

Embrace the versatility and expressiveness offered by template classes and assignment operator overloading in your C++ projects. By adhering to best practices and considering efficiency, correctness, and maintainability, you can harness the full potential of these features to build robust, scalable software solutions.

Related Posts

Mastering dynamic memory management in c++: the new and delete operators.

  • April 19, 2024

Introduction:In C++, dynamic memory management plays a crucial role in allocating and deallocating memory at runtime. The new and delete operators are fundamental tools for […]

Mastering If…Else Statements in C++: A Comprehensive Guide

  • April 17, 2024

If…else statements are fundamental constructs in C++ programming, allowing developers to make decisions and execute code based on certain conditions. In this blog, we’ll dive […]

  • Uncategorized

Maximizing Efficiency with Inline Functions and Arrays in C++

Introduction:Efficiency is paramount in programming, especially in performance-critical languages like C++. One of the techniques to enhance efficiency is the use of inline functions and […]

Leave a Reply Cancel reply

You must be logged in to post a comment.

  • C++ Data Types
  • C++ Input/Output
  • C++ Pointers
  • C++ Interview Questions
  • C++ Programs
  • C++ Cheatsheet
  • C++ Projects
  • C++ Exception Handling
  • C++ Memory Management

C++ Assignment Operator Overloading

  • Operator Overloading in C++
  • Assignment Operators in Programming
  • Operator Overloading in MATLAB
  • C++ Bitwise Operator Overloading
  • Solidity - Assignment Operators
  • Operator Overloading in Julia
  • Operator Overloading in Ruby
  • Operator Overloading in Python
  • C++ Logical (&&, ||, !) Operator Overloading
  • Assignment Operators In C++
  • Types of Operator Overloading in C++
  • Assignment Operators in C
  • Overloading New and Delete operator in c++
  • Increment (++) and Decrement (--) Operator Overloading in C++
  • C++ | Operator Overloading | Question 3
  • C++ | Operator Overloading | Question 9
  • C++ | Operator Overloading | Question 7
  • C++ | Operator Overloading | Question 2
  • C++ | Operator Overloading | Question 6
  • Vector in C++ STL
  • Initialize a vector in C++ (7 different ways)
  • Map in C++ Standard Template Library (STL)
  • std::sort() in C++ STL
  • Inheritance in C++
  • The C++ Standard Template Library (STL)
  • Object Oriented Programming in C++
  • C++ Classes and Objects
  • Virtual Function in C++
  • Set in C++ Standard Template Library (STL)

Prerequisite: Operator Overloading

The assignment operator,”=”, is the operator used for Assignment. It copies the right value into the left value. Assignment Operators are predefined to operate only on built-in Data types.

  • Assignment operator overloading is binary operator overloading.
  • Overloading assignment operator in C++ copies all values of one object to another object.
  • Only a non-static member function should be used to overload the assignment operator.

We can’t directly use the Assignment Operator on objects. The simple explanation for this is that the Assignment Operator is predefined to operate only on built-in Data types. As the class and objects are user-defined data types, so the compiler generates an error.

here, a and b are of type integer, which is a built-in data type. Assignment Operator can be used directly on built-in data types.

c1 and c2 are variables of type “class C”. Here compiler will generate an error as we are trying to use an Assignment Operator on user-defined data types.

The above example can be done by implementing methods or functions inside the class, but we choose operator overloading instead. The reason for this is, operator overloading gives the functionality to use the operator directly which makes code easy to understand, and even code size decreases because of it. Also, operator overloading does not affect the normal working of the operator but provides extra functionality to it.

Now, if the user wants to use the assignment operator “=” to assign the value of the class variable to another class variable then the user has to redefine the meaning of the assignment operator “=”.  Redefining the meaning of operators really does not change their original meaning, instead, they have been given additional meaning along with their existing ones.

Please Login to comment...

Similar reads.

  • cpp-operator
  • cpp-operator-overloading

advertisewithusBannerImg

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

Learn C++

21.12 — Overloading the assignment operator

The copy assignment operator (operator=) is used to copy values from one object to another already existing object .

Related content

As of C++11, C++ also supports “Move assignment”. We discuss move assignment in lesson 22.3 -- Move constructors and move assignment .

Copy assignment vs Copy constructor

The purpose of the copy constructor and the copy assignment operator are almost equivalent -- both copy one object to another. However, the copy constructor initializes new objects, whereas the assignment operator replaces the contents of existing objects.

The difference between the copy constructor and the copy assignment operator causes a lot of confusion for new programmers, but it’s really not all that difficult. Summarizing:

  • If a new object has to be created before the copying can occur, the copy constructor is used (note: this includes passing or returning objects by value).
  • If a new object does not have to be created before the copying can occur, the assignment operator is used.

Overloading the assignment operator

Overloading the copy assignment operator (operator=) is fairly straightforward, with one specific caveat that we’ll get to. The copy assignment operator must be overloaded as a member function.

This prints:

This should all be pretty straightforward by now. Our overloaded operator= returns *this, so that we can chain multiple assignments together:

Issues due to self-assignment

Here’s where things start to get a little more interesting. C++ allows self-assignment:

This will call f1.operator=(f1), and under the simplistic implementation above, all of the members will be assigned to themselves. In this particular example, the self-assignment causes each member to be assigned to itself, which has no overall impact, other than wasting time. In most cases, a self-assignment doesn’t need to do anything at all!

However, in cases where an assignment operator needs to dynamically assign memory, self-assignment can actually be dangerous:

First, run the program as it is. You’ll see that the program prints “Alex” as it should.

Now run the following program:

You’ll probably get garbage output. What happened?

Consider what happens in the overloaded operator= when the implicit object AND the passed in parameter (str) are both variable alex. In this case, m_data is the same as str.m_data. The first thing that happens is that the function checks to see if the implicit object already has a string. If so, it needs to delete it, so we don’t end up with a memory leak. In this case, m_data is allocated, so the function deletes m_data. But because str is the same as *this, the string that we wanted to copy has been deleted and m_data (and str.m_data) are dangling.

Later on, we allocate new memory to m_data (and str.m_data). So when we subsequently copy the data from str.m_data into m_data, we’re copying garbage, because str.m_data was never initialized.

Detecting and handling self-assignment

Fortunately, we can detect when self-assignment occurs. Here’s an updated implementation of our overloaded operator= for the MyString class:

By checking if the address of our implicit object is the same as the address of the object being passed in as a parameter, we can have our assignment operator just return immediately without doing any other work.

Because this is just a pointer comparison, it should be fast, and does not require operator== to be overloaded.

When not to handle self-assignment

Typically the self-assignment check is skipped for copy constructors. Because the object being copy constructed is newly created, the only case where the newly created object can be equal to the object being copied is when you try to initialize a newly defined object with itself:

In such cases, your compiler should warn you that c is an uninitialized variable.

Second, the self-assignment check may be omitted in classes that can naturally handle self-assignment. Consider this Fraction class assignment operator that has a self-assignment guard:

If the self-assignment guard did not exist, this function would still operate correctly during a self-assignment (because all of the operations done by the function can handle self-assignment properly).

Because self-assignment is a rare event, some prominent C++ gurus recommend omitting the self-assignment guard even in classes that would benefit from it. We do not recommend this, as we believe it’s a better practice to code defensively and then selectively optimize later.

The copy and swap idiom

A better way to handle self-assignment issues is via what’s called the copy and swap idiom. There’s a great writeup of how this idiom works on Stack Overflow .

The implicit copy assignment operator

Unlike other operators, the compiler will provide an implicit public copy assignment operator for your class if you do not provide a user-defined one. This assignment operator does memberwise assignment (which is essentially the same as the memberwise initialization that default copy constructors do).

Just like other constructors and operators, you can prevent assignments from being made by making your copy assignment operator private or using the delete keyword:

Note that if your class has const members, the compiler will instead define the implicit operator= as deleted. This is because const members can’t be assigned, so the compiler will assume your class should not be assignable.

If you want a class with const members to be assignable (for all members that aren’t const), you will need to explicitly overload operator= and manually assign each non-const member.

guest

Copy assignment operator

A copy assignment operator of class T is a non-template non-static member function with the name operator = that takes exactly one parameter of type T , T & , const T & , volatile T & , or const volatile T & . A type with a public copy assignment operator is CopyAssignable .

[ edit ] Syntax

[ edit ] explanation.

  • Typical declaration of a copy assignment operator when copy-and-swap idiom can be used
  • Typical declaration of a copy assignment operator when copy-and-swap idiom cannot be used
  • Forcing a copy assignment operator to be generated by the compiler
  • Avoiding implicit copy assignment

The copy assignment operator is called whenever selected by overload resolution , e.g. when an object appears on the left side of an assignment expression.

[ edit ] Implicitly-declared copy assignment operator

If no user-defined copy assignment operators are provided for a class type ( struct , class , or union ), the compiler will always declare one as an inline public member of the class. This implicitly-declared copy assignment operator has the form T & T :: operator = ( const T & ) if all of the following is true:

  • each direct base B of T has a copy assignment operator whose parameters are B or const B& or const volatile B &
  • each non-static data member M of T of class type or array of class type has a copy assignment operator whose parameters are M or const M& or const volatile M &

Otherwise the implicitly-declared copy assignment operator is declared as T & T :: operator = ( T & ) . (Note that due to these rules, the implicitly-declared copy assignment operator cannot bind to a volatile lvalue argument)

A class can have multiple copy assignment operators, e.g. both T & T :: operator = ( const T & ) and T & T :: operator = ( T ) . If some user-defined copy assignment operators are present, the user may still force the generation of the implicitly declared copy assignment operator with the keyword default .

Because the copy assignment operator is always declared for any class, the base class assignment operator is always hidden. If a using-declaration is used to bring in the assignment operator from the base class, and its argument type could be the same as the argument type of the implicit assignment operator of the derived class, the using-declaration is also hidden by the implicit declaration.

[ edit ] Deleted implicitly-declared copy assignment operator

The implicitly-declared or defaulted copy assignment operator for class T is defined as deleted in any of the following is true:

  • T has a non-static data member that is const
  • T has a non-static data member of a reference type.
  • T has a non-static data member that cannot be copy-assigned (has deleted, inaccessible, or ambiguous copy assignment operator)
  • T has direct or virtual base class that cannot be copy-assigned (has deleted, inaccessible, or ambiguous move assignment operator)
  • T has a user-declared move constructor
  • T has a user-declared move assignment operator

[ edit ] Trivial copy assignment operator

The implicitly-declared copy assignment operator for class T is trivial if all of the following is true:

  • T has no virtual member functions
  • T has no virtual base classes
  • The copy assignment operator selected for every direct base of T is trivial
  • The copy assignment operator selected for every non-static class type (or array of class type) memeber of T is trivial

A trivial copy assignment operator makes a copy of the object representation as if by std:: memmove . All data types compatible with the C language (POD types) are trivially copy-assignable.

[ edit ] Implicitly-defined copy assignment operator

If the implicitly-declared copy assignment operator is not deleted or trivial, it is defined (that is, a function body is generated and compiled) by the compiler. For union types, the implicitly-defined copy assignment copies the object representation (as by std:: memmove ). For non-union class types ( class and struct ), the operator performs member-wise copy assignment of the object's bases and non-static members, in their initialization order, using, using built-in assignment for the scalars and copy assignment operator for class types.

The generation of the implicitly-defined copy assignment operator is deprecated (since C++11) if T has a user-declared destructor or user-declared copy constructor.

[ edit ] Notes

If both copy and move assignment operators are provided, overload resolution selects the move assignment if the argument is an rvalue (either prvalue such as a nameless temporary or xvalue such as the result of std:: move ), and selects the copy assignment if the argument is lvalue (named object or a function/operator returning lvalue reference). If only the copy assignment is provided, all argument categories select it (as long as it takes its argument by value or as reference to const, since rvalues can bind to const references), which makes copy assignment the fallback for move assignment, when move is unavailable.

[ edit ] Copy and swap

Copy assignment operator can be expressed in terms of copy constructor, destructor, and the swap() member function, if one is provided:

T & T :: operator = ( T arg ) { // copy/move constructor is called to construct arg     swap ( arg ) ;     // resources exchanged between *this and arg     return * this ; }   // destructor is called to release the resources formerly held by *this

For non-throwing swap(), this form provides strong exception guarantee . For rvalue arguments, this form automatically invokes the move constructor, and is sometimes referred to as "unifying assignment operator" (as in, both copy and move).

[ edit ] Example

How to Implement Assignment Operator Overloading in C++

  • How to Implement Assignment Operator …

How to Implement Assignment Operator Overloading in C++

This article will explain several methods of how to implement assignment operator overloading in C++.

Use copy-assignment operator to Implement Overloaded Assignment Operator in C++

C++ provides the feature to overload operators, a common way to call custom functions when a built-in operator is called on specific classes. These functions should have a special name starting with operator followed by the specific operator symbol itself. E.g., a custom assignment operator can be implemented with the function named operator= . Assignment operator generally should return a reference to its left-hand operand. Note that if the user does not explicitly define the copy assignment operator, the compiler generates one automatically. The generated version is quite capable when the class does not contain any data members manually allocated on the heap memory. It can even handle the array members by assigning each element to the corresponding object members. Although, it has shortcomings when dealing with dynamic memory data members, as shown in the following example code.

The above code defines only copy-constructor explicitly, which results in incorrect behavior when P1 object contents are assigned to the P3 object. Note that the second call to the P1.renamePerson function should not have modified the P3 object’s data members, but it did. The solution to this is to define an overloaded assignment operator i.e., copy-assignment operator. The next code snippet implements the version of the Person class that can copy assign the two objects of the same class correctly. Notice, though, the if statement in the copy-assignment function guarantees that the operator works correctly even when the object is assigned to itself.

Jinku Hu avatar

Founder of DelftStack.com. Jinku has worked in the robotics and automotive industries for over 8 years. He sharpened his coding skills when he needed to do the automatic testing, data collection from remote servers and report creation from the endurance test. He is from an electrical/electronics engineering background but has expanded his interest to embedded electronics, embedded programming and front-/back-end programming.

Related Article - C++ Class

  • How to Initialize Static Variables in C++ Class
  • How to Get Class Name in C++
  • Point and Line Class in C++
  • Class Template Inheritance in C++
  • Difference Between Structure and Class in C++
  • Wrapper Class in C++

cppreference.com

Operator overloading.

Customizes the C++ operators for operands of user-defined types.

[ edit ] Syntax

Overloaded operators are functions with special function names:

[ edit ] Overloaded operators

When an operator appears in an expression , and at least one of its operands has a class type or an enumeration type , then overload resolution is used to determine the user-defined function to be called among all the functions whose signatures match the following:

Note: for overloading co_await , (since C++20) user-defined conversion functions , user-defined literals , allocation and deallocation see their respective articles.

Overloaded operators (but not the built-in operators) can be called using function notation:

[ edit ] Restrictions

  • The operators :: (scope resolution), . (member access), .* (member access through pointer to member), and ?: (ternary conditional) cannot be overloaded.
  • New operators such as ** , <> , or &| cannot be created.
  • It is not possible to change the precedence, grouping, or number of operands of operators.
  • The overload of operator -> must either return a raw pointer, or return an object (by reference or by value) for which operator -> is in turn overloaded.
  • The overloads of operators && and || lose short-circuit evaluation.

[ edit ] Canonical implementations

Besides the restrictions above, the language puts no other constraints on what the overloaded operators do, or on the return type (it does not participate in overload resolution), but in general, overloaded operators are expected to behave as similar as possible to the built-in operators: operator + is expected to add, rather than multiply its arguments, operator = is expected to assign, etc. The related operators are expected to behave similarly ( operator + and operator + = do the same addition-like operation). The return types are limited by the expressions in which the operator is expected to be used: for example, assignment operators return by reference to make it possible to write a = b = c = d , because the built-in operators allow that.

Commonly overloaded operators have the following typical, canonical forms: [1]

[ edit ] Assignment operator

The assignment operator ( operator = ) has special properties: see copy assignment and move assignment for details.

The canonical copy-assignment operator is expected to be safe on self-assignment , and to return the lhs by reference:

In those situations where copy assignment cannot benefit from resource reuse (it does not manage a heap-allocated array and does not have a (possibly transitive) member that does, such as a member std::vector or std::string ), there is a popular convenient shorthand: the copy-and-swap assignment operator, which takes its parameter by value (thus working as both copy- and move-assignment depending on the value category of the argument), swaps with the parameter, and lets the destructor clean it up.

This form automatically provides strong exception guarantee , but prohibits resource reuse.

[ edit ] Stream extraction and insertion

The overloads of operator>> and operator<< that take a std:: istream & or std:: ostream & as the left hand argument are known as insertion and extraction operators. Since they take the user-defined type as the right argument ( b in a @ b ), they must be implemented as non-members.

These operators are sometimes implemented as friend functions .

[ edit ] Function call operator

When a user-defined class overloads the function call operator, operator ( ) , it becomes a FunctionObject type.

An object of such a type can be used in a function call expression:

Many standard algorithms, from std:: sort to std:: accumulate accept FunctionObject s to customize behavior. There are no particularly notable canonical forms of operator ( ) , but to illustrate the usage:

[ edit ] Increment and decrement

When the postfix increment or decrement operator appears in an expression, the corresponding user-defined function ( operator ++ or operator -- ) is called with an integer argument 0 . Typically, it is implemented as T operator ++ ( int ) or T operator -- ( int ) , where the argument is ignored. The postfix increment and decrement operators are usually implemented in terms of the prefix versions:

Although the canonical implementations of the prefix increment and decrement operators return by reference, as with any operator overload, the return type is user-defined; for example the overloads of these operators for std::atomic return by value.

[ edit ] Binary arithmetic operators

Binary operators are typically implemented as non-members to maintain symmetry (for example, when adding a complex number and an integer, if operator+ is a member function of the complex type, then only complex + integer would compile, and not integer + complex ). Since for every binary arithmetic operator there exists a corresponding compound assignment operator, canonical forms of binary operators are implemented in terms of their compound assignments:

[ edit ] Comparison operators

Standard algorithms such as std:: sort and containers such as std:: set expect operator < to be defined, by default, for the user-provided types, and expect it to implement strict weak ordering (thus satisfying the Compare requirements). An idiomatic way to implement strict weak ordering for a structure is to use lexicographical comparison provided by std::tie :

Typically, once operator < is provided, the other relational operators are implemented in terms of operator < .

Likewise, the inequality operator is typically implemented in terms of operator == :

When three-way comparison (such as std::memcmp or std::string::compare ) is provided, all six two-way comparison operators may be expressed through that:

[ edit ] Array subscript operator

User-defined classes that provide array-like access that allows both reading and writing typically define two overloads for operator [ ] : const and non-const variants:

If the value type is known to be a scalar type, the const variant should return by value.

Where direct access to the elements of the container is not wanted or not possible or distinguishing between lvalue c [ i ] = v ; and rvalue v = c [ i ] ; usage, operator [ ] may return a proxy. See for example std::bitset::operator[] .

[ edit ] Bitwise arithmetic operators

User-defined classes and enumerations that implement the requirements of BitmaskType are required to overload the bitwise arithmetic operators operator & , operator | , operator ^ , operator~ , operator & = , operator | = , and operator ^ = , and may optionally overload the shift operators operator << operator >> , operator >>= , and operator <<= . The canonical implementations usually follow the pattern for binary arithmetic operators described above.

[ edit ] Boolean negation operator

[ edit ] rarely overloaded operators.

The following operators are rarely overloaded:

  • The address-of operator, operator & . If the unary & is applied to an lvalue of incomplete type and the complete type declares an overloaded operator & , it is unspecified whether the operator has the built-in meaning or the operator function is called. Because this operator may be overloaded, generic libraries use std::addressof to obtain addresses of objects of user-defined types. The best known example of a canonical overloaded operator& is the Microsoft class CComPtrBase . An example of this operator's use in EDSL can be found in boost.spirit .
  • The boolean logic operators, operator && and operator || . Unlike the built-in versions, the overloads cannot implement short-circuit evaluation. Also unlike the built-in versions, they do not sequence their left operand before the right one. (until C++17) In the standard library, these operators are only overloaded for std::valarray .
  • The comma operator, operator, . Unlike the built-in version, the overloads do not sequence their left operand before the right one. (until C++17) Because this operator may be overloaded, generic libraries use expressions such as a, void ( ) ,b instead of a,b to sequence execution of expressions of user-defined types. The boost library uses operator, in boost.assign , boost.spirit , and other libraries. The database access library SOCI also overloads operator, .
  • The member access through pointer to member operator - > * . There are no specific downsides to overloading this operator, but it is rarely used in practice. It was suggested that it could be part of a smart pointer interface , and in fact is used in that capacity by actors in boost.phoenix . It is more common in EDSLs such as cpp.react .

[ edit ] Notes

[ edit ] example, [ edit ] defect reports.

The following behavior-changing defect reports were applied retroactively to previously published C++ standards.

[ edit ] See also

  • Operator precedence
  • Alternative operator syntax
  • Argument-dependent lookup

[ edit ] External links

  • Recent changes
  • Offline version
  • What links here
  • Related changes
  • Upload file
  • Special pages
  • Printable version
  • Permanent link
  • Page information
  • In other languages
  • This page was last modified on 26 April 2024, at 12:23.
  • This page has been accessed 5,457,548 times.
  • Privacy policy
  • About cppreference.com
  • Disclaimers

Powered by MediaWiki

This browser is no longer supported.

Upgrade to Microsoft Edge to take advantage of the latest features, security updates, and technical support.

Copy constructors and copy assignment operators (C++)

  • 8 contributors

Starting in C++11, two kinds of assignment are supported in the language: copy assignment and move assignment . In this article "assignment" means copy assignment unless explicitly stated otherwise. For information about move assignment, see Move Constructors and Move Assignment Operators (C++) .

Both the assignment operation and the initialization operation cause objects to be copied.

Assignment : When one object's value is assigned to another object, the first object is copied to the second object. So, this code copies the value of b into a :

Initialization : Initialization occurs when you declare a new object, when you pass function arguments by value, or when you return by value from a function.

You can define the semantics of "copy" for objects of class type. For example, consider this code:

The preceding code could mean "copy the contents of FILE1.DAT to FILE2.DAT" or it could mean "ignore FILE2.DAT and make b a second handle to FILE1.DAT." You must attach appropriate copying semantics to each class, as follows:

Use an assignment operator operator= that returns a reference to the class type and takes one parameter that's passed by const reference—for example ClassName& operator=(const ClassName& x); .

Use the copy constructor.

If you don't declare a copy constructor, the compiler generates a member-wise copy constructor for you. Similarly, if you don't declare a copy assignment operator, the compiler generates a member-wise copy assignment operator for you. Declaring a copy constructor doesn't suppress the compiler-generated copy assignment operator, and vice-versa. If you implement either one, we recommend that you implement the other one, too. When you implement both, the meaning of the code is clear.

The copy constructor takes an argument of type ClassName& , where ClassName is the name of the class. For example:

Make the type of the copy constructor's argument const ClassName& whenever possible. This prevents the copy constructor from accidentally changing the copied object. It also lets you copy from const objects.

Compiler generated copy constructors

Compiler-generated copy constructors, like user-defined copy constructors, have a single argument of type "reference to class-name ." An exception is when all base classes and member classes have copy constructors declared as taking a single argument of type const class-name & . In such a case, the compiler-generated copy constructor's argument is also const .

When the argument type to the copy constructor isn't const , initialization by copying a const object generates an error. The reverse isn't true: If the argument is const , you can initialize by copying an object that's not const .

Compiler-generated assignment operators follow the same pattern for const . They take a single argument of type ClassName& unless the assignment operators in all base and member classes take arguments of type const ClassName& . In this case, the generated assignment operator for the class takes a const argument.

When virtual base classes are initialized by copy constructors, whether compiler-generated or user-defined, they're initialized only once: at the point when they are constructed.

The implications are similar to the copy constructor. When the argument type isn't const , assignment from a const object generates an error. The reverse isn't true: If a const value is assigned to a value that's not const , the assignment succeeds.

For more information about overloaded assignment operators, see Assignment .

Was this page helpful?

Coming soon: Throughout 2024 we will be phasing out GitHub Issues as the feedback mechanism for content and replacing it with a new feedback system. For more information see: https://aka.ms/ContentUserFeedback .

Submit and view feedback for

Additional resources

Assignment operators

Assignment operators modify the value of the object.

Explanation

copy assignment operator replaces the contents of the object a with a copy of the contents of b ( b is not modified). For class types, this is a special member function, described in copy assignment operator .

move assignment operator replaces the contents of the object a with the contents of b , avoiding copying if possible ( b may be modified). For class types, this is a special member function, described in move assignment operator . (since C++11)

For non-class types, copy and move assignment are indistinguishable and are referred to as direct assignment .

compound assignment operators replace the contents of the object a with the result of a binary operation between the previous value of a and the value of b .

Builtin direct assignment

The direct assignment expressions have the form

For the built-in operator, lhs may have any non-const scalar type and rhs must be implicitly convertible to the type of lhs .

The direct assignment operator expects a modifiable lvalue as its left operand and an rvalue expression or a braced-init-list (since C++11) as its right operand, and returns an lvalue identifying the left operand after modification.

For non-class types, the right operand is first implicitly converted to the cv-unqualified type of the left operand, and then its value is copied into the object identified by left operand.

When the left operand has reference type, the assignment operator modifies the referred-to object.

If the left and the right operands identify overlapping objects, the behavior is undefined (unless the overlap is exact and the type is the same)

In overload resolution against user-defined operators , for every type T , the following function signatures participate in overload resolution:

For every enumeration or pointer to member type T , optionally volatile-qualified, the following function signature participates in overload resolution:

For every pair A1 and A2, where A1 is an arithmetic type (optionally volatile-qualified) and A2 is a promoted arithmetic type, the following function signature participates in overload resolution:

Builtin compound assignment

The compound assignment expressions have the form

The behavior of every builtin compound-assignment expression E1 op = E2 (where E1 is a modifiable lvalue expression and E2 is an rvalue expression or a braced-init-list (since C++11) ) is exactly the same as the behavior of the expression E1 = E1 op E2 , except that the expression E1 is evaluated only once and that it behaves as a single operation with respect to indeterminately-sequenced function calls (e.g. in f ( a + = b, g ( ) ) , the += is either not started at all or is completed as seen from inside g ( ) ).

In overload resolution against user-defined operators , for every pair A1 and A2, where A1 is an arithmetic type (optionally volatile-qualified) and A2 is a promoted arithmetic type, the following function signatures participate in overload resolution:

For every pair I1 and I2, where I1 is an integral type (optionally volatile-qualified) and I2 is a promoted integral type, the following function signatures participate in overload resolution:

For every optionally cv-qualified object type T , the following function signatures participate in overload resolution:

Operator precedence

Operator overloading

  • Windows Programming
  • UNIX/Linux Programming
  • General C++ Programming
  • Overloaded assignment operator for class

    Overloaded assignment operator for class template objects

assignment operator template class

Adaickalavan

Adaickalavan

If nothing goes right, go left!

  • Ontario, Canada
  • Schedule a Chat
  • Custom Social Profile Link

C++ template operator overload for template class

less than 1 minute read

An example code to perform template operator overload for a template class in C++ is provided.

Run and consider the output of the example below.

The expected output is:

Leave a comment

You may also enjoy, idiosyncrasies of asyncio.

5 minute read

We take a look at the idiosyncrasies and inherent nature of asyncio library in Python. asyncio is a library to write coroutines which run asynchronously on a...

Guide to Kubernetes

I highly recommend the Golden Guide To Kubernetes Application Development book by Matthew Palmer for beginners to master Kubernetes. The book guides us step ...

Below, I have listed several helpful notes for installing and using Golang.

Setting up Scala sbt, Spark, Hadoop and IntelliJIdea in Windows

1 minute read

We briefly describe the steps to setup Scala sbt, Spark, Hadoop, and IntelliJ Idea in Windows computer.

IMAGES

  1. Assignment Operators in C » PREP INSTA

    assignment operator template class

  2. Python Tutorials: Assignment Operators In python

    assignment operator template class

  3. How Matlab Assignment Operator Works (Example)

    assignment operator template class

  4. Assignment Operator Overloading In C

    assignment operator template class

  5. PPT

    assignment operator template class

  6. PPT

    assignment operator template class

VIDEO

  1. Assignment 1 presentation template

  2. How to Find the Speaker List and Assignment Template 1.03

  3. COMSC210 Module4 3

  4. C++ CPP Visual Studio

  5. #20. Assignment Operators in Java

  6. Assignment 2 done Step by Step

COMMENTS

  1. Overloading assignment operator in a class template that can cast to

    template <class U> Number<T>& operator=( const Number<U>& number ) { m_value = number.m_value; //I would also directly access the member variable! return *this; } I think, it is better to use explicit cast, if you want to use class type as template argument and whose constructor has been declared explicit:

  2. c++

    Solution: Forward declare the friend function before the definition of the class itself. For example: template<typename T> class MyClass; // pre-declare the template class itself. template<typename T> std::ostream& operator<< (std::ostream& o, const MyClass <T>& x); Declare your friend function in your class with "<>" appended to the function name.

  3. 26.1

    Creating template classes works pretty much identically to creating template functions, so we'll proceed by example. Here's our array class, templated version: ... For example, the copy constructor and copy-assignment operator used Array rather than Array<T>. When the class name is used without template arguments inside of the class, the ...

  4. Copy constructors, assignment operators,

    What is an assignment operator? The assignment operator for a class is what allows you to use = to assign one instance to another. For example: 1 2: ... template< typename T > class MyArray { size_t numElements; T* pElements; public: size_t count() const { return ...

  5. Harnessing the Power of Assignment Operator and Template Classes in C++

    Template classes and assignment operator overloading are powerful features of C++ that enable developers to create flexible, reusable code with minimal effort. By leveraging template classes, developers can design generic data structures and algorithms that adapt to diverse data types and use cases. Meanwhile, assignment operator overloading ...

  6. Copy assignment operator

    Triviality of eligible copy assignment operators determines whether the class is a trivially copyable type. [] NoteIf both copy and move assignment operators are provided, overload resolution selects the move assignment if the argument is an rvalue (either a prvalue such as a nameless temporary or an xvalue such as the result of std::move), and selects the copy assignment if the argument is an ...

  7. C++ Assignment Operator Overloading

    The assignment operator,"=", is the operator used for Assignment. It copies the right value into the left value. Assignment Operators are predefined to operate only on built-in Data types. Assignment operator overloading is binary operator overloading. Overloading assignment operator in C++ copies all values of one object to another object.

  8. Assignment operators

    for assignments to class type objects, the right operand could be an initializer list only when the assignment is defined by a user-defined assignment operator. removed user-defined assignment constraint. CWG 1538. C++11. E1 ={E2} was equivalent to E1 = T(E2) ( T is the type of E1 ), this introduced a C-style cast. it is equivalent to E1 = T{E2}

  9. Classes (II)

    Where a is an object of class A, b is an object of class B and c is an object of class C.TYPE is just any type (that operators overloads the conversion to type TYPE). Notice that some operators may be overloaded in two forms: either as a member function or as a non-member function: The first case has been used in the example above for operator+.But some operators can also be overloaded as non ...

  10. 21.12

    21.12 — Overloading the assignment operator. Alex November 27, 2023. The copy assignment operator (operator=) is used to copy values from one object to another already existing object. As of C++11, C++ also supports "Move assignment". We discuss move assignment in lesson 22.3 -- Move constructors and move assignment .

  11. Copy assignment operator

    Copy assignment operator. A copy assignment operator of class T is a non-template non-static member function with the name operator= that takes exactly one parameter of type T, T&, const T&, volatile T&, or const volatile T&. A type with a public copy assignment operator is CopyAssignable .

  12. How to Implement Assignment Operator Overloading in C++

    The solution to this is to define an overloaded assignment operator i.e., copy-assignment operator. The next code snippet implements the version of the Person class that can copy assign the two objects of the same class correctly. Notice, though, the if statement in the copy-assignment function guarantees that the operator works correctly even ...

  13. operator overloading

    In those situations where copy assignment cannot benefit from resource reuse (it does not manage a heap-allocated array and does not have a (possibly transitive) member that does, such as a member std::vector or std::string), there is a popular convenient shorthand: the copy-and-swap assignment operator, which takes its parameter by value (thus working as both copy- and move-assignment ...

  14. PDF Copy Constructors and Assignment Operators

    Assignment Operator Then that class should have all three of those functions. Corollary: If a class has a destructor, it should also have a copy constructor and assignment operator. The rule of three holds because in almost all situations where you have any of the above functions, C++'s default behavior won't correctly manage your objects.

  15. Copy constructors and copy assignment operators (C++)

    Use an assignment operator operator= that returns a reference to the class type and takes one parameter that's passed by const reference—for example ClassName& operator=(const ClassName& x);. Use the copy constructor. If you don't declare a copy constructor, the compiler generates a member-wise copy constructor for you.

  16. Assignment operators

    Explanation. copy assignment operator replaces the contents of the object a with a copy of the contents of b ( b is not modified). For class types, this is a special member function, described in copy assignment operator . move assignment operator replaces the contents of the object a with the contents of b, avoiding copying if possible ( b may ...

  17. PDF Overloading Operators Example class: Time

    C++ provides a default definition of operator= ! It uses member-wise assignment (like the default copy constructor) ! If you use it with IntCell (see week5), you will ... -Therefore, for a class template, the class declaration AND function definitions must go in the header file. -It is still good practice to define the functions outside of ...

  18. Overloaded assignment operator for class

    Overloaded assignment operator for class template objects. Pages: 1 2. May 22, 2013 at 11:19pm. geeloso (147) I designed a class template to create unique arrays. I was able to successfully input data to and output data from my array objects, irrespective of the datatype. However, I can't for the life of me fathom why my overloaded assignment ...

  19. C++ template operator overload for template class

    Website. C++ template operator overload for template class. less than 1 minute read. An example code to perform template operator overload for a template class in C++ is provided. Run and consider the output of the example below. #include<iostream> #include<vector>usingstd::ostream;usingstd::vector;usingstd::cout;template<classT>classList ...