ASQ logo

  • About Problem Solving
  • Related Topics

Problem Solving Resources

Case studies, problem solving related topics.

  • Brainstorming
  • Continuous Improvement
  • Eight Disciplines (8D)
  • Fishbone Diagram
  • Nine Windows
  • Shainin System™
  • Total Quality Management (TQM)
  • Quality Resources /
  • Problem Solving

What is Problem Solving?

Quality Glossary Definition: Problem solving

Problem solving is the act of defining a problem; determining the cause of the problem; identifying, prioritizing, and selecting alternatives for a solution; and implementing a solution.

  • The problem-solving process
  • Problem solving resources

Problem Solving visual

Problem Solving Chart

Boeing

The Problem-Solving Process

In order to effectively manage and run a successful organization, leadership must guide their employees and develop problem-solving techniques. Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below.

1. Define the problem

Diagnose the situation so that your focus is on the problem, not just its symptoms. Helpful problem-solving techniques include using flowcharts to identify the expected steps of a process and cause-and-effect diagrams to define and analyze root causes .

The sections below help explain key problem-solving steps. These steps support the involvement of interested parties, the use of factual information, comparison of expectations to reality, and a focus on root causes of a problem. You should begin by:

  • Reviewing and documenting how processes currently work (i.e., who does what, with what information, using what tools, communicating with what organizations and individuals, in what time frame, using what format).
  • Evaluating the possible impact of new tools and revised policies in the development of your "what should be" model.

2. Generate alternative solutions

Postpone the selection of one solution until several problem-solving alternatives have been proposed. Considering multiple alternatives can significantly enhance the value of your ideal solution. Once you have decided on the "what should be" model, this target standard becomes the basis for developing a road map for investigating alternatives. Brainstorming and team problem-solving techniques are both useful tools in this stage of problem solving.

Many alternative solutions to the problem should be generated before final evaluation. A common mistake in problem solving is that alternatives are evaluated as they are proposed, so the first acceptable solution is chosen, even if it’s not the best fit. If we focus on trying to get the results we want, we miss the potential for learning something new that will allow for real improvement in the problem-solving process.

3. Evaluate and select an alternative

Skilled problem solvers use a series of considerations when selecting the best alternative. They consider the extent to which:

  • A particular alternative will solve the problem without causing other unanticipated problems.
  • All the individuals involved will accept the alternative.
  • Implementation of the alternative is likely.
  • The alternative fits within the organizational constraints.

4. Implement and follow up on the solution

Leaders may be called upon to direct others to implement the solution, "sell" the solution, or facilitate the implementation with the help of others. Involving others in the implementation is an effective way to gain buy-in and support and minimize resistance to subsequent changes.

Regardless of how the solution is rolled out, feedback channels should be built into the implementation. This allows for continuous monitoring and testing of actual events against expectations. Problem solving, and the techniques used to gain clarity, are most effective if the solution remains in place and is updated to respond to future changes.

You can also search articles , case studies , and publications  for problem solving resources.

Innovative Business Management Using TRIZ

Introduction To 8D Problem Solving: Including Practical Applications and Examples

The Quality Toolbox

Root Cause Analysis: The Core of Problem Solving and Corrective Action

One Good Idea: Some Sage Advice ( Quality Progress ) The person with the problem just wants it to go away quickly, and the problem-solvers also want to resolve it in as little time as possible because they have other responsibilities. Whatever the urgency, effective problem-solvers have the self-discipline to develop a complete description of the problem.

Diagnostic Quality Problem Solving: A Conceptual Framework And Six Strategies  ( Quality Management Journal ) This paper contributes a conceptual framework for the generic process of diagnosis in quality problem solving by identifying its activities and how they are related.

Weathering The Storm ( Quality Progress ) Even in the most contentious circumstances, this approach describes how to sustain customer-supplier relationships during high-stakes problem solving situations to actually enhance customer-supplier relationships.

The Right Questions ( Quality Progress ) All problem solving begins with a problem description. Make the most of problem solving by asking effective questions.

Solving the Problem ( Quality Progress ) Brush up on your problem-solving skills and address the primary issues with these seven methods.

Refreshing Louisville Metro’s Problem-Solving System  ( Journal for Quality and Participation ) Organization-wide transformation can be tricky, especially when it comes to sustaining any progress made over time. In Louisville Metro, a government organization based in Kentucky, many strategies were used to enact and sustain meaningful transformation.

Certification

Quality Improvement Associate Certification--CQIA

Certified Quality Improvement Associate Question Bank

Lean Problem-Solving Tools

Problem Solving Using A3

NEW   Root Cause Analysis E-Learning

Quality 101

Making the Connection In this exclusive QP webcast, Jack ReVelle, ASQ Fellow and author, shares how quality tools can be combined to create a powerful problem-solving force.

Adapted from The Executive Guide to Improvement and Change , ASQ Quality Press.

Featured Advertisers

the problem solving approach involves

What are the 7 Steps to Problem-Solving? & Its Examples

' src=

By Teach Educator

Published on: February 4, 2024

7 Steps to Problem-Solving

7 Steps to Problem-Solving is a systematic process that involves analyzing a situation, generating possible solutions, and implementing the best course of action. While different problem-solving models exist, a common approach often involves the following seven steps:

Define the Problem:

  • Clearly articulate and understand the nature of the problem. Define the issue, its scope, and its impact on individuals or the organization.

Gather Information:

  • Collect relevant data and information related to the problem. This may involve research, observation, interviews, or any other method to gain a comprehensive understanding.

Generate Possible Solutions:

  • Brainstorm and generate a variety of potential solutions to the problem. Encourage creativity and consider different perspectives during this phase.

Evaluate Options:

  • Assess the strengths and weaknesses of each potential solution. Consider the feasibility, potential risks, and the likely outcomes associated with each option.

Make a Decision:

  • Based on the evaluation, choose the most suitable solution. This decision should align with the goals and values of the individual or organization facing the problem.

Implement the Solution:

  • Put the chosen solution into action. Develop an implementation plan, allocate resources, and carry out the necessary steps to address the problem effectively.

Evaluate the Results:

  • Assess the outcomes of the implemented solution. Did it solve the problem as intended? What can be learned from the process? Use this information to refine future problem-solving efforts.

It’s important to note that these steps are not always linear and may involve iteration. Problem-solving is often an ongoing process, and feedback from the implementation and evaluation stages may lead to adjustments in the chosen solution or the identification of new issues that need to be addressed.

Problem-Solving Example in Education

  • Certainly: Let’s consider a problem-solving example in the context of education.
  • Problem: Declining Student Engagement in Mathematics Classes

Background:

A high school has noticed a decline in student engagement and performance in mathematics classes over the past few years. Students seem disinterested, and there is a noticeable decrease in test scores. The traditional teaching methods are not effectively capturing students’ attention, and there’s a need for innovative solutions to rekindle interest in mathematics.

Steps in Problem-Solving

Identify the problem:.

  • Clearly define the issue: declining student engagement and performance in mathematics classes.
  • Gather data on student performance, attendance, and feedback from teachers and students.

Root Cause Analysis

  • Conduct surveys, interviews, and classroom observations to identify the root causes of disengagement.
  • Identify potential factors such as teaching methods, curriculum relevance, or lack of real-world applications.

Brainstorm Solutions

  • Organize a team of educators, administrators, and even students to brainstorm creative solutions.
  • Consider integrating technology, real-world applications, project-based learning, or other interactive teaching methods.

Evaluate and Prioritize Solutions

  • Evaluate each solution based on feasibility, cost, and potential impact.
  • Prioritize solutions that are likely to address the root causes and have a positive impact on student engagement.

Implement the Chosen Solution

  • Develop an action plan for implementing the chosen solution.
  • Provide training and resources for teachers to adapt to new teaching methods or technologies.

Monitor and Evaluate

  • Continuously monitor the implementation of the solution.
  • Collect feedback from teachers and students to assess the effectiveness of the changes.

Adjust as Needed

  • Be willing to make adjustments based on ongoing feedback and data analysis.
  • Fine-tune the solution to address any unforeseen challenges or issues.

Example Solution

  • Introduce a project-based learning approach in mathematics classes, where students work on real-world problems that require mathematical skills.
  • Incorporate technology, such as educational apps or interactive simulations, to make learning more engaging.
  • Provide professional development for teachers to enhance their skills in implementing these new teaching methods.

Expected Outcomes:

  • Increased student engagement and interest in mathematics.
  • Improvement in test scores and overall academic performance.
  • Positive feedback from both teachers and students.

Final Words

This problem-solving approach in education involves a systematic process of identifying, analyzing, and addressing issues to enhance the learning experience for students.

Related Post

What is meant by mental health services.

Mental Health Services Mental health services refer to a range of professional and community-based services and support systems designed to promote and maintain mental well-being, diagnose, and treat ...

Latest Education Policy of India 2024 (New Update)

Latest Education Policy of India 2023 Latest Education Policy of India 2023: Driven by the visionary leadership of Prime Minister Narendra Modi. As well as the Ministry of ...

Simplifying Classroom Management for New Teachers

Classroom Management for New Teachers Classroom management is a critical skill for new teachers, as it sets the tone for the learning environment and can greatly impact the ...

How to Conduct A Competitive Content Analysis?

A Competitive Content Analysis Conducting a competitive content analysis is a crucial step in developing a content strategy that can help you stand out in your industry or ...

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Latest Post

Latest lshtm fund scholarship 2024-25 (apply now), bharathidasan university distance education admissions 2024-25, teach educator.

"Teach Educator aims to empower learners and educators alike through its comprehensive services. Dedicated to bridging educational gaps, it offers a range of resources designed to enhance teaching methodologies, provide updated curriculum insights, and foster professional development. With a commitment to accessibility, Teach Educator ensures that educational tools and information are readily available to all, promoting inclusivity in learning.

© Teach Educator 2021 - 2024 | All Rights Reserved

Privacy policy

lls-logo-main

Guide: Problem Solving

Author's Avatar

Author: Daniel Croft

Daniel Croft is an experienced continuous improvement manager with a Lean Six Sigma Black Belt and a Bachelor's degree in Business Management. With more than ten years of experience applying his skills across various industries, Daniel specializes in optimizing processes and improving efficiency. His approach combines practical experience with a deep understanding of business fundamentals to drive meaningful change.

Problem-solving stands as a fundamental skill, crucial in navigating the complexities of both everyday life and professional environments. Far from merely providing quick fixes, it entails a comprehensive process involving the identification, analysis, and resolution of issues.

This multifaceted approach requires an understanding of the problem’s nature, the exploration of its various components, and the development of effective solutions. At its core, problem-solving serves as a bridge from the current situation to a desired outcome, requiring not only the recognition of an existing gap but also the precise definition and thorough analysis of the problem to find viable solutions.

What is Problem Solving?

Problem Solving

At its core, problem-solving is about bridging the gap between the current situation and the desired outcome. It starts with recognizing that a discrepancy exists, which requires intervention to correct or improve. The ability to identify a problem is the first step, but it’s equally crucial to define it accurately. A well-defined problem is half-solved, as the saying goes.

Analyzing the problem is the next critical step. This analysis involves breaking down the problem into smaller parts to understand its intricacies. It requires looking at the problem from various angles and considering all relevant factors – be they environmental, social, technical, or economic. This comprehensive analysis aids in developing a deeper understanding of the problem’s root causes, rather than just its symptoms.

Reverse brainstorming - problem solving - Idea generation

Finally, effective problem-solving involves the implementation of the chosen solution and its subsequent evaluation. This stage tests the practicality of the solution and its effectiveness in the real world. It’s a critical phase where theoretical solutions meet practical application.

The Nature of Problems

The nature of the problem significantly influences the approach to solving it. Problems vary greatly in their complexity and structure, and understanding this is crucial for effective problem-solving.

Simple vs. Complex Problems : Simple problems are straightforward, often with clear solutions. They usually have a limited number of variables and predictable outcomes. On the other hand, complex problems are multi-faceted. They involve multiple variables, stakeholders, and potential outcomes, often requiring a more sophisticated analysis and a multi-pronged approach to solving.

Structured vs. Unstructured Problems : Structured problems are well-defined. They follow a specific pattern or set of rules, making their outcomes more predictable. These problems often have established methodologies for solving. For example, mathematical problems usually fall into this category. Unstructured problems, in contrast, are more ambiguous. They lack a clear pattern or set of rules, making their outcomes uncertain. These problems require a more exploratory approach, often involving trial and error, to identify potential solutions.

Understanding the type of problem at hand is essential, as it dictates the approach. For instance, a simple problem might require a straightforward solution, while a complex problem might need a more comprehensive, step-by-step approach. Similarly, structured problems might benefit from established methodologies, whereas unstructured problems might need more innovative and creative problem-solving techniques.

The Problem-Solving Process

The process of problem-solving is a methodical approach that involves several distinct stages. Each stage plays a crucial role in navigating from the initial recognition of a problem to its final resolution. Let’s explore each of these stages in detail.

Step 1: Identifying the Problem

Problem Identification

Step 2: Defining the Problem

Once the problem is identified, the next step is to define it clearly and precisely. This is a critical phase because a well-defined problem often suggests its solution. Defining the problem involves breaking it down into smaller, more manageable parts. It also includes understanding the scope and impact of the problem. A clear definition helps in focusing efforts and resources efficiently and serves as a guide to stay on track during the problem-solving process.

Step 3: Analyzing the Problem

Analyze Data

Step 4: Generating Solutions

Brainstorming-7-Methods-Learnleansigma

Step 5: Evaluating and Selecting Solutions

After generating a list of possible solutions, the next step is to evaluate each one critically. This evaluation includes considering the feasibility, costs, benefits, and potential impact of each solution. Techniques like cost-benefit analysis, risk assessment, and scenario planning can be useful here. The aim is to select the solution that best addresses the problem in the most efficient and effective way, considering the available resources and constraints.

Step 6: Implementing the Solution

Solution

Step 7: Reviewing and Reflecting

The final stage in the problem-solving process is to review the implemented solution and reflect on its effectiveness and the process as a whole. This involves assessing whether the solution met its intended goals and what could have been done differently. Reflection is a critical part of learning and improvement. It helps in understanding what worked well and what didn’t, providing valuable insights for future problem-solving efforts.

the problem solving approach involves

Tools and Techniques for Effective Problem Solving

Problem-solving is a multifaceted endeavor that requires a variety of tools and techniques to navigate effectively. Different stages of the problem-solving process can benefit from specific strategies, enhancing the efficiency and effectiveness of the solutions developed. Here’s a detailed look at some key tools and techniques:

Brainstorming

Brainwriting

SWOT Analysis (Strengths, Weaknesses, Opportunities, Threats)

SWOT-Analysis-Learnleansigma

Root Cause Analysis

This is a method used to identify the underlying causes of a problem, rather than just addressing its symptoms. One popular technique within root cause analysis is the “ 5 Whys ” method. This involves asking “why” multiple times (traditionally five) until the fundamental cause of the problem is uncovered. This technique encourages deeper thinking and can reveal connections that aren’t immediately obvious. By addressing the root cause, solutions are more likely to be effective and long-lasting.

the problem solving approach involves

Mind Mapping

Sub-Branches Mind map

Each of these tools and techniques can be adapted to different types of problems and situations. Effective problem solvers often use a combination of these methods, depending on the nature of the problem and the context in which it exists. By leveraging these tools, one can enhance their ability to dissect complex problems, generate creative solutions, and implement effective strategies to address challenges.

Developing Problem-Solving Skills

Developing problem-solving skills is a dynamic process that hinges on both practice and introspection. Engaging with a diverse array of problems enhances one’s ability to adapt and apply different strategies. This exposure is crucial as it allows individuals to encounter various scenarios, ranging from straightforward to complex, each requiring a unique approach. Collaborating with others in teams is especially beneficial. It broadens one’s perspective, offering insights into different ways of thinking and approaching problems. Such collaboration fosters a deeper understanding of how diverse viewpoints can contribute to more robust solutions.

Reflection is equally important in the development of problem-solving skills. Reflecting on both successes and failures provides valuable lessons. Successes reinforce effective strategies and boost confidence, while failures are rich learning opportunities that highlight areas for improvement. This reflective practice enables one to understand what worked, what didn’t, and why.

Critical thinking is a foundational skill in problem-solving. It involves analyzing information, evaluating different perspectives, and making reasoned judgments. Creativity is another vital component. It pushes the boundaries of conventional thinking and leads to innovative solutions. Effective communication also plays a crucial role, as it ensures that ideas are clearly understood and collaboratively refined.

In conclusion, problem-solving is an indispensable skill set that blends analytical thinking, creativity, and practical implementation. It’s a journey from understanding the problem to applying a solution and learning from the outcome.

Whether dealing with simple or complex issues, or structured or unstructured challenges, the essence of problem-solving lies in a methodical approach and the effective use of various tools and techniques. It’s a skill that is honed over time, through experience, reflection, and the continuous development of critical thinking, creativity, and communication abilities. In mastering problem-solving, one not only addresses immediate issues but also builds a foundation for future challenges, leading to more innovative and effective outcomes.

  • Mourtos, N.J., Okamoto, N.D. and Rhee, J., 2004, February. Defining, teaching, and assessing problem solving skills . In  7th UICEE Annual Conference on Engineering Education  (pp. 1-5).
  • Foshay, R. and Kirkley, J., 2003. Principles for teaching problem solving.   Technical paper ,  4 (1), pp.1-16.

Q: What are the key steps in the problem-solving process?

A : The problem-solving process involves several key steps: identifying the problem, defining it clearly, analyzing it to understand its root causes, generating a range of potential solutions, evaluating and selecting the most viable solution, implementing the chosen solution, and finally, reviewing and reflecting on the effectiveness of the solution and the process used to arrive at it.

Q: How can brainstorming be effectively used in problem-solving?

A: Brainstorming is effective in the solution generation phase of problem-solving. It involves gathering a group and encouraging the free flow of ideas without immediate criticism. The goal is to produce a large quantity of ideas, fostering creative thinking. This technique helps in uncovering unique and innovative solutions that might not surface in a more structured setting.

Q: What is SWOT Analysis and how does it aid in problem-solving?

A : SWOT Analysis is a strategic planning tool used to evaluate the Strengths, Weaknesses, Opportunities, and Threats involved in a situation. In problem-solving, it aids by providing a clear understanding of the internal and external factors that could impact the problem and potential solutions. This analysis helps in formulating strategies that leverage strengths and opportunities while mitigating weaknesses and threats.

Q: Why is it important to understand the nature of a problem before solving it?

A : Understanding the nature of a problem is crucial as it dictates the approach for solving it. Problems can be simple or complex, structured or unstructured, and each type requires a different strategy. A clear understanding of the problem’s nature helps in applying the appropriate methods and tools for effective resolution.

Q: How does reflection contribute to developing problem-solving skills?

A : Reflection is a critical component in developing problem-solving skills. It involves looking back at the problem-solving process and the implemented solution to assess what worked well and what didn’t. Reflecting on both successes and failures provides valuable insights and lessons, helping to refine and improve problem-solving strategies for future challenges. This reflective practice enhances one’s ability to approach problems more effectively over time.

Picture of Daniel Croft

Daniel Croft

Hi im Daniel continuous improvement manager with a Black Belt in Lean Six Sigma and over 10 years of real-world experience across a range sectors, I have a passion for optimizing processes and creating a culture of efficiency. I wanted to create Learn Lean Siigma to be a platform dedicated to Lean Six Sigma and process improvement insights and provide all the guides, tools, techniques and templates I looked for in one place as someone new to the world of Lean Six Sigma and Continuous improvement.

the problem solving approach involves

Free Lean Six Sigma Templates

Improve your Lean Six Sigma projects with our free templates. They're designed to make implementation and management easier, helping you achieve better results.

Was this helpful?

Advisory boards aren’t only for executives. Join the LogRocket Content Advisory Board today →

LogRocket blog logo

  • Product Management
  • Solve User-Reported Issues
  • Find Issues Faster
  • Optimize Conversion and Adoption

A guide to problem-solving techniques, steps, and skills

the problem solving approach involves

You might associate problem-solving with the math exercises that a seven-year-old would do at school. But problem-solving isn’t just about math — it’s a crucial skill that helps everyone make better decisions in everyday life or work.

A guide to problem-solving techniques, steps, and skills

Problem-solving involves finding effective solutions to address complex challenges, in any context they may arise.

Unfortunately, structured and systematic problem-solving methods aren’t commonly taught. Instead, when solving a problem, PMs tend to rely heavily on intuition. While for simple issues this might work well, solving a complex problem with a straightforward solution is often ineffective and can even create more problems.

In this article, you’ll learn a framework for approaching problem-solving, alongside how you can improve your problem-solving skills.

The 7 steps to problem-solving

When it comes to problem-solving there are seven key steps that you should follow: define the problem, disaggregate, prioritize problem branches, create an analysis plan, conduct analysis, synthesis, and communication.

1. Define the problem

Problem-solving begins with a clear understanding of the issue at hand. Without a well-defined problem statement, confusion and misunderstandings can hinder progress. It’s crucial to ensure that the problem statement is outcome-focused, specific, measurable whenever possible, and time-bound.

Additionally, aligning the problem definition with relevant stakeholders and decision-makers is essential to ensure efforts are directed towards addressing the actual problem rather than side issues.

2. Disaggregate

Complex issues often require deeper analysis. Instead of tackling the entire problem at once, the next step is to break it down into smaller, more manageable components.

Various types of logic trees (also known as issue trees or decision trees) can be used to break down the problem. At each stage where new branches are created, it’s important for them to be “MECE” – mutually exclusive and collectively exhaustive. This process of breaking down continues until manageable components are identified, allowing for individual examination.

The decomposition of the problem demands looking at the problem from various perspectives. That is why collaboration within a team often yields more valuable results, as diverse viewpoints lead to a richer pool of ideas and solutions.

3. Prioritize problem branches

The next step involves prioritization. Not all branches of the problem tree have the same impact, so it’s important to understand the significance of each and focus attention on the most impactful areas. Prioritizing helps streamline efforts and minimize the time required to solve the problem.

the problem solving approach involves

Over 200k developers and product managers use LogRocket to create better digital experiences

the problem solving approach involves

4. Create an analysis plan

For prioritized components, you may need to conduct in-depth analysis. Before proceeding, a work plan is created for data gathering and analysis. If work is conducted within a team, having a plan provides guidance on what needs to be achieved, who is responsible for which tasks, and the timelines involved.

5. Conduct analysis

Data gathering and analysis are central to the problem-solving process. It’s a good practice to set time limits for this phase to prevent excessive time spent on perfecting details. You can employ heuristics and rule-of-thumb reasoning to improve efficiency and direct efforts towards the most impactful work.

6. Synthesis

After each individual branch component has been researched, the problem isn’t solved yet. The next step is synthesizing the data logically to address the initial question. The synthesis process and the logical relationship between the individual branch results depend on the logic tree used.

7. Communication

The last step is communicating the story and the solution of the problem to the stakeholders and decision-makers. Clear effective communication is necessary to build trust in the solution and facilitates understanding among all parties involved. It ensures that stakeholders grasp the intricacies of the problem and the proposed solution, leading to informed decision-making.

Exploring problem-solving in various contexts

While problem-solving has traditionally been associated with fields like engineering and science, today it has become a fundamental skill for individuals across all professions. In fact, problem-solving consistently ranks as one of the top skills required by employers.

Problem-solving techniques can be applied in diverse contexts:

  • Individuals — What career path should I choose? Where should I live? These are examples of simple and common personal challenges that require effective problem-solving skills
  • Organizations — Businesses also face many decisions that are not trivial to answer. Should we expand into new markets this year? How can we enhance the quality of our product development? Will our office accommodate the upcoming year’s growth in terms of capacity?
  • Societal issues — The biggest world challenges are also complex problems that can be addressed with the same technique. How can we minimize the impact of climate change? How do we fight cancer?

Despite the variation in domains and contexts, the fundamental approach to solving these questions remains the same. It starts with gaining a clear understanding of the problem, followed by decomposition, conducting analysis of the decomposed branches, and synthesizing it into a result that answers the initial problem.

Real-world examples of problem-solving

Let’s now explore some examples where we can apply the problem solving framework.

Problem: In the production of electronic devices, you observe an increasing number of defects. How can you reduce the error rate and improve the quality?

Electric Devices

Before delving into analysis, you can deprioritize branches that you already have information for or ones you deem less important. For instance, while transportation delays may occur, the resulting material degradation is likely negligible. For other branches, additional research and data gathering may be necessary.

Once results are obtained, synthesis is crucial to address the core question: How can you decrease the defect rate?

While all factors listed may play a role, their significance varies. Your task is to prioritize effectively. Through data analysis, you may discover that altering the equipment would bring the most substantial positive outcome. However, executing a solution isn’t always straightforward. In prioritizing, you should consider both the potential impact and the level of effort needed for implementation.

By evaluating impact and effort, you can systematically prioritize areas for improvement, focusing on those with high impact and requiring minimal effort to address. This approach ensures efficient allocation of resources towards improvements that offer the greatest return on investment.

Problem : What should be my next job role?

Next Job

When breaking down this problem, you need to consider various factors that are important for your future happiness in the role. This includes aspects like the company culture, our interest in the work itself, and the lifestyle that you can afford with the role.

However, not all factors carry the same weight for us. To make sense of the results, we can assign a weight factor to each branch. For instance, passion for the job role may have a weight factor of 1, while interest in the industry may have a weight factor of 0.5, because that is less important for you.

By applying these weights to a specific role and summing the values, you can have an estimate of how suitable that role is for you. Moreover, you can compare two roles and make an informed decision based on these weighted indicators.

Key problem-solving skills

This framework provides the foundation and guidance needed to effectively solve problems. However, successfully applying this framework requires the following:

  • Creativity — During the decomposition phase, it’s essential to approach the problem from various perspectives and think outside the box to generate innovative ideas for breaking down the problem tree
  • Decision-making — Throughout the process, decisions must be made, even when full confidence is lacking. Employing rules of thumb to simplify analysis or selecting one tree cut over another requires decisiveness and comfort with choices made
  • Analytical skills — Analytical and research skills are necessary for the phase following decomposition, involving data gathering and analysis on selected tree branches
  • Teamwork — Collaboration and teamwork are crucial when working within a team setting. Solving problems effectively often requires collective effort and shared responsibility
  • Communication — Clear and structured communication is essential to convey the problem solution to stakeholders and decision-makers and build trust

How to enhance your problem-solving skills

Problem-solving requires practice and a certain mindset. The more you practice, the easier it becomes. Here are some strategies to enhance your skills:

  • Practice structured thinking in your daily life — Break down problems or questions into manageable parts. You don’t need to go through the entire problem-solving process and conduct detailed analysis. When conveying a message, simplify the conversation by breaking the message into smaller, more understandable segments
  • Regularly challenging yourself with games and puzzles — Solving puzzles, riddles, or strategy games can boost your problem-solving skills and cognitive agility.
  • Engage with individuals from diverse backgrounds and viewpoints — Conversing with people who offer different perspectives provides fresh insights and alternative solutions to problems. This boosts creativity and helps in approaching challenges from new angles

Final thoughts

Problem-solving extends far beyond mathematics or scientific fields; it’s a critical skill for making informed decisions in every area of life and work. The seven-step framework presented here provides a systematic approach to problem-solving, relevant across various domains.

Now, consider this: What’s one question currently on your mind? Grab a piece of paper and try to apply the problem-solving framework. You might uncover fresh insights you hadn’t considered before.

Featured image source: IconScout

LogRocket generates product insights that lead to meaningful action

Get your teams on the same page — try LogRocket today.

Share this:

  • Click to share on Twitter (Opens in new window)
  • Click to share on Reddit (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Facebook (Opens in new window)
  • #career development
  • #tools and resources

the problem solving approach involves

Stop guessing about your digital experience with LogRocket

Recent posts:.

A Day In The Life Of A Product Manager With Schedule

A day in the life of a product manager with schedule

As a PM yourself, you know how difficult and multifaceted the role can be. You need to talk with customers and work on design simultaneously.

the problem solving approach involves

Understanding zero-to-one product development

Zero-to-one is all about creating something new. Move beyond iterations and build groundbreaking products that lead to entirely new markets.

the problem solving approach involves

Understanding subscriber acquisition cost

Subscriber acquisition cost (SAC) refers to the total expense incurred by the business to acquire a new customer or subscriber.

the problem solving approach involves

How simplifying our sales funnel led to a 30 percent lift in conversion to paid users

Although we did a good job moving people to the checkout page, we had problems converting checkout visitors to paying customers.

the problem solving approach involves

Leave a Reply Cancel reply

What Is Problem Solving? How Software Engineers Approach Complex Challenges

HackerRank AI Promotion

From debugging an existing system to designing an entirely new software application, a day in the life of a software engineer is filled with various challenges and complexities. The one skill that glues these disparate tasks together and makes them manageable? Problem solving . 

Throughout this blog post, we’ll explore why problem-solving skills are so critical for software engineers, delve into the techniques they use to address complex challenges, and discuss how hiring managers can identify these skills during the hiring process. 

What Is Problem Solving?

But what exactly is problem solving in the context of software engineering? How does it work, and why is it so important?

Problem solving, in the simplest terms, is the process of identifying a problem, analyzing it, and finding the most effective solution to overcome it. For software engineers, this process is deeply embedded in their daily workflow. It could be something as simple as figuring out why a piece of code isn’t working as expected, or something as complex as designing the architecture for a new software system. 

In a world where technology is evolving at a blistering pace, the complexity and volume of problems that software engineers face are also growing. As such, the ability to tackle these issues head-on and find innovative solutions is not only a handy skill — it’s a necessity. 

The Importance of Problem-Solving Skills for Software Engineers

Problem-solving isn’t just another ability that software engineers pull out of their toolkits when they encounter a bug or a system failure. It’s a constant, ongoing process that’s intrinsic to every aspect of their work. Let’s break down why this skill is so critical.

Driving Development Forward

Without problem solving, software development would hit a standstill. Every new feature, every optimization, and every bug fix is a problem that needs solving. Whether it’s a performance issue that needs diagnosing or a user interface that needs improving, the capacity to tackle and solve these problems is what keeps the wheels of development turning.

It’s estimated that 60% of software development lifecycle costs are related to maintenance tasks, including debugging and problem solving. This highlights how pivotal this skill is to the everyday functioning and advancement of software systems.

Innovation and Optimization

The importance of problem solving isn’t confined to reactive scenarios; it also plays a major role in proactive, innovative initiatives . Software engineers often need to think outside the box to come up with creative solutions, whether it’s optimizing an algorithm to run faster or designing a new feature to meet customer needs. These are all forms of problem solving.

Consider the development of the modern smartphone. It wasn’t born out of a pre-existing issue but was a solution to a problem people didn’t realize they had — a device that combined communication, entertainment, and productivity into one handheld tool.

Increasing Efficiency and Productivity

Good problem-solving skills can save a lot of time and resources. Effective problem-solvers are adept at dissecting an issue to understand its root cause, thus reducing the time spent on trial and error. This efficiency means projects move faster, releases happen sooner, and businesses stay ahead of their competition.

Improving Software Quality

Problem solving also plays a significant role in enhancing the quality of the end product. By tackling the root causes of bugs and system failures, software engineers can deliver reliable, high-performing software. This is critical because, according to the Consortium for Information and Software Quality, poor quality software in the U.S. in 2022 cost at least $2.41 trillion in operational issues, wasted developer time, and other related problems.

Problem-Solving Techniques in Software Engineering

So how do software engineers go about tackling these complex challenges? Let’s explore some of the key problem-solving techniques, theories, and processes they commonly use.

Decomposition

Breaking down a problem into smaller, manageable parts is one of the first steps in the problem-solving process. It’s like dealing with a complicated puzzle. You don’t try to solve it all at once. Instead, you separate the pieces, group them based on similarities, and then start working on the smaller sets. This method allows software engineers to handle complex issues without being overwhelmed and makes it easier to identify where things might be going wrong.

Abstraction

In the realm of software engineering, abstraction means focusing on the necessary information only and ignoring irrelevant details. It is a way of simplifying complex systems to make them easier to understand and manage. For instance, a software engineer might ignore the details of how a database works to focus on the information it holds and how to retrieve or modify that information.

Algorithmic Thinking

At its core, software engineering is about creating algorithms — step-by-step procedures to solve a problem or accomplish a goal. Algorithmic thinking involves conceiving and expressing these procedures clearly and accurately and viewing every problem through an algorithmic lens. A well-designed algorithm not only solves the problem at hand but also does so efficiently, saving computational resources.

Parallel Thinking

Parallel thinking is a structured process where team members think in the same direction at the same time, allowing for more organized discussion and collaboration. It’s an approach popularized by Edward de Bono with the “ Six Thinking Hats ” technique, where each “hat” represents a different style of thinking.

In the context of software engineering, parallel thinking can be highly effective for problem solving. For instance, when dealing with a complex issue, the team can use the “White Hat” to focus solely on the data and facts about the problem, then the “Black Hat” to consider potential problems with a proposed solution, and so on. This structured approach can lead to more comprehensive analysis and more effective solutions, and it ensures that everyone’s perspectives are considered.

This is the process of identifying and fixing errors in code . Debugging involves carefully reviewing the code, reproducing and analyzing the error, and then making necessary modifications to rectify the problem. It’s a key part of maintaining and improving software quality.

Testing and Validation

Testing is an essential part of problem solving in software engineering. Engineers use a variety of tests to verify that their code works as expected and to uncover any potential issues. These range from unit tests that check individual components of the code to integration tests that ensure the pieces work well together. Validation, on the other hand, ensures that the solution not only works but also fulfills the intended requirements and objectives.

Explore verified tech roles & skills.

The definitive directory of tech roles, backed by machine learning and skills intelligence.

Explore all roles

Evaluating Problem-Solving Skills

We’ve examined the importance of problem-solving in the work of a software engineer and explored various techniques software engineers employ to approach complex challenges. Now, let’s delve into how hiring teams can identify and evaluate problem-solving skills during the hiring process.

Recognizing Problem-Solving Skills in Candidates

How can you tell if a candidate is a good problem solver? Look for these indicators:

  • Previous Experience: A history of dealing with complex, challenging projects is often a good sign. Ask the candidate to discuss a difficult problem they faced in a previous role and how they solved it.
  • Problem-Solving Questions: During interviews, pose hypothetical scenarios or present real problems your company has faced. Ask candidates to explain how they would tackle these issues. You’re not just looking for a correct solution but the thought process that led them there.
  • Technical Tests: Coding challenges and other technical tests can provide insight into a candidate’s problem-solving abilities. Consider leveraging a platform for assessing these skills in a realistic, job-related context.

Assessing Problem-Solving Skills

Once you’ve identified potential problem solvers, here are a few ways you can assess their skills:

  • Solution Effectiveness: Did the candidate solve the problem? How efficient and effective is their solution?
  • Approach and Process: Go beyond whether or not they solved the problem and examine how they arrived at their solution. Did they break the problem down into manageable parts? Did they consider different perspectives and possibilities?
  • Communication: A good problem solver can explain their thought process clearly. Can the candidate effectively communicate how they arrived at their solution and why they chose it?
  • Adaptability: Problem-solving often involves a degree of trial and error. How does the candidate handle roadblocks? Do they adapt their approach based on new information or feedback?

Hiring managers play a crucial role in identifying and fostering problem-solving skills within their teams. By focusing on these abilities during the hiring process, companies can build teams that are more capable, innovative, and resilient.

Key Takeaways

As you can see, problem solving plays a pivotal role in software engineering. Far from being an occasional requirement, it is the lifeblood that drives development forward, catalyzes innovation, and delivers of quality software. 

By leveraging problem-solving techniques, software engineers employ a powerful suite of strategies to overcome complex challenges. But mastering these techniques isn’t simple feat. It requires a learning mindset, regular practice, collaboration, reflective thinking, resilience, and a commitment to staying updated with industry trends. 

For hiring managers and team leads, recognizing these skills and fostering a culture that values and nurtures problem solving is key. It’s this emphasis on problem solving that can differentiate an average team from a high-performing one and an ordinary product from an industry-leading one.

At the end of the day, software engineering is fundamentally about solving problems — problems that matter to businesses, to users, and to the wider society. And it’s the proficient problem solvers who stand at the forefront of this dynamic field, turning challenges into opportunities, and ideas into reality.

This article was written with the help of AI. Can you tell which parts?

Get started with HackerRank

Over 2,500 companies and 40% of developers worldwide use HackerRank to hire tech talent and sharpen their skills.

An Introduction to Problem Solving: Understanding the Basics

In today’s fast-paced and complex world, the ability to solve problems is an essential skill that can greatly impact our personal and professional lives. Whether it’s finding a solution to a technical issue or resolving a conflict with a colleague, problem solving is a valuable tool that can help us overcome challenges and achieve our goals. In this article, we will explore the concept of problem solving, the stages involved, various problem-solving techniques, common barriers, and ways to enhance this critical skill.

The Concept of Problem Solving

At its core, problem solving can be defined as the process of finding solutions to issues or challenges that arise in different situations. It involves identifying the problem, evaluating potential solutions, and implementing the most effective one.

Problem solving is a fundamental aspect of human cognition and is essential for navigating the complexities of everyday life. From solving puzzles and riddles to addressing complex societal issues, problem solving is a skill that we constantly rely on.

When faced with a problem, our brains engage in a series of cognitive processes to analyze the situation, generate possible solutions, and evaluate their potential effectiveness. This cognitive process involves critical thinking, logical reasoning, and creativity.

Defining Problem Solving

Problem solving is not just about finding quick fixes; it is about addressing the root cause of a problem and devising sustainable solutions. It requires analytical thinking, logical reasoning, creativity, and open-mindedness.

Analytical thinking involves breaking down complex problems into smaller, more manageable parts, allowing us to better understand the underlying issues. Logical reasoning helps us make sense of the information available and identify patterns or connections that can lead to potential solutions.

Creativity plays a crucial role in problem solving by enabling us to think outside the box and come up with innovative solutions. It involves exploring different perspectives, challenging assumptions, and considering alternative approaches.

Open-mindedness is also essential in problem solving, as it allows us to consider different viewpoints and ideas. By being open to new possibilities, we can expand our problem-solving repertoire and increase the likelihood of finding effective solutions.

The Importance of Problem Solving Skills

Effective problem solving skills are crucial for success in various areas of life. Whether it’s in our personal or professional lives, being able to tackle challenges effectively can lead to personal growth, improved decision-making, and enhanced problem-solving abilities.

In the workplace, problem solving skills are highly valued by employers. Employees who can identify and resolve issues efficiently contribute to a more productive and efficient work environment. They are also better equipped to handle unexpected situations and adapt to changing circumstances.

Outside of work, problem solving skills are equally important. They enable us to navigate personal relationships, make informed decisions, and overcome obstacles that may arise in our daily lives. By developing strong problem solving skills, we can approach challenges with confidence and resilience.

Furthermore, problem solving skills are not limited to specific domains or professions. They are transferable skills that can be applied across various contexts. Whether you are a scientist, an artist, a teacher, or a parent, the ability to effectively solve problems is invaluable.

Overall, problem solving is a multifaceted skill that requires a combination of cognitive abilities and a mindset that embraces challenges. By honing our problem solving skills, we can become more adept at finding innovative solutions and navigating the complexities of life.

The Stages of Problem Solving

Problem solving typically involves several stages that help guide the process from identifying the problem to implementing and evaluating the solution. Let’s explore these stages in detail:

Section Image

Identifying the Problem

The first step in problem solving is identifying the issue at hand. This requires careful observation, gathering relevant information, and clarifying the problem’s scope and impact.

During the process of identifying the problem, it is crucial to engage in active listening and effective communication. This allows for a comprehensive understanding of the problem and ensures that all stakeholders are involved. Additionally, conducting thorough research and analysis aids in identifying the root cause of the problem, which is essential for developing effective solutions.

Developing Potential Solutions

Once the problem is identified, the next step is brainstorming and generating potential solutions. This is where creativity and critical thinking come into play. It’s important to consider various perspectives and evaluate the pros and cons of each potential solution.

During the brainstorming phase, it is beneficial to encourage a diverse range of ideas and perspectives. This can be achieved through group discussions, individual reflection, or even seeking external input. By exploring multiple solutions, one can increase the chances of finding the most innovative and effective approach.

Implementing and Evaluating the Solution

After choosing the most promising solution, it’s time to put it into action. This involves developing an implementation plan, allocating necessary resources, and monitoring progress. Once implemented, it’s important to evaluate the solution’s effectiveness and make adjustments if needed.

During the implementation phase, effective project management skills are crucial. This includes setting clear goals, establishing timelines, and assigning responsibilities. Regular monitoring and evaluation of the solution’s progress help identify any potential challenges or areas for improvement. By continuously assessing the solution’s effectiveness, one can ensure that it aligns with the desired outcomes and makes a positive impact.

Problem solving is not a linear process, but rather an iterative one. It often requires revisiting previous stages and making adjustments based on new information or unexpected obstacles. By embracing flexibility and adaptability, problem solvers can navigate through the complexities of finding and implementing effective solutions.

Problem Solving Techniques

When faced with a problem, it’s essential to have a set of techniques and tools to aid in the problem-solving process. These techniques not only help in finding solutions but also encourage creativity and critical thinking. Let’s explore a few commonly used problem-solving techniques:

Brainstorming

Brainstorming is a technique that encourages free thinking and idea generation. It involves gathering a group of individuals with diverse backgrounds and perspectives to generate a wide range of ideas without criticism or judgment. The goal is to create an environment where creativity can flourish, leading to unique and innovative solutions. During a brainstorming session, participants can build upon each other’s ideas, sparking new thoughts and possibilities.

For example, imagine a team working on a project to improve customer satisfaction for a company. During a brainstorming session, team members may suggest ideas such as implementing a loyalty program, enhancing customer service training, or developing a user-friendly mobile app. By allowing all ideas to be expressed without evaluation, the team can explore various possibilities and consider unconventional approaches.

Root Cause Analysis

Root cause analysis is a systematic approach to problem solving that focuses on identifying the underlying causes of an issue. It aims to dig deep and understand the core problem rather than merely addressing its symptoms. By uncovering the root cause, it becomes possible to develop targeted solutions that address the fundamental issue.

For instance, let’s say a manufacturing company is experiencing a high rate of product defects. Instead of simply fixing the defects as they occur, a root cause analysis would involve investigating the factors contributing to the defects. This analysis may reveal issues such as faulty machinery, inadequate training, or ineffective quality control processes. By addressing these underlying causes, the company can implement long-term solutions that prevent future defects and improve overall product quality.

Decision Matrix Analysis

A decision matrix is a tool used to evaluate multiple options based on predefined criteria. It provides a structured approach to decision-making by visually comparing various solutions and considering their respective advantages and disadvantages. This technique helps in making informed decisions and selecting the most suitable solution.

For example, imagine a project manager tasked with selecting a software vendor for a company’s new customer relationship management (CRM) system. The decision matrix would include criteria such as cost, functionality, user-friendliness, and customer support. Each potential vendor would be evaluated and scored based on these criteria, and the decision matrix would provide a clear visual representation of the strengths and weaknesses of each option. This analysis enables the project manager to make an objective and well-informed decision that aligns with the company’s needs and goals.

By utilizing problem-solving techniques like brainstorming, root cause analysis, and decision matrix analysis, individuals and teams can approach problems in a structured and effective manner. These techniques not only help in finding solutions but also foster collaboration, critical thinking, and innovation.

Test assessment tool

Barriers to Effective Problem Solving

Despite the benefits of problem solving, there can be barriers that hinder the process. Let’s explore a few common barriers:

Cognitive Biases

Cognitive biases are inherent mental shortcuts that can affect judgment and decision-making. These biases may lead to faulty reasoning, overlooking crucial information, or favoring familiar solutions over more effective ones.

One example of a cognitive bias is confirmation bias, where individuals tend to seek out information that confirms their existing beliefs or hypotheses while ignoring contradictory evidence. This can limit their ability to consider alternative perspectives and hinder problem-solving efforts.

Another cognitive bias is the availability heuristic, which is the tendency to rely on immediate examples or information that comes to mind easily. This can lead to overlooking less accessible but potentially relevant information, limiting the effectiveness of problem-solving approaches.

Overcoming cognitive biases requires self-awareness and a willingness to challenge one’s own assumptions. By actively seeking out diverse perspectives and considering a wide range of information, individuals can mitigate the impact of cognitive biases on problem-solving processes.

Lack of Information

Insufficient or inaccurate information can impede problem-solving efforts. Without a comprehensive understanding of the problem and relevant data, it becomes challenging to develop effective solutions.

One way to address this barrier is through thorough research and data collection. By gathering relevant information from reliable sources, individuals can gain a deeper understanding of the problem at hand. This may involve conducting surveys, interviews, or analyzing existing data sets to gather insights.

Additionally, collaboration and seeking input from others can help fill in knowledge gaps. By engaging with individuals who have different perspectives or expertise, new information and insights can be gained, leading to more effective problem-solving approaches.

It’s also important to critically evaluate the information gathered, ensuring its accuracy and relevance. By verifying the credibility of sources and cross-referencing data, individuals can make more informed decisions and overcome the barrier of a lack of information.

Emotional Barriers

Emotions such as fear, stress, or frustration can cloud judgment and hinder problem-solving abilities. It’s important to cultivate emotional intelligence and manage emotions effectively to maintain a clear and objective mindset.

One way to address emotional barriers is through mindfulness and self-reflection. By developing awareness of one’s emotions and their impact on decision-making, individuals can better regulate their emotional responses and prevent them from interfering with problem-solving processes.

Practicing stress management techniques, such as deep breathing exercises or engaging in physical activity, can also help reduce the impact of negative emotions on problem-solving abilities. Taking breaks and allowing time for relaxation and self-care can contribute to a clearer and more focused mindset.

Furthermore, fostering a supportive and collaborative environment can help individuals feel more comfortable expressing their emotions and seeking assistance when needed. By creating a safe space for open communication, emotional barriers can be minimized, allowing for more effective problem-solving.

By understanding and addressing these barriers, individuals can enhance their problem-solving skills and overcome challenges more effectively. Problem solving is a valuable skill that can be developed and improved with practice, and by recognizing and addressing these barriers, individuals can become more adept at finding innovative and effective solutions.

Enhancing Your Problem Solving Skills

While some individuals may possess natural problem-solving abilities, it is a skill that can be developed and honed over time. Here are a few ways to enhance your problem-solving skills:

Section Image

Critical Thinking

Critical thinking involves analyzing information objectively, questioning assumptions, and considering alternative perspectives. Practicing critical thinking can help improve problem-solving abilities by fostering a logical and rational approach.

One way to develop critical thinking skills is through engaging in thought-provoking discussions and debates. By actively participating in conversations that challenge your beliefs and encourage you to consider different viewpoints, you can expand your thinking and develop a more comprehensive understanding of complex problems.

Additionally, reading books and articles that present diverse perspectives on various subjects can also contribute to the development of critical thinking skills. By exposing yourself to different ideas and arguments, you can learn to evaluate information critically and make informed decisions.

Creativity and Innovation

Embracing creativity and innovation can encourage thinking outside the box and finding unique solutions. Engaging in activities such as brainstorming or exploring new ideas and perspectives can stimulate creativity and foster innovative problem-solving approaches.

One effective way to foster creativity is through the practice of divergent thinking. This involves generating multiple ideas and possibilities without judgment or evaluation. By allowing yourself to think freely and without constraints, you can uncover new and unconventional solutions to problems.

Furthermore, seeking inspiration from different sources can also enhance your creativity. Exploring different art forms, such as painting, music, or literature, can expose you to different ways of thinking and spark new ideas. Additionally, immersing yourself in nature or taking part in outdoor activities can provide a fresh perspective and stimulate creative thinking.

Persistence and Patience

Problem-solving can be challenging and may require multiple attempts to find the most effective solution. It’s important to remain persistent and patient, understanding that setbacks and failures are part of the learning process.

Developing a growth mindset can greatly contribute to persistence and patience. Embracing the belief that abilities and intelligence can be developed through dedication and hard work can help you stay motivated and resilient in the face of obstacles. Instead of viewing failures as permanent setbacks, see them as opportunities for growth and learning.

Moreover, seeking support from others can also help you maintain persistence and patience. Surrounding yourself with individuals who share your goals and values can provide encouragement and motivation during challenging times. Collaborating with others can also bring fresh perspectives and ideas to the problem-solving process.

Remember, enhancing problem-solving skills is an ongoing journey. By continuously practicing critical thinking, embracing creativity, and cultivating persistence and patience, you can become a more effective problem solver in various aspects of your life.

The Role of Problem Solving in Everyday Life

Problem-solving skills play a vital role in our everyday lives, both personally and professionally. Let’s explore how problem solving impacts different areas:

Section Image

Problem Solving in Personal Life

In our personal lives, problem solving helps us navigate challenges, make decisions, and overcome obstacles. Whether it’s managing personal relationships, resolving conflicts, or finding creative solutions to household problems, effective problem solving enhances our daily lives.

For example, imagine you are planning a surprise birthday party for a loved one. You encounter various challenges along the way, such as finding the perfect venue, coordinating with guests, and organizing the event. By employing problem-solving skills, you can brainstorm ideas, create a timeline, and address any unexpected issues that may arise. This not only ensures a successful surprise party but also showcases your ability to think critically and find solutions.

Problem Solving in Professional Life

In the professional realm, problem-solving skills are highly valued by employers. Being able to identify and resolve work-related issues can lead to increased productivity, improved teamwork, and career advancement. Effective problem solving is a key competency for success in various professions.

Consider a scenario where you work in a customer service role. You encounter a dissatisfied customer who has a complex issue that needs to be resolved promptly. By utilizing problem-solving skills, you can actively listen to the customer’s concerns, analyze the situation, and propose appropriate solutions. This not only resolves the issue but also showcases your ability to handle challenging situations professionally, leaving a positive impression on both the customer and your employer.

Problem Solving in Society

At a broader level, problem solving contributes to societal progress. Many global challenges require collective problem-solving efforts, such as finding sustainable solutions to environmental issues, addressing social inequalities, or improving public services. Effective problem solving can lead to positive societal change.

For instance, let’s consider the issue of climate change. Solving this complex problem requires the collaboration of scientists, policymakers, and individuals from various fields. By employing problem-solving skills, experts can analyze data, propose innovative solutions, and implement strategies to mitigate the effects of climate change. This collective problem-solving effort can lead to a more sustainable future for generations to come.

In conclusion, problem solving is a fundamental skill that plays a significant role in our lives. By understanding the concept, mastering problem-solving stages, and employing various techniques, we can enhance our ability to overcome challenges and achieve desired outcomes. Developing strong problem-solving skills not only benefits us personally and professionally but also contributes to broader societal progress. So, let’s embrace problem solving and harness its power to shape a better future.

  • Share on Facebook
  • Email this Page
  • Share on LinkedIn

Learn Creative Problem Solving Techniques to Stimulate Innovation in Your Organization

By Kate Eby | October 20, 2017 (updated August 27, 2021)

  • Share on Facebook
  • Share on LinkedIn

Link copied

In today’s competitive business landscape, organizations need processes in place to make strong, well-informed, and innovative decisions. Problem solving - in particular creative problem solving (CPS) - is a key skill in learning how to accurately identify problems and their causes, generate potential solutions, and evaluate all the possibilities to arrive at a strong corrective course of action. Every team in any organization, regardless of department or industry, needs to be effective, creative, and quick when solving problems. 

In this article, we’ll discuss traditional and creative problem solving, and define the steps, best practices, and common barriers associated. After that, we’ll provide helpful methods and tools to identify the cause(s) of problematic situations, so you can get to the root of the issue and start to generate solutions. Then, we offer nearly 20 creative problem solving techniques to implement at your organization, or even in your personal life. Along the way, experts weigh in on the importance of problem solving, and offer tips and tricks. 

What Is Problem Solving and Decision Making?

Problem solving is the process of working through every aspect of an issue or challenge to reach a solution. Decision making is choosing one of multiple proposed solutions  — therefore, this process also includes defining and evaluating all potential options. Decision making is often one step of the problem solving process, but the two concepts are distinct. 

Collective problem solving is problem solving that includes many different parties and bridges the knowledge of different groups. Collective problem solving is common in business problem solving because workplace decisions typically affect more than one person. 

Problem solving, especially in business, is a complicated science. Not only are business conflicts multifaceted, but they often involve different personalities, levels of authority, and group dynamics. In recent years, however, there has been a rise in psychology-driven problem solving techniques, especially for the workplace. In fact, the psychology of how people solve problems is now studied formally in academic disciplines such as psychology and cognitive science.

Joe Carella

Joe Carella is the Assistant Dean for Executive Education at the University of Arizona . Joe has over 20 years of experience in helping executives and corporations in managing change and developing successful business strategies. His doctoral research and executive education engagements have seen him focus on corporate strategy, decision making and business performance with a variety of corporate clients including Hershey’s, Chevron, Fender Musical Instruments Corporation, Intel, DP World, Essilor, BBVA Compass Bank.

He explains some of the basic psychology behind problem solving: “When our brain is engaged in the process of solving problems, it is engaged in a series of steps where it processes and organizes the information it receives while developing new knowledge it uses in future steps. Creativity is embedded in this process by incorporating diverse inputs and/or new ways of organizing the information received.”

Laura MacLeod

Laura MacLeod is a Professor of Social Group Work at City University of New York, and the creator of From The Inside Out Project® , a program that coaches managers in team leadership for a variety of workplaces. She has a background in social work and over two decades of experience as a union worker, and currently leads talks on conflict resolution, problem solving, and listening skills at conferences across the country. 

MacLeod thinks of problem solving as an integral practice of successful organizations. “Problem solving is a collaborative process — all voices are heard and connected, and resolution is reached by the group,” she says. “Problems and conflicts occur in all groups and teams in the workplace, but if leaders involve everyone in working through, they will foster cohesion, engagement, and buy in. Everybody wins.”

10 tips that will make you more productive.

Top 3 Productivity Killers Ebook

Uncover the top three factors that are killing your productivity and 10 tips to help you overcome them.

Download the free e-book to overcome my productivity killers

Project Management Guide

Your one-stop shop for everything project management

the 101 guide to project management

Ready to get more out of your project management efforts? Visit our comprehensive project management guide for tips, best practices, and free resources to manage your work more effectively.

View the guide

What Is the First Step in Solving a Problem?

Although problem solving techniques vary procedurally, experts agree that the first step in solving a problem is defining the problem. Without a clear articulation of the problem at stake, it is impossible to analyze all the key factors and actors, generate possible solutions, and then evaluate them to pick the best option. 

Elliott Jaffa

Dr. Elliott Jaffa is a behavioral and management psychologist with over 25 years of problem solving training and management experience. “Start with defining the problem you want to solve,” he says, “And then define where you want to be, what you want to come away with.” He emphasizes these are the first steps in creating an actionable, clear solution. 

Bryan Mattimore

Bryan Mattimore is Co-Founder of Growth Engine, an 18-year old innovation agency based in Norwalk, CT. Bryan has facilitated over 1,000 ideation sessions and managed over 200 successful innovation projects leading to over $3 billion in new sales. His newest book is 21 Days to a Big Idea . When asked about the first critical component to successful problem solving, Mattimore says, “Defining the challenge correctly, or ‘solving the right problem’ … The three creative techniques we use to help our clients ‘identify the right problem to be solved’ are questioning assumptions, 20 questions, and problem redefinition. A good example of this was a new product challenge from a client to help them ‘invent a new iron. We got them to redefine the challenge as first: a) inventing new anti-wrinkle devices, and then b) inventing new garment care devices.”

What Are Problem Solving Skills?

To understand the necessary skills in problem solving, you should first understand the types of thinking often associated with strong decision making. Most problem solving techniques look for a balance between the following binaries:

  • Convergent vs. Divergent Thinking: Convergent thinking is bringing together disparate information or ideas to determine a single best answer or solution. This thinking style values logic, speed, and accuracy, and leaves no chance for ambiguity. Divergent thinking is focused on generating new ideas to identify and evaluate multiple possible solutions, often uniting ideas in unexpected combinations. Divergent thinking is characterized by creativity, complexity, curiosity, flexibility, originality, and risk-taking.
  • Pragmatics vs. Semantics: Pragmatics refer to the logic of the problem at hand, and semantics is how you interpret the problem to solve it. Both are important to yield the best possible solution.
  • Mathematical vs. Personal Problem Solving: Mathematical problem solving involves logic (usually leading to a single correct answer), and is useful for problems that involve numbers or require an objective, clear-cut solution. However, many workplace problems also require personal problem solving, which includes interpersonal, collaborative, and emotional intuition and skills. 

The following basic methods are fundamental problem solving concepts. Implement them to help balance the above thinking models.

  • Reproductive Thinking: Reproductive thinking uses past experience to solve a problem. However, be careful not to rely too heavily on past solutions, and to evaluate current problems individually, with their own factors and parameters. 
  • Idea Generation: The process of generating many possible courses of action to identify a solution. This is most commonly a team exercise because putting everyone’s ideas on the table will yield the greatest number of potential solutions. 

However, many of the most critical problem solving skills are “soft” skills: personal and interpersonal understanding, intuitiveness, and strong listening. 

Mattimore expands on this idea: “The seven key skills to be an effective creative problem solver that I detail in my book Idea Stormers: How to Lead and Inspire Creative Breakthroughs are: 1) curiosity 2) openness 3) a willingness to embrace ambiguity 4) the ability to identify and transfer principles across categories and disciplines 5) the desire to search for integrity in ideas, 6) the ability to trust and exercise “knowingness” and 7) the ability to envision new worlds (think Dr. Seuss, Star Wars, Hunger Games, Harry Potter, etc.).”

“As an individual contributor to problem solving it is important to exercise our curiosity, questioning, and visioning abilities,” advises Carella. “As a facilitator it is essential to allow for diverse ideas to emerge, be able to synthesize and ‘translate’ other people’s thinking, and build an extensive network of available resources.”

MacLeod says the following interpersonal skills are necessary to effectively facilitate group problem solving: “The abilities to invite participation (hear all voices, encourage silent members), not take sides, manage dynamics between the monopolizer, the scapegoat, and the bully, and deal with conflict (not avoiding it or shutting down).” 

Furthermore, Jaffa explains that the skills of a strong problem solver aren’t measurable. The best way to become a creative problem solver, he says, is to do regular creative exercises that keep you sharp and force you to think outside the box. Carella echoes this sentiment: “Neuroscience tells us that creativity comes from creating novel neural paths. Allow a few minutes each day to exercise your brain with novel techniques and brain ‘tricks’ – read something new, drive to work via a different route, count backwards, smell a new fragrance, etc.”

What Is Creative Problem Solving? History, Evolution, and Core Principles

Creative problem solving (CPS) is a method of problem solving in which you approach a problem or challenge in an imaginative, innovative way. The goal of CPS is to come up with innovative solutions, make a decision, and take action quickly. Sidney Parnes and Alex Osborn are credited with developing the creative problem solving process in the 1950s. The concept was further studied and developed at SUNY Buffalo State and the Creative Education Foundation. 

The core principles of CPS include the following:

  • Balance divergent and convergent thinking
  • Ask problems as questions
  • Defer or suspend judgement
  • Focus on “Yes, and…” rather than “No, but…”

According to Carella, “Creative problem solving is the mental process used for generating innovative and imaginative ideas as a solution to a problem or a challenge. Creative problem solving techniques can be pursued by individuals or groups.”

When asked to define CPS, Jaffa explains that it is, by nature, difficult to create boundaries for. “Creative problem solving is not cut and dry,” he says, “If you ask 100 different people the definition of creative problem solving, you’ll get 100 different responses - it’s a non-entity.”

Business presents a unique need for creative problem solving. Especially in today’s competitive landscape, organizations need to iterate quickly, innovate with intention, and constantly be at the cutting-edge of creativity and new ideas to succeed. Developing CPS skills among your workforce not only enables you to make faster, stronger in-the-moment decisions, but also inspires a culture of collaborative work and knowledge sharing. When people work together to generate multiple novel ideas and evaluate solutions, they are also more likely to arrive at an effective decision, which will improve business processes and reduce waste over time. In fact, CPS is so important that some companies now list creative problem solving skills as a job criteria.

MacLeod reiterates the vitality of creative problem solving in the workplace. “Problem solving is crucial for all groups and teams,” she says. “Leaders need to know how to guide the process, hear all voices and involve all members - it’s not easy.”

“This mental process [of CPS] is especially helpful in work environments where individuals and teams continuously struggle with new problems and challenges posed by their continuously changing environment,” adds Carella. 

Problem Solving Best Practices

By nature, creative problem solving does not have a clear-cut set of do’s and don’ts. Rather, creating a culture of strong creative problem solvers requires flexibility, adaptation, and interpersonal skills. However, there are a several best practices that you should incorporate:

  • Use a Systematic Approach: Regardless of the technique you use, choose a systematic method that satisfies your workplace conditions and constraints (time, resources, budget, etc.). Although you want to preserve creativity and openness to new ideas, maintaining a structured approach to the process will help you stay organized and focused. 
  • View Problems as Opportunities: Rather than focusing on the negatives or giving up when you encounter barriers, treat problems as opportunities to enact positive change on the situation. In fact, some experts even recommend defining problems as opportunities, to remain proactive and positive.
  • Change Perspective: Remember that there are multiple ways to solve any problem. If you feel stuck, changing perspective can help generate fresh ideas. A perspective change might entail seeking advice of a mentor or expert, understanding the context of a situation, or taking a break and returning to the problem later. “A sterile or familiar environment can stifle new thinking and new perspectives,” says Carella. “Make sure you get out to draw inspiration from spaces and people out of your usual reach.”
  • Break Down Silos: To invite the greatest possible number of perspectives to any problem, encourage teams to work cross-departmentally. This not only combines diverse expertise, but also creates a more trusting and collaborative environment, which is essential to effective CPS. According to Carella, “Big challenges are always best tackled by a group of people rather than left to a single individual. Make sure you create a space where the team can concentrate and convene.”
  • Employ Strong Leadership or a Facilitator: Some companies choose to hire an external facilitator that teaches problem solving techniques, best practices, and practicums to stimulate creative problem solving. But, internal managers and staff can also oversee these activities. Regardless of whether the facilitator is internal or external, choose a strong leader who will value others’ ideas and make space for creative solutions.  Mattimore has specific advice regarding the role of a facilitator: “When facilitating, get the group to name a promising idea (it will crystalize the idea and make it more memorable), and facilitate deeper rather than broader. Push for not only ideas, but how an idea might specifically work, some of its possible benefits, who and when would be interested in an idea, etc. This fleshing-out process with a group will generate fewer ideas, but at the end of the day will yield more useful concepts that might be profitably pursued.” Additionally, Carella says that “Executives and managers don’t necessarily have to be creative problem solvers, but need to make sure that their teams are equipped with the right tools and resources to make this happen. Also they need to be able to foster an environment where failing fast is accepted and celebrated.”
  • Evaluate Your Current Processes: This practice can help you unlock bottlenecks, and also identify gaps in your data and information management, both of which are common roots of business problems.

MacLeod offers the following additional advice, “Always get the facts. Don’t jump too quickly to a solution – working through [problems] takes time and patience.”

Mattimore also stresses that how you introduce creative problem solving is important. “Do not start by introducing a new company-wide innovation process,” he says. “Instead, encourage smaller teams to pursue specific creative projects, and then build a process from the ground up by emulating these smaller teams’ successful approaches. We say: ‘You don’t innovate by changing the culture, you change the culture by innovating.’”

Barriers to Effective Problem Solving

Learning how to effectively solve problems is difficult and takes time and continual adaptation. There are several common barriers to successful CPS, including:

  • Confirmation Bias: The tendency to only search for or interpret information that confirms a person’s existing ideas. People misinterpret or disregard data that doesn’t align with their beliefs.
  • Mental Set: People’s inclination to solve problems using the same tactics they have used to solve problems in the past. While this can sometimes be a useful strategy (see Analogical Thinking in a later section), it often limits inventiveness and creativity.
  • Functional Fixedness: This is another form of narrow thinking, where people become “stuck” thinking in a certain way and are unable to be flexible or change perspective.
  • Unnecessary Constraints: When people are overwhelmed with a problem, they can invent and impose additional limits on solution avenues. To avoid doing this, maintain a structured, level-headed approach to evaluating causes, effects, and potential solutions.
  • Groupthink: Be wary of the tendency for group members to agree with each other — this might be out of conflict avoidance, path of least resistance, or fear of speaking up. While this agreeableness might make meetings run smoothly, it can actually stunt creativity and idea generation, therefore limiting the success of your chosen solution.
  • Irrelevant Information: The tendency to pile on multiple problems and factors that may not even be related to the challenge at hand. This can cloud the team’s ability to find direct, targeted solutions.
  • Paradigm Blindness: This is found in people who are unwilling to adapt or change their worldview, outlook on a particular problem, or typical way of processing information. This can erode the effectiveness of problem solving techniques because they are not aware of the narrowness of their thinking, and therefore cannot think or act outside of their comfort zone.

According to Jaffa, the primary barrier of effective problem solving is rigidity. “The most common things people say are, ‘We’ve never done it before,’ or ‘We’ve always done it this way.’” While these feelings are natural, Jaffa explains that this rigid thinking actually precludes teams from identifying creative, inventive solutions that result in the greatest benefit.

“The biggest barrier to creative problem solving is a lack of awareness – and commitment to – training employees in state-of-the-art creative problem-solving techniques,” Mattimore explains. “We teach our clients how to use ideation techniques (as many as two-dozen different creative thinking techniques) to help them generate more and better ideas. Ideation techniques use specific and customized stimuli, or ‘thought triggers’ to inspire new thinking and new ideas.” 

MacLeod adds that ineffective or rushed leadership is another common culprit. “We're always in a rush to fix quickly,” she says. “Sometimes leaders just solve problems themselves, making unilateral decisions to save time. But the investment is well worth it — leaders will have less on their plates if they can teach and eventually trust the team to resolve. Teams feel empowered and engagement and investment increases.”

Strategies for Problem Cause Identification

As discussed, most experts agree that the first and most crucial step in problem solving is defining the problem. Once you’ve done this, however, it may not be appropriate to move straight to the solution phase. Rather, it is often helpful to identify the cause(s) of the problem: This will better inform your solution planning and execution, and help ensure that you don’t fall victim to the same challenges in the future. 

Below are some of the most common strategies for identifying the cause of a problem:

  • Root Cause Analysis: This method helps identify the most critical cause of a problem. A factor is considered a root cause if removing it prevents the problem from recurring. Performing a root cause analysis is a 12 step process that includes: define the problem, gather data on the factors contributing to the problem, group the factors based on shared characteristics, and create a cause-and-effect timeline to determine the root cause. After that, you identify and evaluate corrective actions to eliminate the root cause.

Fishbone Diagram Template

‌ Download Fishbone Diagram Template - Excel

Interrelationship Diagrams

Download 5 Whys Template   Excel  |  Word  |  PDF   

Problem Solving Techniques and Strategies

In this section, we’ll explain several traditional and creative problem solving methods that you can use to identify challenges, create actionable goals, and resolve problems as they arise. Although there is often procedural and objective crossover among techniques, they are grouped by theme so you can identify which method works best for your organization.

Divergent Creative Problem Solving Techniques

Brainstorming: One of the most common methods of divergent thinking, brainstorming works best in an open group setting where everyone is encouraged to share their creative ideas. The goal is to generate as many ideas as possible – you analyze, critique, and evaluate the ideas only after the brainstorming session is complete. To learn more specific brainstorming techniques, read this article . 

Mind Mapping: This is a visual thinking tool where you graphically depict concepts and their relation to one another. You can use mind mapping to structure the information you have, analyze and synthesize it, and generate solutions and new ideas from there. The goal of a mind map is to simplify complicated problems so you can more clearly identify solutions.

Appreciative Inquiry (AI): The basic assumption of AI is that “an organization is a mystery to be embraced.” Using this principle, AI takes a positive, inquisitive approach to identifying the problem, analyzing the causes, and presenting possible solutions. The five principles of AI emphasize dialogue, deliberate language and outlook, and social bonding. 

Lateral Thinking: This is an indirect problem solving approach centered on the momentum of idea generation. As opposed to critical thinking, where people value ideas based on their truth and the absence of errors, lateral thinking values the “movement value” of new ideas: This means that you reward team members for producing a large volume of new ideas rapidly. With this approach, you’ll generate many new ideas before approving or rejecting any.

Problem Solving Techniques to Change Perspective

Constructive Controversy: This is a structured approach to group decision making to preserve critical thinking and disagreement while maintaining order. After defining the problem and presenting multiple courses of action, the group divides into small advocacy teams who research, analyze, and refute a particular option. Once each advocacy team has presented its best-case scenario, the group has a discussion (advocacy teams still defend their presented idea). Arguing and playing devil’s advocate is encouraged to reach an understanding of the pros and cons of each option. Next, advocacy teams abandon their cause and evaluate the options openly until they reach a consensus. All team members formally commit to the decision, regardless of whether they advocated for it at the beginning. You can learn more about the goals and steps in constructive controversy here . 

Carella is a fan of this approach. “Create constructive controversy by having two teams argue the pros and cons of a certain idea,” he says. “It forces unconscious biases to surface and gives space for new ideas to formulate.”

Abstraction: In this method, you apply the problem to a fictional model of the current situation. Mapping an issue to an abstract situation can shed extraneous or irrelevant factors, and reveal places where you are overlooking obvious solutions or becoming bogged down by circumstances. 

Analogical Thinking: Also called analogical reasoning , this method relies on an analogy: using information from one problem to solve another problem (these separate problems are called domains). It can be difficult for teams to create analogies among unrelated problems, but it is a strong technique to help you identify repeated issues, zoom out and change perspective, and prevent the problems from occurring in the future. .

CATWOE: This framework ensures that you evaluate the perspectives of those whom your decision will impact. The factors and questions to consider include (which combine to make the acronym CATWOE):

  • Customers: Who is on the receiving end of your decisions? What problem do they currently have, and how will they react to your proposed solution?
  • Actors: Who is acting to bring your solution to fruition? How will they respond and be affected by your decision?
  • Transformation Process: What processes will you employ to transform your current situation and meet your goals? What are the inputs and outputs?
  • World View: What is the larger context of your proposed solution? What is the larger, big-picture problem you are addressing?
  • Owner: Who actually owns the process? How might they influence your proposed solution (positively or negatively), and how can you influence them to help you?
  • Environmental Constraints: What are the limits (environmental, resource- and budget-wise, ethical, legal, etc.) on your ideas? How will you revise or work around these constraints?

Complex Problem Solving

Soft Systems Methodology (SSM): For extremely complex problems, SSM can help you identify how factors interact, and determine the best course of action. SSM was borne out of organizational process modeling and general systems theory, which hold that everything is part of a greater, interconnected system: This idea works well for “hard” problems (where logic and a single correct answer are prioritized), and less so for “soft” problems (i.e., human problems where factors such as personality, emotions, and hierarchy come into play). Therefore, SSM defines a seven step process for problem solving: 

  • Begin with the problem or problematic situation 
  • Express the problem or situation and build a rich picture of the themes of the problem 
  • Identify the root causes of the problem (most commonly with CATWOE)
  • Build conceptual models of human activity surrounding the problem or situation
  • Compare models with real-world happenings
  • Identify changes to the situation that are both feasible and desirable
  • Take action to implement changes and improve the problematic situation

SSM can be used for any complex soft problem, and is also a useful tool in change management . 

Failure Mode and Effects Analysis (FMEA): This method helps teams anticipate potential problems and take steps to mitigate them. Use FMEA when you are designing (redesigning) a complex function, process, product, or service. First, identify the failure modes, which are the possible ways that a project could fail. Then, perform an effects analysis to understand the consequences of each of the potential downfalls. This exercise is useful for internalizing the severity of each potential failure and its effects so you can make adjustments or safeties in your plan. 

FMEA Template

‌ Download FMEA Template  

Problem Solving Based on Data or Logic (Heuristic Methods)

TRIZ: A Russian-developed problem solving technique that values logic, analysis, and forecasting over intuition or soft reasoning. TRIZ (translated to “theory of inventive problem solving” or TIPS in English) is a systematic approach to defining and identifying an inventive solution to difficult problems. The method offers several strategies for arriving at an inventive solution, including a contradictions matrix to assess trade-offs among solutions, a Su-Field analysis which uses formulas to describe a system by its structure, and ARIZ (algorithm of inventive problem solving) which uses algorithms to find inventive solutions. 

Inductive Reasoning: A logical method that uses evidence to conclude that a certain answer is probable (this is opposed to deductive reasoning, where the answer is assumed to be true). Inductive reasoning uses a limited number of observations to make useful, logical conclusions (for example, the Scientific Method is an extreme example of inductive reasoning). However, this method doesn’t always map well to human problems in the workplace — in these instances, managers should employ intuitive inductive reasoning , which allows for more automatic, implicit conclusions so that work can progress. This, of course, retains the principle that these intuitive conclusions are not necessarily the one and only correct answer. 

Process-Oriented Problem Solving Methods

Plan Do Check Act (PDCA): This is an iterative management technique used to ensure continual improvement of products or processes. First, teams plan (establish objectives to meet desired end results), then do (implement the plan, new processes, or produce the output), then check (compare expected with actual results), and finally act (define how the organization will act in the future, based on the performance and knowledge gained in the previous three steps). 

Means-End Analysis (MEA): The MEA strategy is to reduce the difference between the current (problematic) state and the goal state. To do so, teams compile information on the multiple factors that contribute to the disparity between the current and goal states. Then they try to change or eliminate the factors one by one, beginning with the factor responsible for the greatest difference in current and goal state. By systematically tackling the multiple factors that cause disparity between the problem and desired outcome, teams can better focus energy and control each step of the process. 

Hurson’s Productive Thinking Model: This technique was developed by Tim Hurson, and is detailed in his 2007 book Think Better: An Innovator’s Guide to Productive Thinking . The model outlines six steps that are meant to give structure while maintaining creativity and critical thinking: 1) Ask “What is going on?” 2) Ask “What is success?” 3) Ask “What is the question?” 4) Generate answers 5) Forge the solution 6) Align resources. 

Control Influence Accept (CIA): The basic premise of CIA is that how you respond to problems determines how successful you will be in overcoming them. Therefore, this model is both a problem solving technique and stress-management tool that ensures you aren’t responding to problems in a reactive and unproductive way. The steps in CIA include:

  • Control: Identify the aspects of the problem that are within your control.
  • Influence: Identify the aspects of the problem that you cannot control, but that you can influence.
  • Accept: Identify the aspects of the problem that you can neither control nor influence, and react based on this composite information. 

GROW Model: This is a straightforward problem solving method for goal setting that clearly defines your goals and current situation, and then asks you to define the potential solutions and be realistic about your chosen course of action. The steps break down as follows:

  • Goal: What do you want?
  • Reality: Where are you now?
  • Options: What could you do?
  • Will: What will you do?

OODA Loop: This acronym stands for observe, orient, decide, and act. This approach is a decision-making cycle that values agility and flexibility over raw human force. It is framed as a loop because of the understanding that any team will continually encounter problems or opponents to success and have to overcome them.

There are also many un-named creative problem solving techniques that follow a sequenced series of steps. While the exact steps vary slightly, they all follow a similar trajectory and aim to accomplish similar goals of problem, cause, and goal identification, idea generation, and active solution implementation.

Identify Goal

Define Problem

Define Problem

Gather Data

Define Causes

Identify Options

Clarify Problem

Generate Ideas

Evaluate Options

Generate Ideas

Choose the Best Solution

Implement Solution

Select Solution

Take Action

-

MacLeod offers her own problem solving procedure, which echoes the above steps:

“1. Recognize the Problem: State what you see. Sometimes the problem is covert. 2. Identify: Get the facts — What exactly happened? What is the issue? 3. and 4. Explore and Connect: Dig deeper and encourage group members to relate their similar experiences. Now you're getting more into the feelings and background [of the situation], not just the facts.  5. Possible Solutions: Consider and brainstorm ideas for resolution. 6. Implement: Choose a solution and try it out — this could be role play and/or a discussion of how the solution would be put in place.  7. Evaluate: Revisit to see if the solution was successful or not.”

Many of these problem solving techniques can be used in concert with one another, or multiple can be appropriate for any given problem. It’s less about facilitating a perfect CPS session, and more about encouraging team members to continually think outside the box and push beyond personal boundaries that inhibit their innovative thinking. So, try out several methods, find those that resonate best with your team, and continue adopting new techniques and adapting your processes along the way. 

Improve Problem Solving with Work Management in Smartsheet

Empower your people to go above and beyond with a flexible platform designed to match the needs of your team — and adapt as those needs change. 

The Smartsheet platform makes it easy to plan, capture, manage, and report on work from anywhere, helping your team be more effective and get more done. Report on key metrics and get real-time visibility into work as it happens with roll-up reports, dashboards, and automated workflows built to keep your team connected and informed. 

When teams have clarity into the work getting done, there’s no telling how much more they can accomplish in the same amount of time.  Try Smartsheet for free, today.

Discover why over 90% of Fortune 100 companies trust Smartsheet to get work done.

40 problem-solving techniques and processes

Problem solving workshop

All teams and organizations encounter challenges. Approaching those challenges without a structured problem solving process can end up making things worse.

Proven problem solving techniques such as those outlined below can guide your group through a process of identifying problems and challenges , ideating on possible solutions , and then evaluating and implementing the most suitable .

In this post, you'll find problem-solving tools you can use to develop effective solutions. You'll also find some tips for facilitating the problem solving process and solving complex problems.

Design your next session with SessionLab

Join the 150,000+ facilitators 
using SessionLab.

Recommended Articles

A step-by-step guide to planning a workshop, 54 great online tools for workshops and meetings, how to create an unforgettable training session in 8 simple steps.

  • 18 Free Facilitation Resources We Think You’ll Love

What is problem solving?

Problem solving is a process of finding and implementing a solution to a challenge or obstacle. In most contexts, this means going through a problem solving process that begins with identifying the issue, exploring its root causes, ideating and refining possible solutions before implementing and measuring the impact of that solution.

For simple or small problems, it can be tempting to skip straight to implementing what you believe is the right solution. The danger with this approach is that without exploring the true causes of the issue, it might just occur again or your chosen solution may cause other issues.

Particularly in the world of work, good problem solving means using data to back up each step of the process, bringing in new perspectives and effectively measuring the impact of your solution.

Effective problem solving can help ensure that your team or organization is well positioned to overcome challenges, be resilient to change and create innovation. In my experience, problem solving is a combination of skillset, mindset and process, and it’s especially vital for leaders to cultivate this skill.

A group of people looking at a poster with notes on it

What is the seven step problem solving process?

A problem solving process is a step-by-step framework from going from discovering a problem all the way through to implementing a solution.

With practice, this framework can become intuitive, and innovative companies tend to have a consistent and ongoing ability to discover and tackle challenges when they come up.

You might see everything from a four step problem solving process through to seven steps. While all these processes cover roughly the same ground, I’ve found a seven step problem solving process is helpful for making all key steps legible.

We’ll outline that process here and then follow with techniques you can use to explore and work on that step of the problem solving process with a group.

The seven-step problem solving process is:

1. Problem identification 

The first stage of any problem solving process is to identify the problem(s) you need to solve. This often looks like using group discussions and activities to help a group surface and effectively articulate the challenges they’re facing and wish to resolve.

Be sure to align with your team on the exact definition and nature of the problem you’re solving. An effective process is one where everyone is pulling in the same direction – ensure clarity and alignment now to help avoid misunderstandings later.

2. Problem analysis and refinement

The process of problem analysis means ensuring that the problem you are seeking to solve is  the   right problem . Choosing the right problem to solve means you are on the right path to creating the right solution.

At this stage, you may look deeper at the problem you identified to try and discover the root cause at the level of people or process. You may also spend some time sourcing data, consulting relevant parties and creating and refining a problem statement.

Problem refinement means adjusting scope or focus of the problem you will be aiming to solve based on what comes up during your analysis. As you analyze data sources, you might discover that the root cause means you need to adjust your problem statement. Alternatively, you might find that your original problem statement is too big to be meaningful approached within your current project.

Remember that the goal of any problem refinement is to help set the stage for effective solution development and deployment. Set the right focus and get buy-in from your team here and you’ll be well positioned to move forward with confidence.

3. Solution generation

Once your group has nailed down the particulars of the problem you wish to solve, you want to encourage a free flow of ideas connecting to solving that problem. This can take the form of problem solving games that encourage creative thinking or techniquess designed to produce working prototypes of possible solutions. 

The key to ensuring the success of this stage of the problem solving process is to encourage quick, creative thinking and create an open space where all ideas are considered. The best solutions can often come from unlikely places and by using problem solving techniques that celebrate invention, you might come up with solution gold. 

the problem solving approach involves

4. Solution development

No solution is perfect right out of the gate. It’s important to discuss and develop the solutions your group has come up with over the course of following the previous problem solving steps in order to arrive at the best possible solution. Problem solving games used in this stage involve lots of critical thinking, measuring potential effort and impact, and looking at possible solutions analytically. 

During this stage, you will often ask your team to iterate and improve upon your front-running solutions and develop them further. Remember that problem solving strategies always benefit from a multitude of voices and opinions, and not to let ego get involved when it comes to choosing which solutions to develop and take further.

Finding the best solution is the goal of all problem solving workshops and here is the place to ensure that your solution is well thought out, sufficiently robust and fit for purpose. 

5. Decision making and planning

Nearly there! Once you’ve got a set of possible, you’ll need to make a decision on which to implement. This can be a consensus-based group decision or it might be for a leader or major stakeholder to decide. You’ll find a set of effective decision making methods below.

Once your group has reached consensus and selected a solution, there are some additional actions that also need to be decided upon. You’ll want to work on allocating ownership of the project, figure out who will do what, how the success of the solution will be measured and decide the next course of action.

Set clear accountabilities, actions, timeframes, and follow-ups for your chosen solution. Make these decisions and set clear next-steps in the problem solving workshop so that everyone is aligned and you can move forward effectively as a group. 

Ensuring that you plan for the roll-out of a solution is one of the most important problem solving steps. Without adequate planning or oversight, it can prove impossible to measure success or iterate further if the problem was not solved. 

6. Solution implementation 

This is what we were waiting for! All problem solving processes have the end goal of implementing an effective and impactful solution that your group has confidence in.

Project management and communication skills are key here – your solution may need to adjust when out in the wild or you might discover new challenges along the way. For some solutions, you might also implement a test with a small group and monitor results before rolling it out to an entire company.

You should have a clear owner for your solution who will oversee the plans you made together and help ensure they’re put into place. This person will often coordinate the implementation team and set-up processes to measure the efficacy of your solution too.

7. Solution evaluation 

So you and your team developed a great solution to a problem and have a gut feeling it’s been solved. Work done, right? Wrong. All problem solving strategies benefit from evaluation, consideration, and feedback.

You might find that the solution does not work for everyone, might create new problems, or is potentially so successful that you will want to roll it out to larger teams or as part of other initiatives. 

None of that is possible without taking the time to evaluate the success of the solution you developed in your problem solving model and adjust if necessary.

Remember that the problem solving process is often iterative and it can be common to not solve complex issues on the first try. Even when this is the case, you and your team will have generated learning that will be important for future problem solving workshops or in other parts of the organization. 

It’s also worth underlining how important record keeping is throughout the problem solving process. If a solution didn’t work, you need to have the data and records to see why that was the case. If you go back to the drawing board, notes from the previous workshop can help save time.

What does an effective problem solving process look like?

Every effective problem solving process begins with an agenda . In our experience, a well-structured problem solving workshop is one of the best methods for successfully guiding a group from exploring a problem to implementing a solution.

The format of a workshop ensures that you can get buy-in from your group, encourage free-thinking and solution exploration before making a decision on what to implement following the session.

This Design Sprint 2.0 template is an effective problem solving process from top agency AJ&Smart. It’s a great format for the entire problem solving process, with four-days of workshops designed to surface issues, explore solutions and even test a solution.

Check it for an example of how you might structure and run a problem solving process and feel free to copy and adjust it your needs!

For a shorter process you can run in a single afternoon, this remote problem solving agenda will guide you effectively in just a couple of hours.

Whatever the length of your workshop, by using SessionLab, it’s easy to go from an idea to a complete agenda . Start by dragging and dropping your core problem solving activities into place . Add timings, breaks and necessary materials before sharing your agenda with your colleagues.

The resulting agenda will be your guide to an effective and productive problem solving session that will also help you stay organized on the day!

the problem solving approach involves

Complete problem-solving methods

In this section, we’ll look at in-depth problem-solving methods that provide a complete end-to-end process for developing effective solutions. These will help guide your team from the discovery and definition of a problem through to delivering the right solution.

If you’re looking for an all-encompassing method or problem-solving model, these processes are a great place to start. They’ll ask your team to challenge preconceived ideas and adopt a mindset for solving problems more effectively.

Six Thinking Hats

Individual approaches to solving a problem can be very different based on what team or role an individual holds. It can be easy for existing biases or perspectives to find their way into the mix, or for internal politics to direct a conversation.

Six Thinking Hats is a classic method for identifying the problems that need to be solved and enables your team to consider them from different angles, whether that is by focusing on facts and data, creative solutions, or by considering why a particular solution might not work.

Like all problem-solving frameworks, Six Thinking Hats is effective at helping teams remove roadblocks from a conversation or discussion and come to terms with all the aspects necessary to solve complex problems.

The Six Thinking Hats   #creative thinking   #meeting facilitation   #problem solving   #issue resolution   #idea generation   #conflict resolution   The Six Thinking Hats are used by individuals and groups to separate out conflicting styles of thinking. They enable and encourage a group of people to think constructively together in exploring and implementing change, rather than using argument to fight over who is right and who is wrong.

Lightning Decision Jam

Featured courtesy of Jonathan Courtney of AJ&Smart Berlin, Lightning Decision Jam is one of those strategies that should be in every facilitation toolbox. Exploring problems and finding solutions is often creative in nature, though as with any creative process, there is the potential to lose focus and get lost.

Unstructured discussions might get you there in the end, but it’s much more effective to use a method that creates a clear process and team focus.

In Lightning Decision Jam, participants are invited to begin by writing challenges, concerns, or mistakes on post-its without discussing them before then being invited by the moderator to present them to the group.

From there, the team vote on which problems to solve and are guided through steps that will allow them to reframe those problems, create solutions and then decide what to execute on. 

By deciding the problems that need to be solved as a team before moving on, this group process is great for ensuring the whole team is aligned and can take ownership over the next stages. 

Lightning Decision Jam (LDJ)   #action   #decision making   #problem solving   #issue analysis   #innovation   #design   #remote-friendly   It doesn’t matter where you work and what your job role is, if you work with other people together as a team, you will always encounter the same challenges: Unclear goals and miscommunication that cause busy work and overtime Unstructured meetings that leave attendants tired, confused and without clear outcomes. Frustration builds up because internal challenges to productivity are not addressed Sudden changes in priorities lead to a loss of focus and momentum Muddled compromise takes the place of clear decision- making, leaving everybody to come up with their own interpretation. In short, a lack of structure leads to a waste of time and effort, projects that drag on for too long and frustrated, burnt out teams. AJ&Smart has worked with some of the most innovative, productive companies in the world. What sets their teams apart from others is not better tools, bigger talent or more beautiful offices. The secret sauce to becoming a more productive, more creative and happier team is simple: Replace all open discussion or brainstorming with a structured process that leads to more ideas, clearer decisions and better outcomes. When a good process provides guardrails and a clear path to follow, it becomes easier to come up with ideas, make decisions and solve problems. This is why AJ&Smart created Lightning Decision Jam (LDJ). It’s a simple and short, but powerful group exercise that can be run either in-person, in the same room, or remotely with distributed teams.

Problem Definition Process

While problems can be complex, the problem-solving methods you use to identify and solve those problems can often be simple in design. 

By taking the time to truly identify and define a problem before asking the group to reframe the challenge as an opportunity, this method is a great way to enable change.

Begin by identifying a focus question and exploring the ways in which it manifests before splitting into five teams who will each consider the problem using a different method: escape, reversal, exaggeration, distortion or wishful. Teams develop a problem objective and create ideas in line with their method before then feeding them back to the group.

This method is great for enabling in-depth discussions while also creating space for finding creative solutions too!

Problem Definition   #problem solving   #idea generation   #creativity   #online   #remote-friendly   A problem solving technique to define a problem, challenge or opportunity and to generate ideas.

The 5 Whys 

Sometimes, a group needs to go further with their strategies and analyze the root cause at the heart of organizational issues. An RCA or root cause analysis is the process of identifying what is at the heart of business problems or recurring challenges. 

The 5 Whys is a simple and effective method of helping a group go find the root cause of any problem or challenge and conduct analysis that will deliver results. 

By beginning with the creation of a problem statement and going through five stages to refine it, The 5 Whys provides everything you need to truly discover the cause of an issue.

The 5 Whys   #hyperisland   #innovation   This simple and powerful method is useful for getting to the core of a problem or challenge. As the title suggests, the group defines a problems, then asks the question “why” five times, often using the resulting explanation as a starting point for creative problem solving.

World Cafe is a simple but powerful facilitation technique to help bigger groups to focus their energy and attention on solving complex problems.

World Cafe enables this approach by creating a relaxed atmosphere where participants are able to self-organize and explore topics relevant and important to them which are themed around a central problem-solving purpose. Create the right atmosphere by modeling your space after a cafe and after guiding the group through the method, let them take the lead!

Making problem-solving a part of your organization’s culture in the long term can be a difficult undertaking. More approachable formats like World Cafe can be especially effective in bringing people unfamiliar with workshops into the fold. 

World Cafe   #hyperisland   #innovation   #issue analysis   World Café is a simple yet powerful method, originated by Juanita Brown, for enabling meaningful conversations driven completely by participants and the topics that are relevant and important to them. Facilitators create a cafe-style space and provide simple guidelines. Participants then self-organize and explore a set of relevant topics or questions for conversation.

Discovery & Action Dialogue (DAD)

One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions.

With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so. It’s great at helping remove resistance to change and can help get buy-in at every level too!

This process of enabling frontline ownership is great in ensuring follow-through and is one of the methods you will want in your toolbox as a facilitator.

Discovery & Action Dialogue (DAD)   #idea generation   #liberating structures   #action   #issue analysis   #remote-friendly   DADs make it easy for a group or community to discover practices and behaviors that enable some individuals (without access to special resources and facing the same constraints) to find better solutions than their peers to common problems. These are called positive deviant (PD) behaviors and practices. DADs make it possible for people in the group, unit, or community to discover by themselves these PD practices. DADs also create favorable conditions for stimulating participants’ creativity in spaces where they can feel safe to invent new and more effective practices. Resistance to change evaporates as participants are unleashed to choose freely which practices they will adopt or try and which problems they will tackle. DADs make it possible to achieve frontline ownership of solutions.
Design Sprint 2.0

Want to see how a team can solve big problems and move forward with prototyping and testing solutions in a few days? The Design Sprint 2.0 template from Jake Knapp, author of Sprint, is a complete agenda for a with proven results.

Developing the right agenda can involve difficult but necessary planning. Ensuring all the correct steps are followed can also be stressful or time-consuming depending on your level of experience.

Use this complete 4-day workshop template if you are finding there is no obvious solution to your challenge and want to focus your team around a specific problem that might require a shortcut to launching a minimum viable product or waiting for the organization-wide implementation of a solution.

Open space technology

Open space technology- developed by Harrison Owen – creates a space where large groups are invited to take ownership of their problem solving and lead individual sessions. Open space technology is a great format when you have a great deal of expertise and insight in the room and want to allow for different takes and approaches on a particular theme or problem you need to be solved.

Start by bringing your participants together to align around a central theme and focus their efforts. Explain the ground rules to help guide the problem-solving process and then invite members to identify any issue connecting to the central theme that they are interested in and are prepared to take responsibility for.

Once participants have decided on their approach to the core theme, they write their issue on a piece of paper, announce it to the group, pick a session time and place, and post the paper on the wall. As the wall fills up with sessions, the group is then invited to join the sessions that interest them the most and which they can contribute to, then you’re ready to begin!

Everyone joins the problem-solving group they’ve signed up to, record the discussion and if appropriate, findings can then be shared with the rest of the group afterward.

Open Space Technology   #action plan   #idea generation   #problem solving   #issue analysis   #large group   #online   #remote-friendly   Open Space is a methodology for large groups to create their agenda discerning important topics for discussion, suitable for conferences, community gatherings and whole system facilitation

Techniques to identify and analyze problems

Using a problem-solving method to help a team identify and analyze a problem can be a quick and effective addition to any workshop or meeting.

While further actions are always necessary, you can generate momentum and alignment easily, and these activities are a great place to get started.

We’ve put together this list of techniques to help you and your team with problem identification, analysis, and discussion that sets the foundation for developing effective solutions.

Let’s take a look!

Fishbone Analysis

Organizational or team challenges are rarely simple, and it’s important to remember that one problem can be an indication of something that goes deeper and may require further consideration to be solved.

Fishbone Analysis helps groups to dig deeper and understand the origins of a problem. It’s a great example of a root cause analysis method that is simple for everyone on a team to get their head around. 

Participants in this activity are asked to annotate a diagram of a fish, first adding the problem or issue to be worked on at the head of a fish before then brainstorming the root causes of the problem and adding them as bones on the fish. 

Using abstractions such as a diagram of a fish can really help a team break out of their regular thinking and develop a creative approach.

Fishbone Analysis   #problem solving   ##root cause analysis   #decision making   #online facilitation   A process to help identify and understand the origins of problems, issues or observations.

Problem Tree 

Encouraging visual thinking can be an essential part of many strategies. By simply reframing and clarifying problems, a group can move towards developing a problem solving model that works for them. 

In Problem Tree, groups are asked to first brainstorm a list of problems – these can be design problems, team problems or larger business problems – and then organize them into a hierarchy. The hierarchy could be from most important to least important or abstract to practical, though the key thing with problem solving games that involve this aspect is that your group has some way of managing and sorting all the issues that are raised.

Once you have a list of problems that need to be solved and have organized them accordingly, you’re then well-positioned for the next problem solving steps.

Problem tree   #define intentions   #create   #design   #issue analysis   A problem tree is a tool to clarify the hierarchy of problems addressed by the team within a design project; it represents high level problems or related sublevel problems.

SWOT Analysis

Chances are you’ve heard of the SWOT Analysis before. This problem-solving method focuses on identifying strengths, weaknesses, opportunities, and threats is a tried and tested method for both individuals and teams.

Start by creating a desired end state or outcome and bare this in mind – any process solving model is made more effective by knowing what you are moving towards. Create a quadrant made up of the four categories of a SWOT analysis and ask participants to generate ideas based on each of those quadrants.

Once you have those ideas assembled in their quadrants, cluster them together based on their affinity with other ideas. These clusters are then used to facilitate group conversations and move things forward. 

SWOT analysis   #gamestorming   #problem solving   #action   #meeting facilitation   The SWOT Analysis is a long-standing technique of looking at what we have, with respect to the desired end state, as well as what we could improve on. It gives us an opportunity to gauge approaching opportunities and dangers, and assess the seriousness of the conditions that affect our future. When we understand those conditions, we can influence what comes next.

Agreement-Certainty Matrix

Not every problem-solving approach is right for every challenge, and deciding on the right method for the challenge at hand is a key part of being an effective team.

The Agreement Certainty matrix helps teams align on the nature of the challenges facing them. By sorting problems from simple to chaotic, your team can understand what methods are suitable for each problem and what they can do to ensure effective results. 

If you are already using Liberating Structures techniques as part of your problem-solving strategy, the Agreement-Certainty Matrix can be an invaluable addition to your process. We’ve found it particularly if you are having issues with recurring problems in your organization and want to go deeper in understanding the root cause. 

Agreement-Certainty Matrix   #issue analysis   #liberating structures   #problem solving   You can help individuals or groups avoid the frequent mistake of trying to solve a problem with methods that are not adapted to the nature of their challenge. The combination of two questions makes it possible to easily sort challenges into four categories: simple, complicated, complex , and chaotic .  A problem is simple when it can be solved reliably with practices that are easy to duplicate.  It is complicated when experts are required to devise a sophisticated solution that will yield the desired results predictably.  A problem is complex when there are several valid ways to proceed but outcomes are not predictable in detail.  Chaotic is when the context is too turbulent to identify a path forward.  A loose analogy may be used to describe these differences: simple is like following a recipe, complicated like sending a rocket to the moon, complex like raising a child, and chaotic is like the game “Pin the Tail on the Donkey.”  The Liberating Structures Matching Matrix in Chapter 5 can be used as the first step to clarify the nature of a challenge and avoid the mismatches between problems and solutions that are frequently at the root of chronic, recurring problems.

Organizing and charting a team’s progress can be important in ensuring its success. SQUID (Sequential Question and Insight Diagram) is a great model that allows a team to effectively switch between giving questions and answers and develop the skills they need to stay on track throughout the process. 

Begin with two different colored sticky notes – one for questions and one for answers – and with your central topic (the head of the squid) on the board. Ask the group to first come up with a series of questions connected to their best guess of how to approach the topic. Ask the group to come up with answers to those questions, fix them to the board and connect them with a line. After some discussion, go back to question mode by responding to the generated answers or other points on the board.

It’s rewarding to see a diagram grow throughout the exercise, and a completed SQUID can provide a visual resource for future effort and as an example for other teams.

SQUID   #gamestorming   #project planning   #issue analysis   #problem solving   When exploring an information space, it’s important for a group to know where they are at any given time. By using SQUID, a group charts out the territory as they go and can navigate accordingly. SQUID stands for Sequential Question and Insight Diagram.

To continue with our nautical theme, Speed Boat is a short and sweet activity that can help a team quickly identify what employees, clients or service users might have a problem with and analyze what might be standing in the way of achieving a solution.

Methods that allow for a group to make observations, have insights and obtain those eureka moments quickly are invaluable when trying to solve complex problems.

In Speed Boat, the approach is to first consider what anchors and challenges might be holding an organization (or boat) back. Bonus points if you are able to identify any sharks in the water and develop ideas that can also deal with competitors!   

Speed Boat   #gamestorming   #problem solving   #action   Speedboat is a short and sweet way to identify what your employees or clients don’t like about your product/service or what’s standing in the way of a desired goal.

The Journalistic Six

Some of the most effective ways of solving problems is by encouraging teams to be more inclusive and diverse in their thinking.

Based on the six key questions journalism students are taught to answer in articles and news stories, The Journalistic Six helps create teams to see the whole picture. By using who, what, when, where, why, and how to facilitate the conversation and encourage creative thinking, your team can make sure that the problem identification and problem analysis stages of the are covered exhaustively and thoughtfully. Reporter’s notebook and dictaphone optional.

The Journalistic Six – Who What When Where Why How   #idea generation   #issue analysis   #problem solving   #online   #creative thinking   #remote-friendly   A questioning method for generating, explaining, investigating ideas.

Individual and group perspectives are incredibly important, but what happens if people are set in their minds and need a change of perspective in order to approach a problem more effectively?

Flip It is a method we love because it is both simple to understand and run, and allows groups to understand how their perspectives and biases are formed. 

Participants in Flip It are first invited to consider concerns, issues, or problems from a perspective of fear and write them on a flip chart. Then, the group is asked to consider those same issues from a perspective of hope and flip their understanding.  

No problem and solution is free from existing bias and by changing perspectives with Flip It, you can then develop a problem solving model quickly and effectively.

Flip It!   #gamestorming   #problem solving   #action   Often, a change in a problem or situation comes simply from a change in our perspectives. Flip It! is a quick game designed to show players that perspectives are made, not born.

LEGO Challenge

Now for an activity that is a little out of the (toy) box. LEGO Serious Play is a facilitation methodology that can be used to improve creative thinking and problem-solving skills. 

The LEGO Challenge includes giving each member of the team an assignment that is hidden from the rest of the group while they create a structure without speaking.

What the LEGO challenge brings to the table is a fun working example of working with stakeholders who might not be on the same page to solve problems. Also, it’s LEGO! Who doesn’t love LEGO! 

LEGO Challenge   #hyperisland   #team   A team-building activity in which groups must work together to build a structure out of LEGO, but each individual has a secret “assignment” which makes the collaborative process more challenging. It emphasizes group communication, leadership dynamics, conflict, cooperation, patience and problem solving strategy.

What, So What, Now What?

If not carefully managed, the problem identification and problem analysis stages of the problem-solving process can actually create more problems and misunderstandings.

The What, So What, Now What? problem-solving activity is designed to help collect insights and move forward while also eliminating the possibility of disagreement when it comes to identifying, clarifying, and analyzing organizational or work problems. 

Facilitation is all about bringing groups together so that might work on a shared goal and the best problem-solving strategies ensure that teams are aligned in purpose, if not initially in opinion or insight.

Throughout the three steps of this game, you give everyone on a team to reflect on a problem by asking what happened, why it is important, and what actions should then be taken. 

This can be a great activity for bringing our individual perceptions about a problem or challenge and contextualizing it in a larger group setting. This is one of the most important problem-solving skills you can bring to your organization.

W³ – What, So What, Now What?   #issue analysis   #innovation   #liberating structures   You can help groups reflect on a shared experience in a way that builds understanding and spurs coordinated action while avoiding unproductive conflict. It is possible for every voice to be heard while simultaneously sifting for insights and shaping new direction. Progressing in stages makes this practical—from collecting facts about What Happened to making sense of these facts with So What and finally to what actions logically follow with Now What . The shared progression eliminates most of the misunderstandings that otherwise fuel disagreements about what to do. Voila!

Journalists  

Problem analysis can be one of the most important and decisive stages of all problem-solving tools. Sometimes, a team can become bogged down in the details and are unable to move forward.

Journalists is an activity that can avoid a group from getting stuck in the problem identification or problem analysis stages of the process.

In Journalists, the group is invited to draft the front page of a fictional newspaper and figure out what stories deserve to be on the cover and what headlines those stories will have. By reframing how your problems and challenges are approached, you can help a team move productively through the process and be better prepared for the steps to follow.

Journalists   #vision   #big picture   #issue analysis   #remote-friendly   This is an exercise to use when the group gets stuck in details and struggles to see the big picture. Also good for defining a vision.

Problem-solving techniques for brainstorming solutions

Now you have the context and background of the problem you are trying to solving, now comes the time to start ideating and thinking about how you’ll solve the issue.

Here, you’ll want to encourage creative, free thinking and speed. Get as many ideas out as possible and explore different perspectives so you have the raw material for the next step.

Looking at a problem from a new angle can be one of the most effective ways of creating an effective solution. TRIZ is a problem-solving tool that asks the group to consider what they must not do in order to solve a challenge.

By reversing the discussion, new topics and taboo subjects often emerge, allowing the group to think more deeply and create ideas that confront the status quo in a safe and meaningful way. If you’re working on a problem that you’ve tried to solve before, TRIZ is a great problem-solving method to help your team get unblocked.

Making Space with TRIZ   #issue analysis   #liberating structures   #issue resolution   You can clear space for innovation by helping a group let go of what it knows (but rarely admits) limits its success and by inviting creative destruction. TRIZ makes it possible to challenge sacred cows safely and encourages heretical thinking. The question “What must we stop doing to make progress on our deepest purpose?” induces seriously fun yet very courageous conversations. Since laughter often erupts, issues that are otherwise taboo get a chance to be aired and confronted. With creative destruction come opportunities for renewal as local action and innovation rush in to fill the vacuum. Whoosh!

Mindspin  

Brainstorming is part of the bread and butter of the problem-solving process and all problem-solving strategies benefit from getting ideas out and challenging a team to generate solutions quickly. 

With Mindspin, participants are encouraged not only to generate ideas but to do so under time constraints and by slamming down cards and passing them on. By doing multiple rounds, your team can begin with a free generation of possible solutions before moving on to developing those solutions and encouraging further ideation. 

This is one of our favorite problem-solving activities and can be great for keeping the energy up throughout the workshop. Remember the importance of helping people become engaged in the process – energizing problem-solving techniques like Mindspin can help ensure your team stays engaged and happy, even when the problems they’re coming together to solve are complex. 

MindSpin   #teampedia   #idea generation   #problem solving   #action   A fast and loud method to enhance brainstorming within a team. Since this activity has more than round ideas that are repetitive can be ruled out leaving more creative and innovative answers to the challenge.

The Creativity Dice

One of the most useful problem solving skills you can teach your team is of approaching challenges with creativity, flexibility, and openness. Games like The Creativity Dice allow teams to overcome the potential hurdle of too much linear thinking and approach the process with a sense of fun and speed. 

In The Creativity Dice, participants are organized around a topic and roll a dice to determine what they will work on for a period of 3 minutes at a time. They might roll a 3 and work on investigating factual information on the chosen topic. They might roll a 1 and work on identifying the specific goals, standards, or criteria for the session.

Encouraging rapid work and iteration while asking participants to be flexible are great skills to cultivate. Having a stage for idea incubation in this game is also important. Moments of pause can help ensure the ideas that are put forward are the most suitable. 

The Creativity Dice   #creativity   #problem solving   #thiagi   #issue analysis   Too much linear thinking is hazardous to creative problem solving. To be creative, you should approach the problem (or the opportunity) from different points of view. You should leave a thought hanging in mid-air and move to another. This skipping around prevents premature closure and lets your brain incubate one line of thought while you consciously pursue another.

Idea and Concept Development

Brainstorming without structure can quickly become chaotic or frustrating. In a problem-solving context, having an ideation framework to follow can help ensure your team is both creative and disciplined.

In this method, you’ll find an idea generation process that encourages your group to brainstorm effectively before developing their ideas and begin clustering them together. By using concepts such as Yes and…, more is more and postponing judgement, you can create the ideal conditions for brainstorming with ease.

Idea & Concept Development   #hyperisland   #innovation   #idea generation   Ideation and Concept Development is a process for groups to work creatively and collaboratively to generate creative ideas. It’s a general approach that can be adapted and customized to suit many different scenarios. It includes basic principles for idea generation and several steps for groups to work with. It also includes steps for idea selection and development.

Problem-solving techniques for developing and refining solutions 

The success of any problem-solving process can be measured by the solutions it produces. After you’ve defined the issue, explored existing ideas, and ideated, it’s time to develop and refine your ideas in order to bring them closer to a solution that actually solves the problem.

Use these problem-solving techniques when you want to help your team think through their ideas and refine them as part of your problem solving process.

Improved Solutions

After a team has successfully identified a problem and come up with a few solutions, it can be tempting to call the work of the problem-solving process complete. That said, the first solution is not necessarily the best, and by including a further review and reflection activity into your problem-solving model, you can ensure your group reaches the best possible result. 

One of a number of problem-solving games from Thiagi Group, Improved Solutions helps you go the extra mile and develop suggested solutions with close consideration and peer review. By supporting the discussion of several problems at once and by shifting team roles throughout, this problem-solving technique is a dynamic way of finding the best solution. 

Improved Solutions   #creativity   #thiagi   #problem solving   #action   #team   You can improve any solution by objectively reviewing its strengths and weaknesses and making suitable adjustments. In this creativity framegame, you improve the solutions to several problems. To maintain objective detachment, you deal with a different problem during each of six rounds and assume different roles (problem owner, consultant, basher, booster, enhancer, and evaluator) during each round. At the conclusion of the activity, each player ends up with two solutions to her problem.

Four Step Sketch

Creative thinking and visual ideation does not need to be confined to the opening stages of your problem-solving strategies. Exercises that include sketching and prototyping on paper can be effective at the solution finding and development stage of the process, and can be great for keeping a team engaged. 

By going from simple notes to a crazy 8s round that involves rapidly sketching 8 variations on their ideas before then producing a final solution sketch, the group is able to iterate quickly and visually. Problem-solving techniques like Four-Step Sketch are great if you have a group of different thinkers and want to change things up from a more textual or discussion-based approach.

Four-Step Sketch   #design sprint   #innovation   #idea generation   #remote-friendly   The four-step sketch is an exercise that helps people to create well-formed concepts through a structured process that includes: Review key information Start design work on paper,  Consider multiple variations , Create a detailed solution . This exercise is preceded by a set of other activities allowing the group to clarify the challenge they want to solve. See how the Four Step Sketch exercise fits into a Design Sprint

Ensuring that everyone in a group is able to contribute to a discussion is vital during any problem solving process. Not only does this ensure all bases are covered, but its then easier to get buy-in and accountability when people have been able to contribute to the process.

1-2-4-All is a tried and tested facilitation technique where participants are asked to first brainstorm on a topic on their own. Next, they discuss and share ideas in a pair before moving into a small group. Those groups are then asked to present the best idea from their discussion to the rest of the team.

This method can be used in many different contexts effectively, though I find it particularly shines in the idea development stage of the process. Giving each participant time to concretize their ideas and develop them in progressively larger groups can create a great space for both innovation and psychological safety.

1-2-4-All   #idea generation   #liberating structures   #issue analysis   With this facilitation technique you can immediately include everyone regardless of how large the group is. You can generate better ideas and more of them faster than ever before. You can tap the know-how and imagination that is distributed widely in places not known in advance. Open, generative conversation unfolds. Ideas and solutions are sifted in rapid fashion. Most importantly, participants own the ideas, so follow-up and implementation is simplified. No buy-in strategies needed! Simple and elegant!

15% Solutions

Some problems are simpler than others and with the right problem-solving activities, you can empower people to take immediate actions that can help create organizational change. 

Part of the liberating structures toolkit, 15% solutions is a problem-solving technique that focuses on finding and implementing solutions quickly. A process of iterating and making small changes quickly can help generate momentum and an appetite for solving complex problems.

Problem-solving strategies can live and die on whether people are onboard. Getting some quick wins is a great way of getting people behind the process.   

It can be extremely empowering for a team to realize that problem-solving techniques can be deployed quickly and easily and delineate between things they can positively impact and those things they cannot change. 

15% Solutions   #action   #liberating structures   #remote-friendly   You can reveal the actions, however small, that everyone can do immediately. At a minimum, these will create momentum, and that may make a BIG difference.  15% Solutions show that there is no reason to wait around, feel powerless, or fearful. They help people pick it up a level. They get individuals and the group to focus on what is within their discretion instead of what they cannot change.  With a very simple question, you can flip the conversation to what can be done and find solutions to big problems that are often distributed widely in places not known in advance. Shifting a few grains of sand may trigger a landslide and change the whole landscape.

Problem-solving techniques for making decisions and planning

After your group is happy with the possible solutions you’ve developed, now comes the time to choose which to implement. There’s more than one way to make a decision and the best option is often dependant on the needs and set-up of your group.

Sometimes, it’s the case that you’ll want to vote as a group on what is likely to be the most impactful solution. Other times, it might be down to a decision maker or major stakeholder to make the final decision. Whatever your process, here’s some techniques you can use to help you make a decision during your problem solving process.

How-Now-Wow Matrix

The problem-solving process is often creative, as complex problems usually require a change of thinking and creative response in order to find the best solutions. While it’s common for the first stages to encourage creative thinking, groups can often gravitate to familiar solutions when it comes to the end of the process. 

When selecting solutions, you don’t want to lose your creative energy! The How-Now-Wow Matrix from Gamestorming is a great problem-solving activity that enables a group to stay creative and think out of the box when it comes to selecting the right solution for a given problem.

Problem-solving techniques that encourage creative thinking and the ideation and selection of new solutions can be the most effective in organisational change. Give the How-Now-Wow Matrix a go, and not just for how pleasant it is to say out loud. 

How-Now-Wow Matrix   #gamestorming   #idea generation   #remote-friendly   When people want to develop new ideas, they most often think out of the box in the brainstorming or divergent phase. However, when it comes to convergence, people often end up picking ideas that are most familiar to them. This is called a ‘creative paradox’ or a ‘creadox’. The How-Now-Wow matrix is an idea selection tool that breaks the creadox by forcing people to weigh each idea on 2 parameters.

Impact and Effort Matrix

All problem-solving techniques hope to not only find solutions to a given problem or challenge but to find the best solution. When it comes to finding a solution, groups are invited to put on their decision-making hats and really think about how a proposed idea would work in practice. 

The Impact and Effort Matrix is one of the problem-solving techniques that fall into this camp, empowering participants to first generate ideas and then categorize them into a 2×2 matrix based on impact and effort.

Activities that invite critical thinking while remaining simple are invaluable. Use the Impact and Effort Matrix to move from ideation and towards evaluating potential solutions before then committing to them. 

Impact and Effort Matrix   #gamestorming   #decision making   #action   #remote-friendly   In this decision-making exercise, possible actions are mapped based on two factors: effort required to implement and potential impact. Categorizing ideas along these lines is a useful technique in decision making, as it obliges contributors to balance and evaluate suggested actions before committing to them.

If you’ve followed each of the problem-solving steps with your group successfully, you should move towards the end of your process with heaps of possible solutions developed with a specific problem in mind. But how do you help a group go from ideation to putting a solution into action? 

Dotmocracy – or Dot Voting -is a tried and tested method of helping a team in the problem-solving process make decisions and put actions in place with a degree of oversight and consensus. 

One of the problem-solving techniques that should be in every facilitator’s toolbox, Dot Voting is fast and effective and can help identify the most popular and best solutions and help bring a group to a decision effectively. 

Dotmocracy   #action   #decision making   #group prioritization   #hyperisland   #remote-friendly   Dotmocracy is a simple method for group prioritization or decision-making. It is not an activity on its own, but a method to use in processes where prioritization or decision-making is the aim. The method supports a group to quickly see which options are most popular or relevant. The options or ideas are written on post-its and stuck up on a wall for the whole group to see. Each person votes for the options they think are the strongest, and that information is used to inform a decision.

Straddling the gap between decision making and planning, MoSCoW is a simple and effective method that allows a group team to easily prioritize a set of possible options.

Use this method in a problem solving process by collecting and summarizing all your possible solutions and then categorize them into 4 sections: “Must have”, “Should have”, “Could have”, or “Would like but won‘t get”.

This method is particularly useful when its less about choosing one possible solution and more about prioritorizing which to do first and which may not fit in the scope of your project. In my experience, complex challenges often require multiple small fixes, and this method can be a great way to move from a pile of things you’d all like to do to a structured plan.

MoSCoW   #define intentions   #create   #design   #action   #remote-friendly   MoSCoW is a method that allows the team to prioritize the different features that they will work on. Features are then categorized into “Must have”, “Should have”, “Could have”, or “Would like but won‘t get”. To be used at the beginning of a timeslot (for example during Sprint planning) and when planning is needed.

When it comes to managing the rollout of a solution, clarity and accountability are key factors in ensuring the success of the project. The RAACI chart is a simple but effective model for setting roles and responsibilities as part of a planning session.

Start by listing each person involved in the project and put them into the following groups in order to make it clear who is responsible for what during the rollout of your solution.

  • Responsibility  (Which person and/or team will be taking action?)
  • Authority  (At what “point” must the responsible person check in before going further?)
  • Accountability  (Who must the responsible person check in with?)
  • Consultation  (Who must be consulted by the responsible person before decisions are made?)
  • Information  (Who must be informed of decisions, once made?)

Ensure this information is easily accessible and use it to inform who does what and who is looped into discussions and kept up to date.

RAACI   #roles and responsibility   #teamwork   #project management   Clarifying roles and responsibilities, levels of autonomy/latitude in decision making, and levels of engagement among diverse stakeholders.

Problem-solving warm-up activities

All facilitators know that warm-ups and icebreakers are useful for any workshop or group process. Problem-solving workshops are no different.

Use these problem-solving techniques to warm up a group and prepare them for the rest of the process. Activating your group by tapping into some of the top problem-solving skills can be one of the best ways to see great outcomes from your session.

Check-in / Check-out

Solid processes are planned from beginning to end, and the best facilitators know that setting the tone and establishing a safe, open environment can be integral to a successful problem-solving process. Check-in / Check-out is a great way to begin and/or bookend a problem-solving workshop. Checking in to a session emphasizes that everyone will be seen, heard, and expected to contribute. 

If you are running a series of meetings, setting a consistent pattern of checking in and checking out can really help your team get into a groove. We recommend this opening-closing activity for small to medium-sized groups though it can work with large groups if they’re disciplined!

Check-in / Check-out   #team   #opening   #closing   #hyperisland   #remote-friendly   Either checking-in or checking-out is a simple way for a team to open or close a process, symbolically and in a collaborative way. Checking-in/out invites each member in a group to be present, seen and heard, and to express a reflection or a feeling. Checking-in emphasizes presence, focus and group commitment; checking-out emphasizes reflection and symbolic closure.

Doodling Together  

Thinking creatively and not being afraid to make suggestions are important problem-solving skills for any group or team, and warming up by encouraging these behaviors is a great way to start. 

Doodling Together is one of our favorite creative ice breaker games – it’s quick, effective, and fun and can make all following problem-solving steps easier by encouraging a group to collaborate visually. By passing cards and adding additional items as they go, the workshop group gets into a groove of co-creation and idea development that is crucial to finding solutions to problems. 

Doodling Together   #collaboration   #creativity   #teamwork   #fun   #team   #visual methods   #energiser   #icebreaker   #remote-friendly   Create wild, weird and often funny postcards together & establish a group’s creative confidence.

Show and Tell

You might remember some version of Show and Tell from being a kid in school and it’s a great problem-solving activity to kick off a session.

Asking participants to prepare a little something before a workshop by bringing an object for show and tell can help them warm up before the session has even begun! Games that include a physical object can also help encourage early engagement before moving onto more big-picture thinking.

By asking your participants to tell stories about why they chose to bring a particular item to the group, you can help teams see things from new perspectives and see both differences and similarities in the way they approach a topic. Great groundwork for approaching a problem-solving process as a team! 

Show and Tell   #gamestorming   #action   #opening   #meeting facilitation   Show and Tell taps into the power of metaphors to reveal players’ underlying assumptions and associations around a topic The aim of the game is to get a deeper understanding of stakeholders’ perspectives on anything—a new project, an organizational restructuring, a shift in the company’s vision or team dynamic.

Constellations

Who doesn’t love stars? Constellations is a great warm-up activity for any workshop as it gets people up off their feet, energized, and ready to engage in new ways with established topics. It’s also great for showing existing beliefs, biases, and patterns that can come into play as part of your session.

Using warm-up games that help build trust and connection while also allowing for non-verbal responses can be great for easing people into the problem-solving process and encouraging engagement from everyone in the group. Constellations is great in large spaces that allow for movement and is definitely a practical exercise to allow the group to see patterns that are otherwise invisible. 

Constellations   #trust   #connection   #opening   #coaching   #patterns   #system   Individuals express their response to a statement or idea by standing closer or further from a central object. Used with teams to reveal system, hidden patterns, perspectives.

Draw a Tree

Problem-solving games that help raise group awareness through a central, unifying metaphor can be effective ways to warm-up a group in any problem-solving model.

Draw a Tree is a simple warm-up activity you can use in any group and which can provide a quick jolt of energy. Start by asking your participants to draw a tree in just 45 seconds – they can choose whether it will be abstract or realistic. 

Once the timer is up, ask the group how many people included the roots of the tree and use this as a means to discuss how we can ignore important parts of any system simply because they are not visible.

All problem-solving strategies are made more effective by thinking of problems critically and by exposing things that may not normally come to light. Warm-up games like Draw a Tree are great in that they quickly demonstrate some key problem-solving skills in an accessible and effective way.

Draw a Tree   #thiagi   #opening   #perspectives   #remote-friendly   With this game you can raise awarness about being more mindful, and aware of the environment we live in.

Closing activities for a problem-solving process

Each step of the problem-solving workshop benefits from an intelligent deployment of activities, games, and techniques. Bringing your session to an effective close helps ensure that solutions are followed through on and that you also celebrate what has been achieved.

Here are some problem-solving activities you can use to effectively close a workshop or meeting and ensure the great work you’ve done can continue afterward.

One Breath Feedback

Maintaining attention and focus during the closing stages of a problem-solving workshop can be tricky and so being concise when giving feedback can be important. It’s easy to incur “death by feedback” should some team members go on for too long sharing their perspectives in a quick feedback round. 

One Breath Feedback is a great closing activity for workshops. You give everyone an opportunity to provide feedback on what they’ve done but only in the space of a single breath. This keeps feedback short and to the point and means that everyone is encouraged to provide the most important piece of feedback to them. 

One breath feedback   #closing   #feedback   #action   This is a feedback round in just one breath that excels in maintaining attention: each participants is able to speak during just one breath … for most people that’s around 20 to 25 seconds … unless of course you’ve been a deep sea diver in which case you’ll be able to do it for longer.

Who What When Matrix 

Matrices feature as part of many effective problem-solving strategies and with good reason. They are easily recognizable, simple to use, and generate results.

The Who What When Matrix is a great tool to use when closing your problem-solving session by attributing a who, what and when to the actions and solutions you have decided upon. The resulting matrix is a simple, easy-to-follow way of ensuring your team can move forward. 

Great solutions can’t be enacted without action and ownership. Your problem-solving process should include a stage for allocating tasks to individuals or teams and creating a realistic timeframe for those solutions to be implemented or checked out. Use this method to keep the solution implementation process clear and simple for all involved. 

Who/What/When Matrix   #gamestorming   #action   #project planning   With Who/What/When matrix, you can connect people with clear actions they have defined and have committed to.

Response cards

Group discussion can comprise the bulk of most problem-solving activities and by the end of the process, you might find that your team is talked out! 

Providing a means for your team to give feedback with short written notes can ensure everyone is head and can contribute without the need to stand up and talk. Depending on the needs of the group, giving an alternative can help ensure everyone can contribute to your problem-solving model in the way that makes the most sense for them.

Response Cards is a great way to close a workshop if you are looking for a gentle warm-down and want to get some swift discussion around some of the feedback that is raised. 

Response Cards   #debriefing   #closing   #structured sharing   #questions and answers   #thiagi   #action   It can be hard to involve everyone during a closing of a session. Some might stay in the background or get unheard because of louder participants. However, with the use of Response Cards, everyone will be involved in providing feedback or clarify questions at the end of a session.

Tips for effective problem solving

Problem-solving activities are only one part of the puzzle. While a great method can help unlock your team’s ability to solve problems, without a thoughtful approach and strong facilitation the solutions may not be fit for purpose.

Let’s take a look at some problem-solving tips you can apply to any process to help it be a success!

Clearly define the problem

Jumping straight to solutions can be tempting, though without first clearly articulating a problem, the solution might not be the right one. Many of the problem-solving activities below include sections where the problem is explored and clearly defined before moving on.

This is a vital part of the problem-solving process and taking the time to fully define an issue can save time and effort later. A clear definition helps identify irrelevant information and it also ensures that your team sets off on the right track.

Don’t jump to conclusions

It’s easy for groups to exhibit cognitive bias or have preconceived ideas about both problems and potential solutions. Be sure to back up any problem statements or potential solutions with facts, research, and adequate forethought.

The best techniques ask participants to be methodical and challenge preconceived notions. Make sure you give the group enough time and space to collect relevant information and consider the problem in a new way. By approaching the process with a clear, rational mindset, you’ll often find that better solutions are more forthcoming.  

Try different approaches  

Problems come in all shapes and sizes and so too should the methods you use to solve them. If you find that one approach isn’t yielding results and your team isn’t finding different solutions, try mixing it up. You’ll be surprised at how using a new creative activity can unblock your team and generate great solutions.

Don’t take it personally 

Depending on the nature of your team or organizational problems, it’s easy for conversations to get heated. While it’s good for participants to be engaged in the discussions, ensure that emotions don’t run too high and that blame isn’t thrown around while finding solutions.

You’re all in it together, and even if your team or area is seeing problems, that isn’t necessarily a disparagement of you personally. Using facilitation skills to manage group dynamics is one effective method of helping conversations be more constructive.

Get the right people in the room

Your problem-solving method is often only as effective as the group using it. Getting the right people on the job and managing the number of people present is important too!

If the group is too small, you may not get enough different perspectives to effectively solve a problem. If the group is too large, you can go round and round during the ideation stages.

Creating the right group makeup is also important in ensuring you have the necessary expertise and skillset to both identify and follow up on potential solutions. Carefully consider who to include at each stage to help ensure your problem-solving method is followed and positioned for success.

Create psychologically safe spaces for discussion

Identifying a problem accurately also requires that all members of a group are able to contribute their views in an open and safe manner.

It can be tough for people to stand up and contribute if the problems or challenges are emotive or personal in nature. Try and create a psychologically safe space for these kinds of discussions and where possible, create regular opportunities for challenges to be brought up organically.

Document everything

The best solutions can take refinement, iteration, and reflection to come out. Get into a habit of documenting your process in order to keep all the learnings from the session and to allow ideas to mature and develop. Many of the methods below involve the creation of documents or shared resources. Be sure to keep and share these so everyone can benefit from the work done!

Bring a facilitator 

Facilitation is all about making group processes easier. With a subject as potentially emotive and important as problem-solving, having an impartial third party in the form of a facilitator can make all the difference in finding great solutions and keeping the process moving. Consider bringing a facilitator to your problem-solving session to get better results and generate meaningful solutions!

Develop your problem-solving skills

It takes time and practice to be an effective problem solver. While some roles or participants might more naturally gravitate towards problem-solving, it can take development and planning to help everyone create better solutions.

You might develop a training program, run a problem-solving workshop or simply ask your team to practice using the techniques below. Check out our post on problem-solving skills to see how you and your group can develop the right mental process and be more resilient to issues too!

Design a great agenda

Workshops are a great format for solving problems. With the right approach, you can focus a group and help them find the solutions to their own problems. But designing a process can be time-consuming and finding the right activities can be difficult.

Check out our workshop planning guide to level-up your agenda design and start running more effective workshops. Need inspiration? Check out templates designed by expert facilitators to help you kickstart your process!

Save time and effort creating an effective problem solving process

A structured problem solving process is a surefire way of solving tough problems, discovering creative solutions and driving organizational change. But how can you design for successful outcomes?

With SessionLab, it’s easy to design engaging workshops that deliver results. Drag, drop and reorder blocks  to build your agenda. When you make changes or update your agenda, your session  timing   adjusts automatically , saving you time on manual adjustments.

Collaborating with stakeholders or clients? Share your agenda with a single click and collaborate in real-time. No more sending documents back and forth over email.

Explore  how to use SessionLab  to design effective problem solving workshops or  watch this five minute video  to see the planner in action!

the problem solving approach involves

Over to you

The problem-solving process can often be as complicated and multifaceted as the problems they are set-up to solve. With the right problem-solving techniques and a mix of exercises designed to guide discussion and generate purposeful ideas, we hope we’ve given you the tools to find the best solutions as simply and easily as possible.

Is there a problem-solving technique that you are missing here? Do you have a favorite activity or method you use when facilitating? Let us know in the comments below, we’d love to hear from you! 

the problem solving approach involves

James Smart is Head of Content at SessionLab. He’s also a creative facilitator who has run workshops and designed courses for establishments like the National Centre for Writing, UK. He especially enjoys working with young people and empowering others in their creative practice.

' src=

thank you very much for these excellent techniques

' src=

Certainly wonderful article, very detailed. Shared!

' src=

Your list of techniques for problem solving can be helpfully extended by adding TRIZ to the list of techniques. TRIZ has 40 problem solving techniques derived from methods inventros and patent holders used to get new patents. About 10-12 are general approaches. many organization sponsor classes in TRIZ that are used to solve business problems or general organiztational problems. You can take a look at TRIZ and dwonload a free internet booklet to see if you feel it shound be included per your selection process.

Leave a Comment Cancel reply

Your email address will not be published. Required fields are marked *

cycle of workshop planning steps

Going from a mere idea to a workshop that delivers results for your clients can feel like a daunting task. In this piece, we will shine a light on all the work behind the scenes and help you learn how to plan a workshop from start to finish. On a good day, facilitation can feel like effortless magic, but that is mostly the result of backstage work, foresight, and a lot of careful planning. Read on to learn a step-by-step approach to breaking the process of planning a workshop into small, manageable chunks.  The flow starts with the first meeting with a client to define the purposes of a workshop.…

the problem solving approach involves

Effective online tools are a necessity for smooth and engaging virtual workshops and meetings. But how do you choose the right ones? Do you sometimes feel that the good old pen and paper or MS Office toolkit and email leaves you struggling to stay on top of managing and delivering your workshop? Fortunately, there are plenty of great workshop tools to make your life easier when you need to facilitate a meeting and lead workshops. In this post, we’ll share our favorite online tools you can use to make your life easier and run better workshops and meetings. In fact, there are plenty of free online workshop tools and meeting…

the problem solving approach involves

How does learning work? A clever 9-year-old once told me: “I know I am learning something new when I am surprised.” The science of adult learning tells us that, in order to learn new skills (which, unsurprisingly, is harder for adults to do than kids) grown-ups need to first get into a specific headspace.  In a business, this approach is often employed in a training session where employees learn new skills or work on professional development. But how do you ensure your training is effective? In this guide, we'll explore how to create an effective training session plan and run engaging training sessions. As team leader, project manager, or consultant,…

Design your next workshop with SessionLab

Join the 150,000 facilitators using SessionLab

Sign up for free

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

What Is Problem-Solving Therapy?

Verywell / Madelyn Goodnight

Problem-Solving Therapy Techniques

How effective is problem-solving therapy, things to consider, how to get started.

Problem-solving therapy is a brief intervention that provides people with the tools they need to identify and solve problems that arise from big and small life stressors. It aims to improve your overall quality of life and reduce the negative impact of psychological and physical illness.

Problem-solving therapy can be used to treat depression , among other conditions. It can be administered by a doctor or mental health professional and may be combined with other treatment approaches.

At a Glance

Problem-solving therapy is a short-term treatment used to help people who are experiencing depression, stress, PTSD, self-harm, suicidal ideation, and other mental health problems develop the tools they need to deal with challenges. This approach teaches people to identify problems, generate solutions, and implement those solutions. Let's take a closer look at how problem-solving therapy can help people be more resilient and adaptive in the face of stress.

Problem-solving therapy is based on a model that takes into account the importance of real-life problem-solving. In other words, the key to managing the impact of stressful life events is to know how to address issues as they arise. Problem-solving therapy is very practical in its approach and is only concerned with the present, rather than delving into your past.

This form of therapy can take place one-on-one or in a group format and may be offered in person or online via telehealth . Sessions can be anywhere from 30 minutes to two hours long. 

Key Components

There are two major components that make up the problem-solving therapy framework:

  • Applying a positive problem-solving orientation to your life
  • Using problem-solving skills

A positive problem-solving orientation means viewing things in an optimistic light, embracing self-efficacy , and accepting the idea that problems are a normal part of life. Problem-solving skills are behaviors that you can rely on to help you navigate conflict, even during times of stress. This includes skills like:

  • Knowing how to identify a problem
  • Defining the problem in a helpful way
  • Trying to understand the problem more deeply
  • Setting goals related to the problem
  • Generating alternative, creative solutions to the problem
  • Choosing the best course of action
  • Implementing the choice you have made
  • Evaluating the outcome to determine next steps

Problem-solving therapy is all about training you to become adaptive in your life so that you will start to see problems as challenges to be solved instead of insurmountable obstacles. It also means that you will recognize the action that is required to engage in effective problem-solving techniques.

Planful Problem-Solving

One problem-solving technique, called planful problem-solving, involves following a series of steps to fix issues in a healthy, constructive way:

  • Problem definition and formulation : This step involves identifying the real-life problem that needs to be solved and formulating it in a way that allows you to generate potential solutions.
  • Generation of alternative solutions : This stage involves coming up with various potential solutions to the problem at hand. The goal in this step is to brainstorm options to creatively address the life stressor in ways that you may not have previously considered.
  • Decision-making strategies : This stage involves discussing different strategies for making decisions as well as identifying obstacles that may get in the way of solving the problem at hand.
  • Solution implementation and verification : This stage involves implementing a chosen solution and then verifying whether it was effective in addressing the problem.

Other Techniques

Other techniques your therapist may go over include:

  • Problem-solving multitasking , which helps you learn to think clearly and solve problems effectively even during times of stress
  • Stop, slow down, think, and act (SSTA) , which is meant to encourage you to become more emotionally mindful when faced with conflict
  • Healthy thinking and imagery , which teaches you how to embrace more positive self-talk while problem-solving

What Problem-Solving Therapy Can Help With

Problem-solving therapy addresses life stress issues and focuses on helping you find solutions to concrete issues. This approach can be applied to problems associated with various psychological and physiological symptoms.

Mental Health Issues

Problem-solving therapy may help address mental health issues, like:

  • Chronic stress due to accumulating minor issues
  • Complications associated with traumatic brain injury (TBI)
  • Emotional distress
  • Post-traumatic stress disorder (PTSD)
  • Problems associated with a chronic disease like cancer, heart disease, or diabetes
  • Self-harm and feelings of hopelessness
  • Substance use
  • Suicidal ideation

Specific Life Challenges

This form of therapy is also helpful for dealing with specific life problems, such as:

  • Death of a loved one
  • Dissatisfaction at work
  • Everyday life stressors
  • Family problems
  • Financial difficulties
  • Relationship conflicts

Your doctor or mental healthcare professional will be able to advise whether problem-solving therapy could be helpful for your particular issue. In general, if you are struggling with specific, concrete problems that you are having trouble finding solutions for, problem-solving therapy could be helpful for you.

Benefits of Problem-Solving Therapy

The skills learned in problem-solving therapy can be helpful for managing all areas of your life. These can include:

  • Being able to identify which stressors trigger your negative emotions (e.g., sadness, anger)
  • Confidence that you can handle problems that you face
  • Having a systematic approach on how to deal with life's problems
  • Having a toolbox of strategies to solve the issues you face
  • Increased confidence to find creative solutions
  • Knowing how to identify which barriers will impede your progress
  • Knowing how to manage emotions when they arise
  • Reduced avoidance and increased action-taking
  • The ability to accept life problems that can't be solved
  • The ability to make effective decisions
  • The development of patience (realizing that not all problems have a "quick fix")

Problem-solving therapy can help people feel more empowered to deal with the problems they face in their lives. Rather than feeling overwhelmed when stressors begin to take a toll, this therapy introduces new coping skills that can boost self-efficacy and resilience .

Other Types of Therapy

Other similar types of therapy include cognitive-behavioral therapy (CBT) and solution-focused brief therapy (SFBT) . While these therapies work to change thinking and behaviors, they work a bit differently. Both CBT and SFBT are less structured than problem-solving therapy and may focus on broader issues. CBT focuses on identifying and changing maladaptive thoughts, and SFBT works to help people look for solutions and build self-efficacy based on strengths.

This form of therapy was initially developed to help people combat stress through effective problem-solving, and it was later adapted to address clinical depression specifically. Today, much of the research on problem-solving therapy deals with its effectiveness in treating depression.

Problem-solving therapy has been shown to help depression in: 

  • Older adults
  • People coping with serious illnesses like cancer

Problem-solving therapy also appears to be effective as a brief treatment for depression, offering benefits in as little as six to eight sessions with a therapist or another healthcare professional. This may make it a good option for someone unable to commit to a lengthier treatment for depression.

Problem-solving therapy is not a good fit for everyone. It may not be effective at addressing issues that don't have clear solutions, like seeking meaning or purpose in life. Problem-solving therapy is also intended to treat specific problems, not general habits or thought patterns .

In general, it's also important to remember that problem-solving therapy is not a primary treatment for mental disorders. If you are living with the symptoms of a serious mental illness such as bipolar disorder or schizophrenia , you may need additional treatment with evidence-based approaches for your particular concern.

Problem-solving therapy is best aimed at someone who has a mental or physical issue that is being treated separately, but who also has life issues that go along with that problem that has yet to be addressed.

For example, it could help if you can't clean your house or pay your bills because of your depression, or if a cancer diagnosis is interfering with your quality of life.

Your doctor may be able to recommend therapists in your area who utilize this approach, or they may offer it themselves as part of their practice. You can also search for a problem-solving therapist with help from the American Psychological Association’s (APA) Society of Clinical Psychology .

If receiving problem-solving therapy from a doctor or mental healthcare professional is not an option for you, you could also consider implementing it as a self-help strategy using a workbook designed to help you learn problem-solving skills on your own.

During your first session, your therapist may spend some time explaining their process and approach. They may ask you to identify the problem you’re currently facing, and they’ll likely discuss your goals for therapy .

Keep In Mind

Problem-solving therapy may be a short-term intervention that's focused on solving a specific issue in your life. If you need further help with something more pervasive, it can also become a longer-term treatment option.

Get Help Now

We've tried, tested, and written unbiased reviews of the best online therapy programs including Talkspace, BetterHelp, and ReGain. Find out which option is the best for you.

Shang P, Cao X, You S, Feng X, Li N, Jia Y. Problem-solving therapy for major depressive disorders in older adults: an updated systematic review and meta-analysis of randomized controlled trials .  Aging Clin Exp Res . 2021;33(6):1465-1475. doi:10.1007/s40520-020-01672-3

Cuijpers P, Wit L de, Kleiboer A, Karyotaki E, Ebert DD. Problem-solving therapy for adult depression: An updated meta-analysis . Eur Psychiatry . 2018;48(1):27-37. doi:10.1016/j.eurpsy.2017.11.006

Nezu AM, Nezu CM, D'Zurilla TJ. Problem-Solving Therapy: A Treatment Manual . New York; 2013. doi:10.1891/9780826109415.0001

Owens D, Wright-Hughes A, Graham L, et al. Problem-solving therapy rather than treatment as usual for adults after self-harm: a pragmatic, feasibility, randomised controlled trial (the MIDSHIPS trial) .  Pilot Feasibility Stud . 2020;6:119. doi:10.1186/s40814-020-00668-0

Sorsdahl K, Stein DJ, Corrigall J, et al. The efficacy of a blended motivational interviewing and problem solving therapy intervention to reduce substance use among patients presenting for emergency services in South Africa: A randomized controlled trial . Subst Abuse Treat Prev Policy . 2015;10(1):46. doi:doi.org/10.1186/s13011-015-0042-1

Margolis SA, Osborne P, Gonzalez JS. Problem solving . In: Gellman MD, ed. Encyclopedia of Behavioral Medicine . Springer International Publishing; 2020:1745-1747. doi:10.1007/978-3-030-39903-0_208

Kirkham JG, Choi N, Seitz DP. Meta-analysis of problem solving therapy for the treatment of major depressive disorder in older adults . Int J Geriatr Psychiatry . 2016;31(5):526-535. doi:10.1002/gps.4358

Garand L, Rinaldo DE, Alberth MM, et al. Effects of problem solving therapy on mental health outcomes in family caregivers of persons with a new diagnosis of mild cognitive impairment or early dementia: A randomized controlled trial . Am J Geriatr Psychiatry . 2014;22(8):771-781. doi:10.1016/j.jagp.2013.07.007

Noyes K, Zapf AL, Depner RM, et al. Problem-solving skills training in adult cancer survivors: Bright IDEAS-AC pilot study .  Cancer Treat Res Commun . 2022;31:100552. doi:10.1016/j.ctarc.2022.100552

Albert SM, King J, Anderson S, et al. Depression agency-based collaborative: effect of problem-solving therapy on risk of common mental disorders in older adults with home care needs . The American Journal of Geriatric Psychiatry . 2019;27(6):619-624. doi:10.1016/j.jagp.2019.01.002

By Arlin Cuncic, MA Arlin Cuncic, MA, is the author of The Anxiety Workbook and founder of the website About Social Anxiety. She has a Master's degree in clinical psychology.

Status.net

What is Problem Solving? (Steps, Techniques, Examples)

By Status.net Editorial Team on May 7, 2023 — 5 minutes to read

What Is Problem Solving?

Definition and importance.

Problem solving is the process of finding solutions to obstacles or challenges you encounter in your life or work. It is a crucial skill that allows you to tackle complex situations, adapt to changes, and overcome difficulties with ease. Mastering this ability will contribute to both your personal and professional growth, leading to more successful outcomes and better decision-making.

Problem-Solving Steps

The problem-solving process typically includes the following steps:

  • Identify the issue : Recognize the problem that needs to be solved.
  • Analyze the situation : Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present.
  • Generate potential solutions : Brainstorm a list of possible solutions to the issue, without immediately judging or evaluating them.
  • Evaluate options : Weigh the pros and cons of each potential solution, considering factors such as feasibility, effectiveness, and potential risks.
  • Select the best solution : Choose the option that best addresses the problem and aligns with your objectives.
  • Implement the solution : Put the selected solution into action and monitor the results to ensure it resolves the issue.
  • Review and learn : Reflect on the problem-solving process, identify any improvements or adjustments that can be made, and apply these learnings to future situations.

Defining the Problem

To start tackling a problem, first, identify and understand it. Analyzing the issue thoroughly helps to clarify its scope and nature. Ask questions to gather information and consider the problem from various angles. Some strategies to define the problem include:

  • Brainstorming with others
  • Asking the 5 Ws and 1 H (Who, What, When, Where, Why, and How)
  • Analyzing cause and effect
  • Creating a problem statement

Generating Solutions

Once the problem is clearly understood, brainstorm possible solutions. Think creatively and keep an open mind, as well as considering lessons from past experiences. Consider:

  • Creating a list of potential ideas to solve the problem
  • Grouping and categorizing similar solutions
  • Prioritizing potential solutions based on feasibility, cost, and resources required
  • Involving others to share diverse opinions and inputs

Evaluating and Selecting Solutions

Evaluate each potential solution, weighing its pros and cons. To facilitate decision-making, use techniques such as:

  • SWOT analysis (Strengths, Weaknesses, Opportunities, Threats)
  • Decision-making matrices
  • Pros and cons lists
  • Risk assessments

After evaluating, choose the most suitable solution based on effectiveness, cost, and time constraints.

Implementing and Monitoring the Solution

Implement the chosen solution and monitor its progress. Key actions include:

  • Communicating the solution to relevant parties
  • Setting timelines and milestones
  • Assigning tasks and responsibilities
  • Monitoring the solution and making adjustments as necessary
  • Evaluating the effectiveness of the solution after implementation

Utilize feedback from stakeholders and consider potential improvements. Remember that problem-solving is an ongoing process that can always be refined and enhanced.

Problem-Solving Techniques

During each step, you may find it helpful to utilize various problem-solving techniques, such as:

  • Brainstorming : A free-flowing, open-minded session where ideas are generated and listed without judgment, to encourage creativity and innovative thinking.
  • Root cause analysis : A method that explores the underlying causes of a problem to find the most effective solution rather than addressing superficial symptoms.
  • SWOT analysis : A tool used to evaluate the strengths, weaknesses, opportunities, and threats related to a problem or decision, providing a comprehensive view of the situation.
  • Mind mapping : A visual technique that uses diagrams to organize and connect ideas, helping to identify patterns, relationships, and possible solutions.

Brainstorming

When facing a problem, start by conducting a brainstorming session. Gather your team and encourage an open discussion where everyone contributes ideas, no matter how outlandish they may seem. This helps you:

  • Generate a diverse range of solutions
  • Encourage all team members to participate
  • Foster creative thinking

When brainstorming, remember to:

  • Reserve judgment until the session is over
  • Encourage wild ideas
  • Combine and improve upon ideas

Root Cause Analysis

For effective problem-solving, identifying the root cause of the issue at hand is crucial. Try these methods:

  • 5 Whys : Ask “why” five times to get to the underlying cause.
  • Fishbone Diagram : Create a diagram representing the problem and break it down into categories of potential causes.
  • Pareto Analysis : Determine the few most significant causes underlying the majority of problems.

SWOT Analysis

SWOT analysis helps you examine the Strengths, Weaknesses, Opportunities, and Threats related to your problem. To perform a SWOT analysis:

  • List your problem’s strengths, such as relevant resources or strong partnerships.
  • Identify its weaknesses, such as knowledge gaps or limited resources.
  • Explore opportunities, like trends or new technologies, that could help solve the problem.
  • Recognize potential threats, like competition or regulatory barriers.

SWOT analysis aids in understanding the internal and external factors affecting the problem, which can help guide your solution.

Mind Mapping

A mind map is a visual representation of your problem and potential solutions. It enables you to organize information in a structured and intuitive manner. To create a mind map:

  • Write the problem in the center of a blank page.
  • Draw branches from the central problem to related sub-problems or contributing factors.
  • Add more branches to represent potential solutions or further ideas.

Mind mapping allows you to visually see connections between ideas and promotes creativity in problem-solving.

Examples of Problem Solving in Various Contexts

In the business world, you might encounter problems related to finances, operations, or communication. Applying problem-solving skills in these situations could look like:

  • Identifying areas of improvement in your company’s financial performance and implementing cost-saving measures
  • Resolving internal conflicts among team members by listening and understanding different perspectives, then proposing and negotiating solutions
  • Streamlining a process for better productivity by removing redundancies, automating tasks, or re-allocating resources

In educational contexts, problem-solving can be seen in various aspects, such as:

  • Addressing a gap in students’ understanding by employing diverse teaching methods to cater to different learning styles
  • Developing a strategy for successful time management to balance academic responsibilities and extracurricular activities
  • Seeking resources and support to provide equal opportunities for learners with special needs or disabilities

Everyday life is full of challenges that require problem-solving skills. Some examples include:

  • Overcoming a personal obstacle, such as improving your fitness level, by establishing achievable goals, measuring progress, and adjusting your approach accordingly
  • Navigating a new environment or city by researching your surroundings, asking for directions, or using technology like GPS to guide you
  • Dealing with a sudden change, like a change in your work schedule, by assessing the situation, identifying potential impacts, and adapting your plans to accommodate the change.
  • How to Resolve Employee Conflict at Work [Steps, Tips, Examples]
  • How to Write Inspiring Core Values? 5 Steps with Examples
  • 30 Employee Feedback Examples (Positive & Negative)

To Solve a Tough Problem, Reframe It

Five steps to ensure that you don’t jump to solutions by Julia Binder and Michael D. Watkins

the problem solving approach involves

Summary .   

Research shows that companies devote too little effort to examining problems before trying to solve them. By jumping immediately into problem-solving, teams limit their ability to design innovative solutions.

The authors recommend that companies spend more time up front on problem-framing, a process for understanding and defining a problem. Exploring different frames is like looking at a scene through various camera lenses while adjusting your angle, aperture, and focus. A wide-angle lens gives you a very different photo from that taken with a telephoto lens, and shifting your angle and depth of focus yields distinct images. Effective problem-framing is similar: Looking at a problem from a variety of perspectives helps you uncover new insights and generate fresh ideas.

This article introduces a five-phase approach to problem-framing: In the expand phase, the team identifies all aspects of a problem; in examine, it dives into root causes; in empathize, it considers key stakeholders’ perspectives; in elevate, it puts the problem into a broader context; and in envision, it creates a road map toward the desired outcome.

When business leaders confront complex problems, there’s a powerful impulse to dive right into “solving” mode: You gather a team and then identify potential solutions. That’s fine for challenges you’ve faced before or when proven methods yield good results. But what happens when a new type of problem arises or aspects of a familiar one shift substantially? Or if you’re not exactly sure what the problem is?

Research conducted by us and others shows that leaders and their teams devote too little effort to examining and defining problems before trying to solve them. A study by Paul Nutt of Ohio State University, for example, looked at 350 decision-making processes at medium to large companies and found that more than half failed to achieve desired results, often because perceived time pressure caused people to pay insufficient attention to examining problems from all angles and exploring their complexities. By jumping immediately into problem-solving, teams limit their ability to design innovative and durable solutions.

When we work with organizations and teams, we encourage them to spend more time up front on problem-framing, a process for understanding and defining a problem. Exploring frames is like looking at a scene through various camera lenses while adjusting your angle, aperture, and focus. A wide-angle lens will give you a very different photo from that taken with a telephoto lens, and shifting your angle and depth of focus yields distinct images. Effective problem-framing is similar: Looking at a problem from a variety of perspectives lets you uncover new insights and generate fresh ideas.

As with all essential processes, it helps to have a methodology and a road map. This article introduces the E5 approach to problem-framing—expand, examine, empathize, elevate, and envision—and offers tools that enable leaders to fully explore the problem space.

Phase 1: Expand

In the first phase, set aside preconceptions and open your mind. We recommend using a tool called frame-storming, which encourages a comprehensive exploration of an issue and its nuances. It is a neglected precursor to brainstorming, which typically focuses on generating many different answers for an already framed challenge. Frame-storming helps teams identify assumptions and blind spots, mitigating the risk of pursuing inadequate or biased solutions. The goal is to spark innovation and creativity as people dig into—or as Tina Seelig from Stanford puts it, “fall in love with”—the problem.

Begin by assembling a diverse team, encompassing a variety of types of expertise and perspectives. Involving outsiders can be helpful, since they’re often coming to the issue cold. A good way to prompt the team to consider alternative scenarios is by asking “What if…?” and “How might we…?” questions. For example, ask your team, “What if we had access to unlimited resources to tackle this issue?” or “How might better collaboration between departments or teams help us tackle this issue?” The primary objective is to generate many alternative problem frames, allowing for a more holistic understanding of the issue. Within an open, nonjudgmental atmosphere, you deliberately challenge established thinking—what we call “breaking” the frame.

It may be easy to eliminate some possibilities, and that’s exactly what you should do. Rather than make assumptions, generate alternative hypotheses and then test them.

Consider the problem-framing process at a company we’ll call Omega Soundscapes, a midsize producer of high-end headphones. (Omega is a composite of several firms we’ve worked with.) Omega’s sales had declined substantially over the past two quarters, and the leadership team’s initial diagnosis, or reference frame, was that recent price hikes to its flagship product made it too expensive for its target market. Before acting on this assumption, the team convened knowledgeable representatives from sales, marketing, R&D, customer service, and external consultants to do some frame-storming. Team members were asked:

  • What if we lowered the price of our flagship product? How would that impact sales and profitability?
  • How might we identify customers in new target markets who could afford our headphones at the current price?
  • What if we offered financing or a subscription-based model for our headphones? How would that change perceptions of affordability?
  • How might we optimize our supply chain and production processes to reduce manufacturing costs without compromising quality?

In playing out each of those scenarios, the Omega team generated several problem frames:

  • The target market’s preferences have evolved.
  • New competitors have entered the market.
  • Product quality has decreased.
  • Something has damaged perceptions of the brand.
  • Something has changed in the priorities of our key distributors.

Each of the frames presented a unique angle from which to approach the problem of declining sales, setting the stage for the development of diverse potential solutions. At this stage, it may be relatively easy to eliminate some possibilities, and that’s exactly what you should do. Rather than make assumptions, generate alternative hypotheses and then test them.

Open Your Mind. Whereas brainstorming often involves generating many solutions for an already framed problem, frame-storming encourages teams to identify all aspects of a challenge. This graphic shows two diagrams. The first depicts brainstorming, where a single problem bubble leads to multiple solution bubbles. The second diagram depicts frame-storming, where a single problem bubble leads to multiple bubbles, labeled alternative problem frames, that represent different ways of defining the problem itself.

See more HBR charts in Data & Visuals

Phase 2: Examine

If the expand phase is about identifying all the facets of a problem, this one is about diving deep to identify root causes. The team investigates the issue thoroughly, peeling back the layers to understand underlying drivers and systemic contributors.

A useful tool for doing this is the iceberg model, which guides the team through layers of causation: surface-level events, the behavioral patterns that drive them, underlying systematic structures, and established mental models. As you probe ever deeper and document your findings, you begin to home in on the problem’s root causes. As is the case in the expand phase, open discussions and collaborative research are crucial for achieving a comprehensive analysis.

Let’s return to our Omega Soundscapes example and use the iceberg model to delve into the issues surrounding the two quarters of declining sales. Starting with the first layer beneath the surface, the behavioral pattern, the team diligently analyzed customer feedback. It discovered a significant drop in brand loyalty. This finding validated the problem frame of a “shifting brand perception,” prompting further investigation into what might have been causing it.

the problem solving approach involves

Phase 3: Empathize

In this phase, the focus is on the stakeholders—employees, customers, clients, investors, supply chain partners, and other parties—who are most central to and affected by the problem under investigation. The core objective is to understand how they perceive the issue: what they think and feel, how they’re acting, and what they want.

First list all the people who are directly or indirectly relevant to the problem. It may be helpful to create a visual representation of the network of relationships in the ecosystem. Prioritize the stakeholders according to their level of influence on and interest in the problem, and focus on understanding the roles, demographics, behavior patterns, motivations, and goals of the most important ones.

Now create empathy maps for those critical stakeholders. Make a template divided into four sections: Say, Think, Feel, and Do. Conduct interviews or surveys to gather authentic data. How do various users explain the problem? How do they think about the issue, and how do their beliefs inform that thinking? What emotions are they feeling and expressing? How are they behaving? Populate each section of the map with notes based on your observations and interactions. Finally, analyze the completed empathy maps. Look for pain points, inconsistencies, and patterns in stakeholder perspectives.

Returning to the Omega case study, the team identified its ecosystem of stakeholders: customers (both current and potential); retail partners and distributors; the R&D, marketing, and sales teams; suppliers of headphone components; investors and shareholders; and new and existing competitors. They narrowed the list to a few key stakeholders related to the declining-sales problem: customers, retail partners, and investors/shareholders; Omega created empathy maps for representatives from each.

Here’s what the empathy maps showed about what the stakeholders were saying, thinking, feeling, and doing:

Sarah, the customer, complained on social media about the high price of her favorite headphones. Dave, the retailer, expressed concerns about unsold inventory and the challenge of convincing customers to buy the expensive headphones. Alex, the shareholder, brought up Omega’s declining financial performance during its annual investor day.

Sarah thought that Omega was losing touch with its loyal customer base. Dave was considering whether to continue carrying Omega’s products in his store or explore other brands. Alex was contemplating diversifying his portfolio into other consumer-tech companies.

As a longtime supporter of the brand, Sarah felt frustrated and slightly betrayed. Dave was feeling anxious about the drop in sales and the impact on his store’s profitability. Alex was unhappy with the declining stock value.

Sarah was looking for alternatives to the headphones, even though she loves the product’s quality. Dave was scheduling a call with Omega to negotiate pricing and terms. Alex was planning to attend Omega’s next shareholder meeting to find out more information from the leadership team.

When Omega leaders analyzed the data in the maps, they realized that pricing wasn’t the only reason for declining sales. A more profound issue was customers’ dissatisfaction with the perceived price-to-quality ratio, especially when compared with competitors’ offerings. That insight prompted the team to consider enhancing the headphones with additional features, offering more-affordable alternatives, and possibly switching to a service model.

Engage with Stakeholders. Create an empathy map and conduct interviews and surveys to gather data to populate each section. This diagram shows a person in the center representing various types of stakeholders, with four questions companies should ask: What do stakeholders think? What do they do? What do they say? And what do they feel?

Phase 4: Elevate

This phase involves exploring how the problem connects to broader organizational issues. It’s like zooming out on a map to understand where a city lies in relation to the whole country or continent. This bird’s-eye view reveals interconnected issues and their implications.

For this analysis, we recommend the four-frame model developed by Lee Bolman and Terrence Deal, which offers distinct lenses through which to view the problem at a higher level. The structural frame helps you explore formal structures (such as hierarchy and reporting relationships); processes (such as workflow); and systems, rules, and policies. This frame examines efficiency, coordination, and alignment of activities.

The human resources frame focuses on people, relationships, and social dynamics. This includes teamwork, leadership, employee motivation, engagement, professional development, and personal growth. In this frame, the organization is seen as a community or a family that recognizes that talent is its most valuable asset. The political frame delves into power dynamics, competing interests, conflicts, coalitions, and negotiations. From this perspective, organizations are arenas where various stakeholders vie for resources and engage in political struggles to influence decisions. It helps you see how power is distributed, used, and contested.

The symbolic frame highlights the importance of symbols, rituals, stories, and shared values in shaping group identity and culture. In it, organizations are depicted as theaters through which its members make meaning.

Using this model, the Omega team generated the following insights in the four frames:

Structural.

A deeper look into the company’s structure revealed siloing and a lack of coordination between the R&D and marketing departments, which had led to misaligned messaging to customers. It also highlighted a lack of collaboration between the two functions and pointed to the need to communicate with the target market about the product’s features and benefits in a coherent and compelling way.

Human resources.

This frame revealed that the declining sales and price hikes had ramped up pressure on the sales team, damaging morale. The demotivated team was struggling to effectively promote the product, making it harder to recover from declining sales. Omega realized it was lacking adequate support, training, and incentives for the team.

The key insight from this frame was that the finance team’s reluctance to approve promotions in the sales group to maintain margins was exacerbating the morale problem. Omega understood that investing in sales leadership development while still generating profits was crucial for long-term success and that frank discussions about the issue were needed.

This frame highlighted an important misalignment in perception: The company believed that its headphones were of “top quality,” while customers reported in surveys that they were “overpriced.” This divergence raised alarm that branding, marketing, and pricing strategies, which were all predicated on the central corporate value of superior quality, were no longer resonating with customers. Omega realized that it had been paying too little attention to quality assurance and functionality.

Adjust Your Vantage Point. Explore the broader organizational issues that factor into the problem, using four distinct frames. This diagram shows four quadrants: the first is political, including power dynamics, competing interests, and coalitions. The second is interpersonal, including people and relationships. The third is structural, including coordination and alignment of activities, and the fourth is symbolic, including group identity and culture.

Phase 5: Envision

In this phase, you transition from framing the problem to actively imagining and designing solutions. This involves synthesizing the insights gained from earlier phases and crafting a shared vision of the desired future state.

Here we recommend using a technique known as backcasting. First, clearly define your desired goal. For example, a team struggling with missed deadlines and declining productivity might aim to achieve on-time completion rates of 98% for its projects and increase its volume of projects by 5% over the next year. Next, reverse engineer the path to achieving your goal. Outline key milestones required over both the short term and the long term. For each one, pinpoint specific interventions, strategies, and initiatives that will propel you closer to your goal. These may encompass changes in processes, policies, technologies, and behaviors. Synthesize the activities into a sequenced, chronological, prioritized road map or action plan, and allocate the resources, including time, budget, and personnel, necessary to implement your plan. Finally, monitor progress toward your goal and be prepared to adjust the plan in response to outcomes, feedback, or changing circumstances. This approach ensures that the team’s efforts in implementing the insights from the previous phases are strategically and purposefully directed toward a concrete destination.

the problem solving approach involves

Applying the Approach

Albert Einstein once said, “If I had one hour to solve a problem, I would spend 55 minutes thinking about the problem and five minutes thinking about the solution.” That philosophy underpins our E5 framework, which provides a structured approach for conscientiously engaging with complex problems before leaping to solutions.

As teams use the methodology, they must understand that problem-framing in today’s intricate business landscape is rarely a linear process. While we’re attempting to provide a structured path, we also recognize the dynamic nature of problems and the need for adaptability. Invariably, as teams begin to implement solutions, new facets of a problem may come to light, unforeseen challenges may arise, or external circumstances may evolve. Your team should be ready to loop back to previous phases—for instance, revisiting the expand phase to reassess the problem’s frame, delving deeper into an overlooked root cause in another examine phase, or gathering fresh insights from stakeholders in a new empathize phase. Ultimately, the E5 framework is intended to foster a culture of continuous improvement and innovation.

Partner Center

Adopting the right problem-solving approach

May 4, 2023 You’ve defined your problem, ensured stakeholders are aligned, and are ready to bring the right problem-solving approach and focus to the situation to find an optimal solution. But what is the right problem-solving approach? And what if there is no single ideal course of action? In our 2013 classic  from the Quarterly , senior partner Olivier Leclerc  highlights the value of taking a number of different approaches simultaneously to solve difficult problems. Read on to discover the five flexons, or problem-solving languages, that can be applied to the same problem to generate richer insights and more innovative solutions. Then check out more insights on problem-solving approaches, and dive into examples of pressing challenges organizations are contending with now.

Five routes to more innovative problem solving

Author Talks: Get on the performance curve

Strategy to beat the odds

How to master the seven-step problem-solving process

Want better strategies? Become a bulletproof problem solver

Digital performance management: From the front line to the bottom line

Addressing employee burnout: Are you solving the right problem?

Business’s ‘It’s not my problem’ IT problem

TEST YOUR SKILLS

Take the McKinsey Problem Solving Test

Solve, McKinsey’s assessment game

Personal tools

  • School Directory
  • Coyote Willow Family Magnet
  • Desert Willow Family Magnet
  • eCADEMY K8 Online Magnet
  • George I. Sánchez Collaborative Community
  • Janet Kahn School of Integrated Arts Magnet
  • Tres Volcanes Community Collaborative
  • Adobe Acres
  • Arroyo Del Oso
  • Collet Park
  • Coronado Dual Language Magnet
  • Dennis Chavez
  • Dolores Gonzales
  • Double Eagle
  • East San Jose
  • Edward Gonzales
  • Eugene Field
  • Georgia O'Keeffe
  • Governor Bent
  • Helen Cordero
  • Hubert Humphrey
  • Inez Science and Technology Magnet
  • Lew Wallace
  • Longfellow Dual Language Magnet
  • Los Padillas
  • Los Ranchos
  • M. A. Binford
  • Manzano Mesa
  • Marie M. Hughes
  • Matheson Park
  • Mission Avenue STEM Magnet
  • Monte Vista
  • Mountain View
  • Painted Sky
  • Reginald Chavez
  • Rudolfo Anaya
  • S. R. Marmon
  • S. Y. Jackson
  • San Antonito STEM Magnet
  • Sandia Base
  • Sierra Vista
  • Sombra Del Monte
  • Sunset View
  • Tierra Antigua
  • Valle Vista
  • Ventana Ranch
  • Zuni Technology and Communication Magnet
  • Desert Ridge
  • Garfield STEM Magnet & Community School
  • Hayes Dual Language Magnet
  • James Monroe
  • Jimmy Carter
  • Juvenile Detention Center Educational Unit
  • L.B. Johnson
  • Stephen Moody Complex
  • Tony Hillerman
  • Vision Quest Alternative
  • Albuquerque High School
  • Atrisco Heritage Academy
  • Career Enrichment Center & Early College Academy Magnet
  • Cibola High School
  • College and Career Magnet
  • Del Norte High School
  • eCADEMY Magnet
  • Eldorado High School
  • Freedom Magnet
  • Highland High School
  • La Cueva High School
  • Manzano High School
  • New Futures High School
  • nex+Gen Academy Magnet
  • Rio Grande High School
  • Sandia High School
  • School on Wheels Magnet
  • Transition Services
  • Valley High School
  • Volcano Vista
  • West Mesa High School
  • ABQ Charter Academy
  • ACE Leadership High School
  • Albuquerque Talent Development Academy
  • Alice King Community
  • Christine Duncan Heritage Academy
  • Cien Aguas International
  • Coral Community Charter School
  • Corrales International School
  • Digital Arts and Technology Academy
  • East Mountain High School
  • El Camino Real Academy
  • Gilbert L. Sena Charter High School
  • Gordon Bernell
  • Health Leadership High School
  • International School at Mesa del Sol
  • La Academia de Esperanza
  • Los Puentes
  • Mark Armijo Academy
  • Montessori of the Rio Grande
  • Mountain Mahogany
  • Native American Community Academy
  • New America School - New Mexico
  • New Mexico International
  • Public Academy for Performing Arts
  • Robert F Kennedy
  • Siembra Leadership High School
  • South Valley Academy
  • Technology Leadership High School
  • VOZ Collegiate Preparatory Charter School
  • William W. & Josephine Dorn Community

Albuquerque Public Schools

  • Online Registration
  • ParentVue Login
  • StudentVue Login
  • Contact APS with Let's Talk
  • Stay Informed
  • Peachjar Flyers
  • Families Connected
  • Student Records
  • APS Education Foundation

Threat Assessment

The APS Student Threat Assessment Process is a problem-solving approach to violence prevention that focuses on helping students in distress. This approach involves both assessment and interventions to resolve problems before they escalate into violence.

Our approach emphasizes prevention, collaboration, intervention and a positive school atmosphere to address potential threats and conflicts among students. Resolving conflicts and issues among students through mediation and collaboration with parents/guardians is a positive step toward creating a safe and supportive school environment. This strategy promotes open communication and seeks to address issues before they escalate. By taking a proactive stance and involving all stakeholders, our approach aims to create a safer and more supportive educational environment where students are empowered to solve their differences constructively.

Key Goals of Student Threat Assessment:

Prevention:.

By identifying and addressing potential issues early, the goal is to prevent situations from escalating into violence. This proactive stance can help create a safer and more secure school environment.

Comprehensive Approach

The Student Threat Assessment approach aims to comprehensively address potential threats by assessing and intervening with students who may be in distress or exhibiting concerning behavior. This approach acknowledges that there are often underlying factors contributing to such behavior, and it seeks to address those factors proactively.

Collaboration

The involvement of various stakeholders, including students, parents/guardians, teachers, and administrators, is crucial. Collaborative efforts ensure a more holistic understanding of the situation and allow for a collective approach to problem-solving.

Positive School Atmosphere

Fostering a positive school atmosphere is central to this approach. By focusing on conflict resolution, open communication, and involving students in constructive ways, the goal is to create a supportive environment where students feel empowered to address their differences in a healthy manner.

Encouraging peer mediation is a proactive step towards conflict resolution. Mediating conflicts can help de-escalate situations and provide an opportunity for students to learn problem-solving and communication skills.

Involvement of Parents/Guardians

Engaging parents and guardians in the process is important for a comprehensive understanding of a student's situation. It also promotes a collaborative effort between the school and the student's support system.

Open Communication

The strategy of addressing issues before they escalate relies on open and effective communication. Encouraging dialogue among students, teachers, and other stakeholders is key to understanding concerns and finding solutions.

Empowerment

Empowering students to actively engage in problem-solving contributes to their personal development and helps create a school environment where conflicts are managed constructively.Top of Form

Smoothing penalty approach for solving second-order cone complementarity problems

  • Published: 18 September 2024

Cite this article

the problem solving approach involves

  • Chieu Thanh Nguyen 1 ,
  • Jan Harold Alcantara 2 ,
  • Zijun Hao 3 &
  • Jein-Shan Chen   ORCID: orcid.org/0000-0002-4596-9419 4  

In this paper, we propose a smoothing penalty approach for solving the second-order cone complementarity problem (SOCCP). The SOCCP is approximated by a smooth nonlinear equation with penalization parameter. We show that any solution sequence of the approximating equations converges to the solution of the SOCCP under the assumption that the associated function of the SOCCP satisfies a uniform Cartesian-type property. We present a corresponding algorithm for solving the SOCCP based on this smoothing penalty approach, and we demonstrate the efficiency of our method for solving linear, nonlinear and tensor complementarity problems in the second-order cone setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

the problem solving approach involves

In our numerical experiments, we only used \(\phi ^-_2\) for the test problem SOCTCP3.

The codes for ReSNA are publicly available and can be downloaded from http://optima.ws.hosei.ac.jp/hayashi/ReSNA/ .

Alcantara, J.H., Chen, J.-S.: A new class of neural networks for NCPS using smooth perturbations of the natural residual function. J. Comput. Appl. Math. 407 , 114092 (2022)

Article   MathSciNet   Google Scholar  

Alcantara, J.H., Nguyen, C.T., Okuno, T., Takeda, A., Chen, J.-S.: Unified smoothing approach for best 486 hyperparameter selection problem using a bilevel optimization strategy. Math. Program. (2024). https://doi.org/10.1007/s10107-024-02113-z

Article   Google Scholar  

Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95 , 3–51 (2003)

Auslender, A.: Variational inequalities over the cone of semidefinite positive matrices and over the Lorentz cone. Optim. Methods Softw. 18 , 359–376 (2003)

Billups, S.C., Murty, K.G.: Complementarity problems. J. Comput. Appl. Math. 124 , 303–318 (2000)

Chen, C., Mangasarian, O.L.: A class of smoothing functions for nonlinear and mixed complementarity problems. Comput. Optim. Appl. 5 , 97–138 (1996)

Chen, J.: Two classes of merit functions for the second-order cone complementarity problem. Math. Methods Oper. Res. 64 (3), 495–519 (2006)

Chen, J., Pan, S.: A descent method for a reformulation of the second-order cone complementarity problem. J. Comput. Appl. Math. 213 (2), 547–558 (2008)

Chen, J.-S.: SOC Functions and their Applications, vol. 143. Springer, Singapore (2019)

Google Scholar  

Chen, J.-S., Chen, X., Tseng, P.: Analysis of nonsmooth vector-valued functions associated with second-order cones. Math. Program. 101 , 95–117 (2004)

Chen, J.-S., Tseng, P.: An unconstrained smooth minimization reformulation of the second-order cone complementarity problem. Math. Program. 104 , 297–327 (2005)

Chen, L., Ma, C.: A modified smoothing and regularized Newton method for monotone second-order cone complementarity problems. Comput. Math. Appl. 61 , 1407–1418 (2011)

Chen, X., Sun, D., Sun, J.: Complementarity functions and numerical experiments on some smoothing Newton methods for second-order-cone complementarity problems. Comput. Optim. Appl. 25 , 39–56 (2003)

Cheng, L., Zhang, X.: A semidefinite relaxation method for second-order cone polynomial complementarity problems. Comput. Optim. Appl. 75 , 629–647 (2020)

Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer-Verlag, New York, NY (2003)

Faraut, J., Korányi, A.: Analysis on Symmetric Cones. Clarendon Press, Oxford Mathematical Monographs (1994)

Book   Google Scholar  

Ferris, M.C., Pang, J.S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39 (4), 669–713 (1997)

Fukushima, M., Luo, Z.-Q., Tseng, P.: Smoothing functions for second-order cone complementarity problems. SIAM J. Optim. 12 , 436–460 (2002)

Hao, Z., Nguyen, C., Chen, J.-S.: An approximate lower order penalty approach for solving second-order cone linear complementarity problems. J. Global Optim. 83 , 671–697 (2022)

Hao, Z., Wan, Z., Chi, X., Chen, J.: A power penalty method for second-order cone nonlinear complementarity problems. J. Comput. Appl. Math. 290 , 136–149 (2015)

Hayashi, S., Yamaguchi, T., Yamashita, N., Fukushima, M.: A matrix-splitting method for symmetric affine second-order cone complementarity problems. J. Comput. Appl. Math. 175 (2), 335–353 (2005)

Hayashi, S., Yamashita, N., Fukushima, M.: A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J. Optim. 15 (2), 563–615 (2005)

Hayashi, S., Yamashita, N., Fukushimay, M.: Robust NASH equilibria and second-order cone complementarity problems. J. Nonlinear Convex Anal. 6 (2), 283–296 (2005)

MathSciNet   Google Scholar  

Huang, C., Wang, S.: A power penalty approach to a nonlinear complementarity problem. Oper. Res. Lett. 38 , 72–76 (2010)

Huang, Z.-H., Ni, T.: Smoothing algorithms for complementarity problems over symmetric cones. Comput. Optim. Appl. 45 , 557–579 (2010)

Kanzow, C., Ferenczi, I., Fukushima, M.: On the local convergence of semismooth newton methods for linear and nonlinear second-order cone programs without strict complementarity. SIAM J. Optim. 20 (1), 297–320 (2009)

Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284 (1), 193–228 (1998)

Miao, X., Chen, J.-S., Ko, C.-H.: A smoothed NR neural network for solving nonlinear convex programs with second-order cone constraints. Inf. Sci. 268 , 255–270 (2014)

Monteiro, R., Tsuchiya, T.: Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions. Math. Program. Ser. B 88 , 61–83 (2000)

Pan, S., Chen, J.: A regularization method for the second-order cone complementarity problem with the Cartesian P \(_0\) -property. Nonlinear Anal. Theory Methods Appl. 70 (4), 1475–1491 (2009)

Qi, L.: The best rank-one approximation ratio of a tensor space. SIAM J. Matrix Anal. Appl. 32 (2), 430–442 (2011)

Sun, J., Fu, W., Alcantara, J.H., Chen, J.-S.: A neural network based on the metric projector for solving SOCCVI problem. IEEE Trans. Neural Netw. Learn. Syst. 32 (7), 2886–2900 (2021)

Tian, B., Hu, Y., Yang, X.: A box-constrained differentiable penalty method for nonlinear complementarity problems. J. Global Optim. 62 , 724–747 (2015)

Tian, B., Yang, X.: Smoothing power penalty method for nonlinear complementarity problems. Pac. J. Optim. 12 (2), 461–484 (2016)

Wang, S., Yang, X.: A power penalty method for linear complementarity problems. Oper. Res. Lett. 36 (2), 211–214 (2008)

Zhang, L.-H., Yang, W.H.: An efficient matrix splitting method for the second-order cone complementarity problem. SIAM J. Optim. 24 (3), 1178–1205 (2014)

Download references

Author information

Authors and affiliations.

Department of Mathematics, Faculty of Information Technology, Vietnam National University of Agriculture, Hanoi, 131000, Vietnam

Chieu Thanh Nguyen

Center for Advanced Intelligence Project, RIKEN, Tokyo, 103-0027, Japan

Jan Harold Alcantara

School of Mathematics and Information Science, North Minzu University, Yinchuan, 750021, China

Department of Mathematics, National Taiwan Normal University, Taipei, 116059, Taiwan

Jein-Shan Chen

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Jein-Shan Chen .

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author’s work is supported by the Natural Science Fund of Ningxia (No. 2022AAC03235). The author’s work is supported by the National Science and Technology Council, Taiwan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Nguyen, C.T., Alcantara, J.H., Hao, Z. et al. Smoothing penalty approach for solving second-order cone complementarity problems. J Glob Optim (2024). https://doi.org/10.1007/s10898-024-01427-8

Download citation

Received : 07 July 2023

Accepted : 18 August 2024

Published : 18 September 2024

DOI : https://doi.org/10.1007/s10898-024-01427-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Second-order cone
  • Nonlinear complementarity problem
  • Penalty method

Mathematics Subject Classification

  • Find a journal
  • Publish with us
  • Track your research

Help | Advanced Search

Mathematical Physics

Title: neumann series-based neural operator for solving inverse medium problem.

Abstract: The inverse medium problem, inherently ill-posed and nonlinear, presents significant computational challenges. This study introduces a novel approach by integrating a Neumann series structure within a neural network framework to effectively handle multiparameter inputs. Experiments demonstrate that our methodology not only accelerates computations but also significantly enhances generalization performance, even with varying scattering properties and noisy data. The robustness and adaptability of our framework provide crucial insights and methodologies, extending its applicability to a broad spectrum of scattering problems. These advancements mark a significant step forward in the field, offering a scalable solution to traditionally complex inverse problems.
Subjects: Mathematical Physics (math-ph); Machine Learning (cs.LG)
Cite as: [math-ph]
  (or [math-ph] for this version)
  Focus to learn more arXiv-issued DOI via DataCite

Submission history

Access paper:.

  • HTML (experimental)
  • Other Formats

license icon

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

COMMENTS

  1. The Problem-Solving Process

    Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...

  2. Problem solving

    t. e. Problem solving is the process of achieving a goal by overcoming obstacles, a frequent part of most activities. Problems in need of solutions range from simple personal tasks (e.g. how to turn on an appliance) to complex issues in business and technical fields. The former is an example of simple problem solving (SPS) addressing one issue ...

  3. What is Problem Solving? Steps, Process & Techniques

    Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below. Step. Characteristics. 1. Define the problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically.

  4. 12 Approaches To Problem-Solving for Every Situation

    Brainstorm options to solve the problem. Select an option. Create an implementation plan. Execute the plan and monitor the results. Evaluate the solution. Read more: Effective Problem Solving Steps in the Workplace. 2. Collaborative. This approach involves including multiple people in the problem-solving process.

  5. The Art of Effective Problem Solving: A Step-by-Step Guide

    Step 1 - Define the Problem. The definition of the problem is the first step in effective problem solving. This may appear to be a simple task, but it is actually quite difficult. This is because problems are frequently complex and multi-layered, making it easy to confuse symptoms with the underlying cause.

  6. Problem-Solving Strategies and Obstacles

    Problem-solving involves taking certain steps and using psychological strategies. Learn problem-solving techniques and how to overcome obstacles to solving problems. ... If you have time, you can take advantage of the algorithm approach to problem-solving by sitting down and making a flow chart of each potential solution, its consequences, and ...

  7. What are the 7 Steps to Problem-Solving? & Its Examples

    7 Steps to Problem-Solving. 7 Steps to Problem-Solving is a systematic process that involves analyzing a situation, generating possible solutions, and implementing the best course of action. While different problem-solving models exist, a common approach often involves the following seven steps: Define the Problem: Clearly articulate and ...

  8. Guide: Problem Solving

    The process of problem-solving is a methodical approach that involves several distinct stages. Each stage plays a crucial role in navigating from the initial recognition of a problem to its final resolution. ... The problem-solving process involves several key steps: identifying the problem, defining it clearly, analyzing it to understand its ...

  9. How to master the seven-step problem-solving process

    When we do problem definition well in classic problem solving, we are demonstrating the kind of empathy, at the very beginning of our problem, that design thinking asks us to approach. When we ideate—and that's very similar to the disaggregation, prioritization, and work-planning steps—we do precisely the same thing, and often we use ...

  10. A guide to problem-solving techniques, steps, and skills

    The 7 steps to problem-solving. When it comes to problem-solving there are seven key steps that you should follow: define the problem, disaggregate, prioritize problem branches, create an analysis plan, conduct analysis, synthesis, and communication. 1. Define the problem. Problem-solving begins with a clear understanding of the issue at hand.

  11. What is Problem Solving? An Introduction

    As you can see, problem solving plays a pivotal role in software engineering. Far from being an occasional requirement, it is the lifeblood that drives development forward, catalyzes innovation, and delivers of quality software. By leveraging problem-solving techniques, software engineers employ a powerful suite of strategies to overcome ...

  12. An Introduction to Problem Solving: Understanding the Basics

    The Stages of Problem Solving. Problem solving typically involves several stages that help guide the process from identifying the problem to implementing and evaluating the solution. Let's explore these stages in detail: ... Root cause analysis is a systematic approach to problem solving that focuses on identifying the underlying causes of an ...

  13. Definitive Guide to Problem Solving Techniques

    Creative problem solving (CPS) is a method of problem solving in which you approach a problem or challenge in an imaginative, innovative way. The goal of CPS is to come up with innovative solutions, make a decision, and take action quickly. Sidney Parnes and Alex Osborn are credited with developing the creative problem solving process in the 1950s.

  14. 40 problem-solving techniques and processes

    Problem solving games used in this stage involve lots of critical thinking, measuring potential effort and impact, and looking at possible solutions analytically. ... Not every problem-solving approach is right for every challenge, and deciding on the right method for the challenge at hand is a key part of being an effective team.

  15. Problem-Solving Strategies: Definition and 5 Techniques to Try

    In insight problem-solving, the cognitive processes that help you solve a problem happen outside your conscious awareness. 4. Working backward. Working backward is a problem-solving approach often ...

  16. 14 Effective Problem-Solving Strategies

    14 types of problem-solving strategies. Here are some examples of problem-solving strategies you can practice using to see which works best for you in different situations: 1. Define the problem. Taking the time to define a potential challenge can help you identify certain elements to create a plan to resolve them.

  17. Problem-Solving Therapy: Definition, Techniques, and Efficacy

    Problem-solving therapy is a short-term treatment used to help people who are experiencing depression, stress, PTSD, self-harm, suicidal ideation, and other mental health problems develop the tools they need to deal with challenges. This approach teaches people to identify problems, generate solutions, and implement those solutions.

  18. The McKinsey guide to problem solving

    The McKinsey guide to problem solving. Become a better problem solver with insights and advice from leaders around the world on topics including developing a problem-solving mindset, solving problems in uncertain times, problem solving with AI, and much more.

  19. What is Problem Solving? (Steps, Techniques, Examples)

    The problem-solving process typically includes the following steps: Identify the issue: Recognize the problem that needs to be solved. Analyze the situation: Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present. Generate potential solutions: Brainstorm a list of possible ...

  20. To Solve a Tough Problem, Reframe It

    This article introduces a five-phase approach to problem-framing: In the expand phase, the team identifies all aspects of a problem; in examine, it dives into root causes; in empathize, it ...

  21. Problem Solving

    Cognitive—Problem solving occurs within the problem solver's cognitive system and can only be inferred indirectly from the problem solver's behavior (including biological changes, introspections, and actions during problem solving).. Process—Problem solving involves mental computations in which some operation is applied to a mental representation, sometimes resulting in the creation of ...

  22. Adopting the right problem-solving approach

    In our 2013 classic from the Quarterly, senior partner Olivier Leclerc highlights the value of taking a number of different approaches simultaneously to solve difficult problems. Read on to discover the five flexons, or problem-solving languages, that can be applied to the same problem to generate richer insights and more innovative solutions.

  23. RSM2625H

    General Information Promotional VideoUnavailable Target Audience This course is for students who aspire to broaden their thinking and add to their decision-making and problem-solving toolkits. In class, we will discover knowledge about how we think and develop methods for improving our skills in identifying, defining, and solving problems. Format Spring Term 2025 (January 20 - […]

  24. Threat Assessment

    This approach involves both assessment and interventions to resolve problems before they escalate into violence. The APS Student Threat Assessment Process is a problem-solving approach to violence prevention that focuses on helping students in distress. This approach involves both assessment and interventions to resolve problems before they ...

  25. Smoothing penalty approach for solving second-order cone ...

    In this paper, we propose a smoothing penalty approach for solving the second-order cone complementarity problem (SOCCP). The SOCCP is approximated by a smooth nonlinear equation with penalization parameter. We show that any solution sequence of the approximating equations converges to the solution of the SOCCP under the assumption that the associated function of the SOCCP satisfies a uniform ...

  26. Neumann Series-based Neural Operator for Solving Inverse Medium Problem

    The inverse medium problem, inherently ill-posed and nonlinear, presents significant computational challenges. This study introduces a novel approach by integrating a Neumann series structure within a neural network framework to effectively handle multiparameter inputs. Experiments demonstrate that our methodology not only accelerates computations but also significantly enhances generalization ...