CrowJack

  • Calculators
  • Swot Analysis
  • Pestle Analysis
  • Five Forces Analysis
  • Organizational Structure
  • Copywriting
  • Research Topics
  • Student Resources

CrowJack

Services We Provide

proof-reading

Resources We Provide

blog

Login / Register

login

  • 15 Latest Networking Research Topics for Students

Kiara Miller - Image

Comparative analysis between snort and suricata IDS software(s)

Description of the topic

The main focus of this research is to conduct a comparative analysis between Snort and Suricata software to determine which IDS software can provide better performance. There are various IDS software(s) available that can be used by organizations but it is difficult to identify which one is best (Aldarwbi et al., 2022). Different organizational structures are often facing problems while setting up an IDS system which results in false positives and intrusions. Through this research, it can be identified which IDS software is better and what secure configuration is required to detect intrusions (Waleed et al., 2022).

Research objectives

  • To evaluate Snort and Suricata IDS software(s) to determine the most optimal one.
  • To identify the false positive rate of Snort and Suricata on the networked environment.

Research questions

RQ1: Which IDS software can perform better on the production network in terms of performance, security, scalability and reliability?

RQ2: What different ways can be followed to deal with false positive problems in IDS technology?

Research methodology

The given research objectives and research questions can be addressed using quantitative research methodology where an experimental approach can be followed. For the given topic, both Snort and Suricata IDS systems should be configured and tested against different attacks. Depending on the findings, it can be analyzed which IDS software can perform better in terms of performance and security (Shuai & Li, 2021).

  • Aldarwbi, M.Y., Lashkari, A.H. and Ghorbani, A.A. (2022) “The sound of intrusion: A novel network intrusion detection system,” Computers and Electrical Engineering , 104, p. 108455.
  • Shuai, L. and Li, S. (2021) “Performance optimization of Snort based on DPDK and Hyperscan,” Procedia Computer Science , 183, pp. 837-843.
  • Waleed, A., Jamali, A.F. and Masood, A. (2022) “Which open-source ids? Snort, Suricata or Zeek,” Computer Networks , 213, p. 109116.

Role of honeypots and honey nets in network security

Network Security has become essential nowadays and there is a need for setting up robust mechanisms to maintain confidentiality and integrity (Feng et al., 2023). Due to the number of security mechanisms available, organizations found it hard to finalize and implement them on their network. For example, honey pots and honeynet approaches look almost the same and have the same purpose but work differently. Under this research topic, the configuration of honeynets and honeypots can be done to check which one can perform better security in terms of trapping cyber attackers. The entire implementation can be carried out in the cloud-based instance for improved security and it can be identified which type of honey pot technology must be preferred (Maesschalck et al., 2022).

  • To set up a honey pot system using Open Canary on the virtual instance to protect against cyber attackers.
  • To set up a honeynet system on the virtual instance to assure protection is provided against malicious attackers.
  • To test honeypots and honeynets by executing DDoS attacks to check which can provide better security.

RQ1: Why is there a need for using honeypots over honey pots in a production networked environment?

RQ2: What are the differences between cloud-based and local honey pot systems for endpoint protection?

This research can be carried out using the quantitative method of research. At the initial stage, the implementation of honeypots and honeypots can be done on the virtual instance following different security rules. Once the rules are applied, the testing can be performed using a Kali Linux machine to check whether honey pots were effective or honeynets (Gill et al., 2020).

  • Feng, H. et al. (2023) “Game theory in network security for Digital Twins in industry,” Digital Communications and Networks [Preprint].
  • Gill, K.S., Saxena, S. and Sharma, A. (2020) “GTM-CSEC: A game theoretic model for cloud security based on ids and Honeypot,” Computers & Security , 92, p. 101732
  • Maesschalck, S. et al. (2022) “Don’t get stung, cover your ICS in honey: How do honeypots fit within industrial control system security,” Computers & Security , 114, p. 102598.

How do malware variants are progressively improving?

This research can be based on evaluating how malware variants are progressively improving and what should be its state in the coming future. Malware is able to compromise confidential user’s information assets which is why this research can be based on identifying current and future consequences owing to its improvements (Deng et al., 2023). In this field, there is no research work that has been carried out to identify how malware variants are improving their working and what is expected to see in future. Once the evaluation is done, a clear analysis can also be done on some intelligent preventive measures to deal with dangerous malware variants and prevent any kind of technological exploitation (Tang et al., 2023).

  • To investigate types of malware variants available to learn more about malware's hidden features.
  • To focus on future implications of malware executable programs and how they can be avoided.
  • To discuss intelligent solutions to deal with all malware variants.

RQ1: How do improvements in malware variants impact enterprises?

RQ2: What additional solutions are required to deal with malware variants?

In this research, qualitative analysis can be conducted on malware variants and the main reason behind their increasing severity. The entire research can be completed based on qualitative research methodology to answer defined research questions and objectives. Some real-life case studies should also be integrated into the research which can be supported by the selected topic (Saidia Fasci et al., 2023).

  • Deng, H. et al. (2023) “MCTVD: A malware classification method based on three-channel visualization and deep learning,” Computers & Security , 126, p. 103084.
  • Saidia Fasci, L. et al. (2023) “Disarming visualization-based approaches in malware detection systems,” Computers & Security , 126, p. 103062.
  • Tang, Y. et al. (2023) “BHMDC: A byte and hex n-gram based malware detection and classification method,” Computers & Security , p. 103118.

Implementation of IoT - enabled smart office/home using cisco packet tracer

The Internet of Things has gained much more attention over the past few years which is why each enterprise and individual aims at setting up an IoT network to automate their processes (Barriga et al., 2023). This research can be based on designing and implementing an IoT-enabled smart home/office network using Cisco Packet Tracer software. Logical workspace, all network devices, including IoT devices can be used for preparing a logical network star topology (Elias & Ali, 2014). To achieve automation, the use of different IoT rules can be done to allow devices to work based on defined rules.

  • To set up an IoT network on a logical workspace using Cisco Packet Tracer simulation software.
  • To set up IoT-enabled rules on an IoT registration server to achieve automation (Hou et al., 2023).

RQ: Why is the Cisco packet tracer preferred for network simulation over other network simulators?

At the beginning of this research, a quantitative research methodology can be followed where proper experimental set-up can be done. As a packet tracer is to be used, the star topology can be used to interconnect IoT devices, sensors and other network devices at the home/office. Once a placement is done, the configuration should be done using optimal settings and all IoT devices can be connected to the registration server. This server will have IoT rules which can help in achieving automation by automatically turning off lights and fans when no motion is detected (Baggan et al., 2022).

  • Baggan, V. et al. (2022) “A comprehensive analysis and experimental evaluation of Routing Information Protocol: An Elucidation,” Materials Today: Proceedings , 49, pp. 3040–3045.
  • Barriga, J.A. et al. (2023) “Design, code generation and simulation of IOT environments with mobility devices by using model-driven development: Simulateiot-Mobile,” Pervasive and Mobile Computing , 89, p. 101751.
  • Elias, M.S. and Ali, A.Z. (2014) “Survey on the challenges faced by the lecturers in using packet tracer simulation in computer networking course,” Procedia - Social and Behavioral Sciences , 131, pp. 11–15.
  • Hou, L. et al. (2023) “Block-HRG: Block-based differentially private IOT networks release,” Ad Hoc Networks , 140, p. 103059.

Comparative analysis between AODV, DSDV and DSR routing protocols in WSN networks

For wireless sensor networks (WSN), there is a major need for using WSN routing rather than performing normal routines. As WSN networks are self-configured, there is a need for an optimal routing protocol that can improve network performance in terms of latency, jitter, and packet loss (Luo et al., 2023). There are often various problems faced when WSN networks are set up due to a lack of proper routing protocol selection. As a result of this, severe downtime is faced and all links are not able to communicate with each other easily (Hemanand et al., 2023). In this research topic, the three most widely used WSN routing protocols AODV, DSDV and DSR can be compared based on network performance. To perform analysis, three different scenarios can be created in network simulator 2 (Ns2).

  • To create three different scenarios on ns2 software to simulate a network for 1 to 100 seconds.
  • To analyze which WSN routing is optimal in terms of network performance metrics, including latency, jitter and packet loss.
  • To use CBR and NULL agents for all wireless scenarios to start with simulation purposes.

RQ: How do AODV, DSR and DSDV routing protocols differ from each other in terms of network performance?

This research can be carried out using a quantitative research method. The implementation for the provided research topic can be based on Ns2 simulation software where three different scenarios can be created (AODV, DSDV and DSR). For each scenario, NULL, CSR and UDP agents can be done to start with simulation for almost 1 to 100 seconds. For all transmissions made during the given time, network performance can be checked to determine which routing is best (Mohapatra & Kanungo, 2012).

  • Human and, D. et al. (2023) “Analysis of power optimization and enhanced routing protocols for Wireless Sensor Networks,” Measurement: Sensors , 25, p. 100610. Available at: https://doi.org/10.1016/j.measen.2022.100610.
  • Luo, S., Lai, Y. and Liu, J. (2023) “Selective forwarding attack detection and network recovery mechanism based on cloud-edge cooperation in software-defined wireless sensor network,” Computers & Security , 126, p. 103083. Available at: https://doi.org/10.1016/j.cose.2022.103083.
  • Mohapatra, S. and Kanungo, P. (2012) “Performance analysis of AODV, DSR, OLSR and DSDV routing protocols using NS2 Simulator,” Procedia Engineering , 30, pp. 69–76. Available at: https://doi.org/10.1016/j.proeng.2012.01.835.

Securing wireless network using AAA authentication and WLAN controller

Wireless networks often face intrusion attempts due to insecure protocols and sometimes open SSIDs. As a result of this, man-in-the-middle and eavesdropping attacks become easier which results in the loss of confidential information assets (Sivasankari & Kamalakkannan, 2022). When it comes to managing networks in a large area, there are higher chances for attacks that enable cyber attackers in intercepting ongoing communication sessions. However, there is currently no research conducted where the use of AAA authentication has been done with WLAN controllers to make sure a higher level of protection is provided (Nashwan, 2021). The proposed research topic can be based on securing wireless networks with the help of AAA authentication and WLAN controllers. The use of AAA authentication can be done to set up a login portal for users whilst the WLAN controller can be used for managing all wireless access points connected to the network (Nashwan, 2021).

  • To set up AAA authentication service on the wireless network simulated on Cisco Packet Tracer for proper access control.
  • To set up a WLAN controller on the network to manage all wireless access points effortlessly.
  • To use WPA2-PSK protocol on the network to assure guest users are only able to access wireless networks over a secure protocol.

RQ1: What additional benefits are offered by AAA authentication on the WLAN networks?

RQ2: Why are wireless networks more likely to face network intrusions than wired networks?

This research topic is based on the secure implementation of a wireless LAN network using a Cisco packet tracer. Hence, this research can be carried out using a quantitative research method. The implementation can be carried out using AAA authentication which can assure that access control is applied for wireless logins. On the other hand, a WLAN controller can also be configured which can ensure that all WAPs are managed (ZHANG et al., 2012).

  • Nashwan, S. (2021) “AAA-WSN: Anonymous Access Authentication Scheme for wireless sensor networks in Big Data Environment,” Egyptian Informatics Journal , 22(1), pp. 15–26.
  • Sivasankari, N. and Kamalakkannan, S. (2022) “Detection and prevention of man-in-the-middle attack in IOT network using regression modeling,” Advances in Engineering Software , 169, p. 103126.
  • ZHANG, J. et al. (2012) “AAA authentication for Network mobility,” The Journal of China Universities of Posts and Telecommunications , 19(2), pp. 81-86.

OWASP's approach to secure web applications from web application exploits

The research can revolve around the development of web applications by considering OWASP's top 10 rules. Usually, web applications are deployed by organizations depending on their requirements and these applications are vulnerable to various exploits, including injection, broken authentication and other forgery attacks (Poston, 2020). Identifying every single vulnerability is difficult when reference is not taken and often organizations end up hosting a vulnerable server that leads to privacy issues and compromises confidential information easily. In this research, OWASP's top 10 approaches can be followed to develop a secure web application that can be able to protect against top web application exploits. This approach is based on emphasizing severe and minor vulnerabilities which must be patched for protecting against web application attacks (Deepa & Thilagam, 2016).

  • The first objective can be setting up an insecure web application on the cloud environment which can be exploited with different techniques.
  • The second objective can be to consider all techniques and procedures provided by OWASP's top 10 methodologies.
  • The last objective can be applying all fixes to insecure web applications to make them resistant to OWASP top 10 attacks (Sonmez, 2019).

RQ1: What are the benefits of using OWASP's top 10 approaches to harden web applications in comparison to other security approaches?

The research methodology considered for this research project can be quantitative using an experimental approach. The practical work can be done for the selected topic using AWS or the Azure cloud platform. Simply, a virtual web server can be configured and set up with a secure and insecure web application. Following OWASP's top 10 techniques and procedures, the web application can be secured from possible attacks. In addition, insecure applications can also be exploited and results can be evaluated (Applebaum et al., 2021).

  • Applebaum, S., Gaber, T. and Ahmed, A. (2021) “Signature-based and machine-learning-based web application firewalls: A short survey,” Procedia Computer Science , 189, pp. 359–367. Available at: https://doi.org/10.1016/j.procs.2021.05.105.
  • Deepa, G. and Thilagam, P.S. (2016) “Securing web applications from injection and logic vulnerabilities: Approaches and challenges,” Information and Software Technology , 74, pp. 160–180. Available at: https://doi.org/10.1016/j.infsof.2016.02.005.
  • Poston, H. (2020) “Mapping the owasp top Ten to the blockchain,” Procedia Computer Science , 177, pp. 613-617. Available at: https://doi.org/10.1016/j.procs.2020.10.087.
  • Sonmez, F.Ö. (2019) “Security qualitative metrics for Open Web Application Security Project Compliance,” Procedia Computer Science , 151, pp. 998-1003. Available at: https://doi.org/10.1016/j.procs.2019.04.140.

Importance of configuring RADIUS (AAA) server on the network

User authentication has become significant nowadays as it guarantees that a legitimate user is accessing the network. But a problem is faced when a particular security control is to be identified for authentication and authorization. These controls can be categorized based on mandatory access controls, role-based access control, setting up captive portals and many more. Despite several other security controls, one of the most efficient ones is the RADIUS server (SONG et al., 2008). This server can authenticate users on the network to make sure network resources are accessible to only legal users. This research topic can be based on understanding the importance of RADIUS servers on the network which can also be demonstrated with the help of the Cisco Packet Tracer. A network can be designed and equipped with a RADIUS server to ensure only legal users can access network resources (WANG et al., 2009).

  • To configure RADIUS (AAA) server on the network which can be able to authenticate users who try to access network resources.
  • To simulate a network on a packet tracer simulation software and verify network connectivity.

RQ1: What are other alternatives to RADIUS (AAA) authentication servers for network security?

RQ2: What are the common and similarities between RADIUS and TACACS+ servers?

As a logical network is to be designed and configured, a quantitative research methodology can be followed. In this research coursework, a secure network design can be done using a packet tracer network simulator, including a RADIUS server along with the DMZ area. The configuration for the RADIUS server can be done to allow users to only access network resources by authenticating and authorizing (Nugroho et al., 2022).

  • Nugroho, Y.S. et al. (2022) “Dataset of network simulator related-question posts in stack overflow,” Data in Brief , 41, p. 107942.
  • SONG, M., WANG, L. and SONG, J.-de (2008) “A secure fast handover scheme based on AAA protocol in Mobile IPv6 Networks,” The Journal of China Universities of Posts and Telecommunications , 15, pp. 14-18.
  • WANG, L. et al. (2009) “A novel congestion control model for interworking AAA in heterogeneous networks,” The Journal of China Universities of Posts and Telecommunications , 16, pp. 97-101.

Comparing mod security and pF sense firewall to block illegitimate traffic

Firewalls are primarily used for endpoint security due to their advanced features ranging from blocking to IDS capabilities and many more. It is sometimes challenging to identify which type of firewall is best and due to this reason, agencies end up setting up misconfigured firewalls (Tiwari et al., 2022). This further results in a cyber breach, destroying all business operations. The research can be emphasizing conducting a comparison between the two most widely used firewalls i.e. Mod Security and pF sense. Using a virtualized environment, both firewalls can be configured and tested concerning possible cyber-attacks (Lu & Yang, 2020).

  • To use the local environment to set up Mod security and pF sense firewall with appropriate access control rules.
  • To test both firewalls by executing distributed denial of service attacks from a remote location.
  • To compare which type of firewall can provide improved performance and robust security.

RQ: How do Mod security and pF sense differ from each other in terms of features and performance?

The practical experimentation for both firewalls can be done using a virtualized environment where two different machines can be created. Hence, this research can be carried out using a quantitative research method . The first machine can have Mod security and the second machine can have pF sense configured. A new subnet can be created which can have these two machines. The third machine can be an attacking machine which can be used for testing firewalls. The results obtained can be then evaluated to identify which firewall is best for providing security (Uçtu et al., 2021).

  • Lu, N. and Yang, Y. (2020) “Application of evolutionary algorithm in performance optimization of Embedded Network Firewall,” Microprocessors and Microsystems , 76, p. 103087.
  • Tiwari, A., Papini, S. and Hemamalini, V. (2022) “An enhanced optimization of parallel firewalls filtering rules for scalable high-speed networks,” Materials Today: Proceedings , 62, pp. 4800-4805.
  • Uçtu, G. et al. (2021) “A suggested testbed to evaluate multicast network and threat prevention performance of Next Generation Firewalls,” Future Generation Computer Systems , 124, pp. 56-67.

Conducting a comprehensive investigation on the PETYA malware

The main purpose of this research is to conduct a comprehensive investigation of the PETYA malware variant (McIntosh et al., 2021). PETYA often falls under the category of ransomware attacks which not only corrupt and encrypt files but can compromise confidential information easily. Along with PETYA, there are other variants also which lead to a security outage and organizations are not able to detect these variants due to a lack of proper detection capabilities (Singh & Singh, 2021). In this research, a comprehensive analysis has been done on PETYA malware to identify its working and severity level. Depending upon possible causes of infection of PETYA malware, some proactive techniques can also be discussed (Singh & Singh, 2021). A separation discussion can also be made on other malware variants, their features, and many more.

  • The main objective of this research is to scrutinize the working of PETYA malware because a ransomware attack can impact the micro and macro environment of the organizations severely.
  • The working of PETYA malware along with its source code can be reviewed to identify its structure and encryption type.
  • To list all possible CVE IDs which are exploited by the PETYA malware.

RQ1: How dangerous is PETYA malware in comparison to other ransomware malware?

This research can be based on qualitative research methodology to evaluate the working of PETYA malware from various aspects, the methodology followed and what are its implications. The research can be initiated by evaluating the working of PETYA malware, how it is triggered, what encryption is applied and other factors. A sample source code can also be analyzed to learn more about how cryptography is used with ransomware (Abijah Roseline & Geetha, 2021).

  • Abijah Roseline, S. and Geetha, S. (2021) “A comprehensive survey of tools and techniques mitigating computer and mobile malware attacks,” Computers & Electrical Engineering , 92, p. 107143.
  • McIntosh, T. et al. (2021) “Enforcing situation-aware access control to build malware-resilient file systems,” Future Generation Computer Systems , 115, pp. 568-582.
  • Singh, J. and Singh, J. (2021) “A survey on machine learning-based malware detection in executable files,” Journal of Systems Architecture , 112, p. 101861.

Setting up a Live streaming server on the cloud platform

Nowadays, various organizations require a live streaming server to stream content depending upon their business. However, due to a lack of proper hardware, organizations are likely to face high network congestion, slowness and other problems (Ji et al., 2023). Referring to the recent cases, it has been observed that setting up a streaming server on the local environment is not expected to perform better than a cloud-based streaming server configuration (Martins et al., 2019). This particular research topic can be based on setting up a live streaming server on the AWS or Azure cloud platform to make sure high network bandwidth is provided with decreased latency. The research gap analysis would be conducted to analyze the performance of live streaming servers on local and cloud environments in terms of network performance metrics (Bilal et al., 2018).

  • To set up a live streaming server on the AWS or Azure cloud platform to provide live streaming services.
  • To use load balancers alongside streaming servers to ensure the load is balanced and scalability is achieved.
  • To use Wireshark software to test network performance during live streaming.

RQ1: Why are in-house streaming servers not able to provide improved performance in comparison to cloud-based servers?

RQ2: What additional services are provided by cloud service providers which help in maintaining network performance?

The implementation is expected to carry out on the AWS cloud platform with other AWS services i.e. load balancer, private subnet and many more (Efthymiopoulou et al., 2017). Hence, this research can be carried out using a quantitative research method. The configuration of ec2 instances can be done which can act as a streaming server for streaming media and games. For testing this project, the use of OBS studio can be done which can help in checking whether streaming is enabled or not. For network performance, Wireshark can be used for testing network performance (George et al., 2020).

  • Bilal, KErbad, A. and Hefeeda, M. (2018) “QoE-aware distributed cloud-based live streaming of multi-sourced Multiview Videos,” Journal of Network and Computer Applications , 120, pp. 130-144.
  • Efthymiopoulou, M. et al. (2017) “Robust control in cloud-assisted peer-to-peer live streaming systems,” Pervasive and Mobile Computing , 42, pp. 426-443.
  • George, L.C. et al. (2020) “Usage visualization for the AWS services,” Procedia Computer Science , 176, pp. 3710–3717.
  • Ji, X. et al. (2023) “Adaptive QoS-aware multipath congestion control for live streaming,” Computer Networks , 220, p. 109470.
  • Martins, R. et al. (2019) “Iris: Secure reliable live-streaming with Opportunistic Mobile Edge Cloud offloading,” Future Generation Computer Systems , 101, pp. 272-292.

Significance of using OSINT framework for Network reconnaissance

Network reconnaissance is becoming important day by day when it comes to penetration testing. Almost all white hat hackers are dependent on the OSINT framework to start with network reconnaissance and footprinting when it comes to evaluating organizational infrastructure. On the other hand, cyber attackers are also using this technique to start fetching information about their target. Currently, there is no investigation carried out to identify how effective the OSINT framework is over traditional reconnaissance activities (Liu et al., 2022). This research is focused on using OSINT techniques to analyze victims using different sets of tools like Maltego, email analysis and many other techniques. The analysis can be based on fetching sensitive information about the target which can be used for conducting illegal activities (Abdullah, 2019).

  • To use Maltego software to conduct network reconnaissance on the target by fetching sensitive information.
  • To compare the OSINT framework with other techniques to analyze why it performs well.

RQ1: What is the significance of using the OSINT framework in conducting network reconnaissance?

RQ2: How can the OSINT framework be used by cyber hackers for conducting illegitimate activities?

The OSINT framework is easily accessible on its official website where different search options are given. Hence, this research can be carried out using a quantitative research method. Depending upon the selected target, each option can be selected and tools can be shortlisted for final implementation. Once the tools are shortlisted, they can be used to conduct network reconnaissance (González-Granadillo et al., 2021). For example, Maltego can be used as it is a powerful software to fetch information about the target.

  • Abdullah, S.A. (2019) “Seui-64, bits an IPv6 addressing strategy to mitigate reconnaissance attacks,” Engineering Science and Technology , an International Journal, 22(2), pp. 667–672.
  • Gonzalez-Granadillo, G. et al. (2021) “ETIP: An enriched threat intelligence platform for improving OSINT correlation, analysis, visualization and sharing capabilities,” Journal of Information Security and Applications , 58, p. 102715.
  • Liu, W. et al. (2022) “A hybrid optimization framework for UAV Reconnaissance Mission Planning,” Computers & Industrial Engineering , 173, p. 108653.

Wired and wireless network hardening in cisco packet tracer

At present, network security has become essential and if enterprises are not paying attention to the security infrastructure, there are several chances for cyber breaches. To overcome all these issues, there is a need for setting up secure wired and wireless networks following different techniques such as filtered ports, firewalls, VLANs and other security mechanisms. For the practical part, the use of packet tracer software can be done to design and implement a highly secure network (Sun, 2022).

  • To use packet tracer simulation software to set up secure wired and wireless networks.
  • Use different hardening techniques, including access control rules, port filtering, enabling passwords and many more to assure only authorized users can access the network (Zhang et al., 2012).

RQ: Why is there a need for emphasizing wired and wireless network security?

Following the quantitative approach, the proposed research topic implementation can be performed in Cisco Packet Tracer simulation software. Several devices such as routers, switches, firewalls, wireless access points, hosts and workstations can be configured and interconnected using Cat 6 e cabling. For security, every device can be checked and secure design principles can be followed like access control rules, disabled open ports, passwords, encryption and many more (Smith & Hasan, 2020).

  • Smith, J.D. and Hasan, M. (2020) “Quantitative approaches for the evaluation of Implementation Research Studies,” Psychiatry Research , 283, p. 112521.
  • Sun, J. (2022) “Computer Network Security Technology and prevention strategy analysis,” Procedia Computer Science , 208, pp. 570–576.
  • Zhang, YLiang, R. and Ma, H. (2012) “Teaching innovation in computer network course for undergraduate students with a packet tracer,” IERI Procedia , 2, pp. 504–510.

Different Preemptive ways to resist spear phishing attacks

When it comes to social engineering, phishing attacks are rising and are becoming one of the most common ethical issues as it is one of the easiest ways to trick victims into stealing information. This research topic is based on following different proactive techniques which would help in resisting spear phishing attacks (Xu et al., 2023). This can be achieved by using the Go-Phish filter on the machine which can automatically detect and alert users as soon as the phished URL is detected. It can be performed on the cloud platform where the apache2 server can be configured along with an anti-phishing filter to protect against phishing attacks (Yoo & Cho, 2022).

  • To set up a virtual instance on the cloud platform with an apache2 server and anti-phishing software to detect possible phishing attacks.
  • To research spear phishing and other types of phishing attacks that can be faced by victims (Al-Hamar et al., 2021).

RQ1: Are phishing attacks growing just like other cyber-attacks?

RQ2: How effective are anti-phishing filters in comparison to cyber awareness sessions?

The entire research can be conducted by adhering to quantitative research methodology which helps in justifying all research objectives and questions. The implementation of the anti-phishing filter can be done by creating a virtual instance on the cloud platform which can be configured with an anti-phishing filter. Along with this, some phishing attempts can also be performed to check whether the filter works or not (Siddiqui et al., 2022).

  • Al-Hamar, Y. et al. (2021) “Enterprise credential spear-phishing attack detection,” Computers & Electrical Engineering , 94, p. 107363.
  • Siddiqui, N. et al. (2022) “A comparative analysis of US and Indian laws against phishing attacks,” Materials Today: Proceedings , 49, pp. 3646–3649.
  • Xu, T., Singh, K. and Rajivan, P. (2023) “Personalized persuasion: Quantifying susceptibility to information exploitation in spear-phishing attacks,” Applied Ergonomics , 108, p. 103908.
  • Yoo, J. and Cho, Y. (2022) “ICSA: Intelligent chatbot security assistant using text-CNN and multi-phase real-time defense against SNS phishing attacks,” Expert Systems with Applications , 207, p. 117893.

Evaluating the effectiveness of distributed denial of service attacks

The given research topic is based on evaluating the effectiveness of distributed denial of service attacks on cloud and local environments. Hence, this research can be carried out using a quantitative research method. Cyber attackers find DDoS as one of the most dangerous technological exploitation when it comes to impacting network availability (Krishna Kishore et al., 2023). This research can revolve around scrutinizing the impact of DDoS attacks on the local environment and cloud environment. This can be done by executing DDoS attacks on a simulated environment using hoping or other software(s) to check where it has a higher magnitude (de Neira et al., 2023).

  • To set up a server on the local and cloud environment to target using DDoS attacks for checking which had experienced slowness.
  • To determine types of DDoS attack types, their magnitude and possible mitigation techniques.

RQ: Why do DDoS attacks have dynamic nature and how is it likely to sternly impact victims?

The experimentation for this research can be executed by creating a server on the local and cloud environment. Hence, this research can be carried out using a quantitative research method. These servers can be set up as web servers using apache 2 service. On the other hand, a Kali Linux machine can be configured with DDoS execution software. Each server can be targeted with DDoS attacks to check its effectiveness (Benlloch-Caballero et al., 2023).

  • Benlloch-Caballero, P., Wang, Q. and Alcaraz Calero, J.M. (2023) “Distributed dual-layer autonomous closed loops for self-protection of 5G/6G IOT networks from distributed denial of service attacks,” Computer Networks , 222, p. 109526.
  • de Neira, A.B., Kantarci, B. and Nogueira, M. (2023) “Distributed denial of service attack prediction: Challenges, open issues and opportunities,” Computer Networks , 222, p. 109553.
  • Krishna Kishore, P., Ramamoorthy, S. and Rajavarman, V.N. (2023) “ARTP: Anomaly-based real time prevention of distributed denial of service attacks on the web using machine learning approach,” International Journal of Intelligent Networks , 4, pp. 38–45.

Recommended Readings

Latest Web Development Research Topics

Top Management Research Topics

Newest AI Research Topics

15 Latest Networking Research Topics for Students

Research in every field is becoming more and more essential because of constant developments around the world. Similar is the case in the field of networking. This is the reason; students who are preparing to master the field of networking need to keep their knowledge of the current state of the art in the field up to date.

However, choosing the right research topic often becomes a tough task for students to carry out their research effectively. That being the case, this list contains 15 latest research topics in the field of networking. Whether you are a seasoned researcher or just starting, this list can provide you with ample inspiration and guidance to drive your research forward in the dynamic and evolving field of Networking.

Facebook

Copyright © 2023 CrowJack. All Rights Reserved

  • Artificial Intelligence
  • Generative AI
  • Cloud Computing
  • CPUs and Processors
  • Data Center
  • Edge Computing
  • Enterprise Storage
  • Virtualization
  • Internet of Things
  • Network Management Software
  • Network Security
  • Enterprise Buyer’s Guides
  • United States
  • Newsletters
  • Foundry Careers
  • Terms of Service
  • Privacy Policy
  • Cookie Policy
  • Copyright Notice
  • Member Preferences
  • About AdChoices
  • E-commerce Links
  • Your California Privacy Rights

Our Network

  • Computerworld

bob_brown

25 of today’s coolest network and computing research projects

Latest concoctions from university labs include language learning website, a newfangled internet for mobile devices and even ip over xylophones.

University labs, fueled with millions of dollars in funding and some of the biggest brains around, are bursting with new research into computer and networking technologies.

ALPHADOGGS: Follow our and Facebook page 

networks, computer and a general focus on shrinking things and making them faster are among the hottest areas, with some advances already making their way into the market. Here’s a roundup of 25 such projects that caught our eyes:

This free website, Duolingo, from a pair of Carnegie Mellon University computer scientists serves double duty: It helps people learn new languages while also translating the text on Web pages into different languages.

CMU’s Luis von Ahn and Severin Hacker have attracted more than 100,000 people in a beta test of the system, which initially offered free language lessons in English, Spanish, French and German, with the computer offering advice and guidance on unknown words. Using the system could go a long way toward translating the Web, many of whose pages are unreadable by those whose language skills are narrow.

Von Ahn is a veteran of such crowdsourcing technologies, having created online reCAPTCHA puzzles to cut down on spam while simultaneously digitizing old books and periodicals. Von Ahn’s spinoff company, reCAPTCHA, was acquired by Google in 2009. Duolingo, spun off in November to offer commercial and free translation services, received $3.3 million in funding from Union Square Ventures, actor Ashton Kutcher and others.

Princeton University Computer Science researchers envision an Internet that is more flexible for operators and more useful to mobile users. Princeton’s Serval system is what Assistant Professor of Computer Science Michael Freedman calls a Service Access Layer that sits between the IP Network Layer (Layer 3) and Transport Layer (Layer 4), where it can work with unmodified network devices. Serval’s purpose is to make Web services such as Gmail and Facebook more easily accessible, regardless of where an end user is, via a services naming scheme that augments what the researchers call an IP address set-up “designed for communication between fixed hosts with topology-dependent addresses.” Data center operators could benefit by running Web servers in virtual machines across the cloud and rely less on traditional load balancers.

Serval, which Freedman describes as a “replacement” technology, will likely have its first production in service-provider networks. “Its largest benefits come from more dynamic settings, so its features most clearly benefit the cloud and mobile spaces,” he says.

If any of this sounds similar to software-defined networking (SDN), there are in fact connections. Freedman worked on an SDN/OpenFlow project at Stanford University called Ethane that was spun out into a startup called Nicira for which VMware recently plunked down $1.26 billion.

WiFi routers to the rescue

Researchers at Germany’sTechnical University in Darmstadt have described a way for home Wi-Fi routers to form a backup mesh network to be used by the police, firefighters and other emergency personnel in the case of a disaster or other incident that wipes out standard cell and phone systems.

The proliferation of Wi-Fi routers makes the researchers confident that a dense enough ad hoc network could be created, but they noted that a lack of unsecured routers would require municipalities to work with citizens to allow for the devices to be easily switched into emergency mode. The big question is whether enough citizens would really allow such access, even if security was assured.

Hyperspeed signaling

University of Tulsa engineers want to slow everything down, for just a few milliseconds, to help network administrations avoid cyberattacks.

By slowing traffic, the researchers figure more malware can be detected and then headed off via an algorithm that signals at hyperspeed to set up defenses. Though researcher Sujeet Shenoi told the publication New Scientist that it might not be cheap to set up such a defense system, between the caching system and reserved data pipes needed to support the signals.

Control-Alt-Hack

University of Washington researchers have created a card game called Control-Alt-Hack that’s designed to introduce computer science students to security topics.

The game, funded in part by Intel Labs and the National Science Foundation, made its debut at the Black Hat security conference in Las Vegas over the summer. The tabletop game involves three to six players working for an outfit dubbed Hackers, Inc., that conducts security audits and consulting, and players are issued challenges, such as hacking a hotel mini bar payment system or wireless medical implant, or converting a robotic vacuum cleaner into a toy. The game features cards (including descriptions of well-rounded hackers who rock climb, ride motorcycles and do more than sit at their computers), dice, mission cards, “hacker cred tokens” and other pieces, and is designed for players ages 14 and up. It takes about an hour to play a game. No computer security degree needed.

“We went out of our way to incorporate humor,” said co-creator Tamara Denning, a UW doctoral student in computer science and engineering, referring to the hacker descriptions and challenges on the cards. “We wanted it to be based in reality, but more importantly we want it to be fun for the players.”

Ghost-USB-Honeypot project

This effort, focused on nixing malware like Flame that spreads from computer to computer via USB storage drives, got its start based on research from Sebastian Poeplau at Bonn University’s Institute of Computer Science. Now it’s being overseen by the broader Honeynet Project.

The breakthrough by Poeplau and colleagues was to create a virtual drive that runs inside a USB drive to snag malware . According to the project website: “Basically, the honeypot emulates a USB storage device. If your machine is infected by malware that uses such devices for propagation, the honeypot will trick it into infecting the emulated device.”

One catch: the security technology only works on XP 32 bit, for starters.

IP over Xylophone Players (IPoXP)

Practical applications for running IP over xylophones might be a stretch, but doing so can teach you a few things about the truly ubiquitous protocol.

A University of California Berkeley researcher named R. Stuart Geiger led this project, which he discussed earlier this year at the Association for Computing Machinery’s Conference on Human Factors in Computing Systems . Geiger’s Internet Protocol over Xylophone Players (IPoXP) provides a fully compliant IP connection between two computers. His setup uses a pair of Arduino microcontrollers, some sensors, a pair of xylophones and two people to play the xylophones.

The exercise provided some insights into the field of Human-Computer Interaction (HCI). It emulates a technique HCI specialists use to design interfaces called umwelt, which is a practice of imagining what the world must look like to the potential users of the interface. This experiment allowed participants to get the feel for what it would be like to be a circuit.

“I don’t think I realized how robust and modular the OSI model is,” Geiger said. “The Internet was designed for much more primitive technologies, but we haven’t been able to improve on it, because it is such a brilliant model.”

Making software projects work

San Francisco State University and other researchers are puzzling over why so many software projects wind up getting ditched, fail or get completed, but late and over budget. The key, they’ve discovered, is rethinking how software engineers are trained and managed to ensure they can work as teams.

The researchers, also from Florida Atlantic University and Fulda University in Germany, are conducting a National Science Foundation-funded study with their students that they hope will result in a software model that can predict whether a team is likely to fail. Their study will entail collecting information on how often software engineering students – teamed with students at the same university and at others — meet, email each other, etc.

“We want to give advice to teachers and industry leaders on how to manage their teams,” says Dragutin Petkovic, professor and chair of SF State’s Computer Science Department. “Research overwhelmingly shows that it is ‘soft skills,’ how people work together, that are the most critical to success.”

Ultra low-power wireless

Forget about 3G, 4G and the rest: University of Arkansas engineering researchers are focused on developing very low-power wireless systems that can grab data from remote sensors regardless of distortion along the network path.

These distortion-tolerant systems would enable sensors, powered by batteries or energy-harvesting, to remain in the field for long periods of time and withstand rough conditions to monitor diverse things such as tunnel stability and animal health. By tolerating distortion, the devices would expend less energy on trying to clean up communications channels.

“If we accept the fact that distortion is inevitable in practical communication systems, why not directly design a system that is naturally tolerant to distortion?” says Jingxian Wu, assistant professor of electrical engineering.

The National Science Foundation is backing this research with $280,000 in funding.

2-way wireless

University of Waterloo engineering researchers have developed a way for wireless voice and data signals to be sent and received simultaneously on a single radio channel frequency, a breakthrough they say could make for better performing, more easily connected and more secure networks.

“This means wireless companies can increase the bandwidth of voice and data services by at least a factor of two by sending and receiving at the same time, and potentially by a much higher factor through better adaptive transmission and user management in existing networks,” said Amir Khandani, a Waterloo electrical and computer engineering professor, in a statement. He says the cost for hardware and antennas to support such a system wouldn’t cost any more than for current one-way systems.

Next up is getting industry involved in bringing such technology into the standards process.

Next steps require industry involvement by including two-way in forthcoming standards to enable wide spread implementation.

The Waterloo research was funded in part by the Canada Foundation for Innovation and the Ontario Ministry of Research and Innovation.

Spray-on batteries

Researchers at Rice University in Houston have developed a prototype spray-on battery that could allow engineers to rethink the way portable electronics are designed.

The rechargeable battery boasts similar electrical characteristics to the lithium ion batteries that power almost every mobile gadget, but it can be applied in layers to almost any surface with a conventional airbrush, said Neelam Singh, a Rice University graduate student who led a team working on the technology for more than a year.

Current lithium ion batteries are almost all variations on the same basic form: an inflexible block with electrodes at one end. Because they cannot easily be shaped, they sometimes restrict designers, particularly when it comes to small gadgets with curved surfaces, but the Rice prototypes could change that. “Today, we only have a few form factors of batteries, but this battery can be fabricated to fill the space available,” said Singh.

The battery is sprayed on in five layers: two current collectors sandwich a cathode, a polymer separator and an anode. The result is a battery that can be sprayed on to plastics, metal and ceramics.

The researchers are hoping to attract interest from electronics companies, which Singh estimates could put it into production relatively easily. “Airburshing technology is well-established. At an industrial level it could be done very fast,” she said.

Mobile Mosh pit

Two MIT researchers formally unveiled over the summer a protocol called State Synchronization Protocol (SSP) and a remote log-in program using it dubbed Mosh (for mobile shell) that’s intended as an alternative to Secure Shell (SSH) for ensuring good connectivity for mobile clients even when dealing with low bandwidth connections. SSP and Mosh have been made available for free, on GNU/, FreeBSD and OS X, via an MIT website.

SSH, often used by network and system admins for remotely logging into servers, traditionally connects computers via TCP, but it’s that use of TCP that creates headaches for mobile users, since TCP assumes that the two endpoints are fixed, says Keith Winstein, a graduate student with MIT’s Computer Science and Artificial Intelligence Lab (CSAIL), and Mosh’s lead developer. “This is not a great way to do real-time communications,” Winstein says. SSP uses UDP, a connectionless, stateless transport mechanism that could be useful for stabilizing mobile usage of apps from Gmail to Skype.

Network Coding

Researchers from MIT, California Institute of Technology and University of Technology in Munich are putting network coding and error-correction coding to use in an effort to measure capacity of wired, and more challengingly, even small wireless networks (read their paper here for the gory details).

The researchers have figured out a way to gauge the upper and lower bounds of capacity in a wireless network. Such understanding could enable enterprises and service providers to design more efficient networks regardless of how much noise is on them (and wireless networks can get pretty darn noisy).

More details from MIT press office.

100 terahertz level

A University of Pittsburgh research team is claiming a communications breakthrough that they say could be used to speed up electronic devices such as and laptops in a big way. Their advance is a demonstrated access to more than 100 terahertz of bandwidth (electromagnetic spectrum between infrared and microwave light), whereas electronic devices traditionally have been limited to bandwidth in the gigahertz realm.

Researchers Hrvoje Petek of the University of Pittsburgh and visiting professor Muneaki Hase of the University of Tsukuba in Japan, have published their NSF-funded research findings in a paper in Nature Photonics. The researchers “detail their success in generating a frequency comb-dividing a single color of light into a series of evenly spaced spectral lines for a variety of uses-that spans a more than 100 terahertz bandwidth by exciting a coherent collective of atomic motions in a semiconductor silicon crystal.”

Petek says the advance could result in devices that carry a thousand-fold more information.

Separately, IBM researchers have developed a prototype optical chip that can transfer data at 1Tbps, the equivalent of downloading 500 high-definition movies, using light pulses rather than by sending electrons over wires.

The Holey Optochip is described as a parallel optical transceiver consisting of a transmitter and a receiver, and designed to handle gobs of data on corporate and consumer networks.

Cooling off with graphene

Graphene is starting to sound like a potential wonder material for the electronics business. Researchers from the University of California at Riverside, the University of Texas at Dallas and Austin, and Xiamen University in China have come up with a way to engineer graphene so that it has much better thermal properties. Such an isotopically-engineered version of graphene could be used to build cooler-running laptops, wireless gear and other equipment. The need for such a material has grown as electronic devices have gotten more powerful but shrunk in size.

“The important finding is the possibility of a strong enhancement of thermal conduction properties of isotopically pure graphene without substantial alteration of electrical, optical and other physical properties,” says UC Riverside Professor of Electrical Engineering Alexander Balandin, in a statement. “Isotopically pure graphene can become an excellent choice for many practical applications provided that the cost of the material is kept under control.”

Such a specially engineered type of graphene would likely first find its way into some chip packaging materials as well into photovoltaic solar cells and flexible displays, according to UC Riverside. Beyond that, it could be used with silicon in computer chips, for interconnect wiring to to spread heat.

Industry researchers have been making great strides on the graphene front in recent years. IBM, for example, last year said it had created the first graphene-based integrated circuit. Separately, two Nobel Prize winning scientists out of the U.K. have come up with a new way to use graphene – the thinnest material in the world – that could make Internet pipes feel a lot fatter.

Keeping GPS honest

Cornell University researchers are going on the offense against those who would try to hack GPS systems like those used in everything from cars to military drones to cellphone systems and power grids. Over the summer, Cornell researchers tested their system for outsmarting GPS spoofers during a Department of Homeland Security-sponsored demo involving a mini helicopter in the New Mexico desert at the White Sands Missile Range.

Cornell researchers have come up with GPS receiver modifications that allow the systems to distinguish between real and bogus signals that spoofers would use to trick cars, airplanes and other devices into handing over control. They emphasized that the threat of GPS spoofing is very real, with Iran last year claiming to have downed a GPS-guided American drone using such techniques.

Getting smartphones their ZZZZs

Purdue University researchers have come up with a way to detect smartphone bugs that can drain batteries while they’re not in use.

“These energy bugs are a silent battery killer,” says Y. Charlie Hu, a Purdue University professor of electrical and computer engineering. “A fully charged phone battery can be drained in as little as five hours.”

The problem is that app developers aren’t perfect when it comes to building programs that need to perform functions when phones are asleep and that use APIs provided by smartphone makers. The researchers, whose work is funded in part by the National Science Foundation, investigated the problem on Android phones, and found that about a quarter of some 187 apps contained errors that could drain batteries. The tools they’re developing to detect such bugs could be made available to developers to help them cut down on battery-draining mistakes.

Quantum leap in search

University of Southern California and University of Waterloo researchers are exploring how quantum computing technology can be used to speed up the math calculations needed to make Internet search speedy even as the gobs of data on the Web expands.

The challenge is that Google’s page ranking algorithm is considered by some to be the largest numerical calculation carried out worldwide, and no quantum computer exists to handle that. However, the researchers have created models of the web to simulate how quantum computing could be used to slice and dice the Web’s huge collection of data. Early findings have been encouraging, with quantum computers shown through the models to be faster at ranking the most important pages and improving as more pages needed to be ranked.

The research was funded by the NSF, NASA Ames Research Center, Lockheed Martin’s University Research Initiative and a Google faculty research award.

Sharing malware in a good way

Georgia Tech Research Institute security specialists have built a system called Titan designed to help corporate and government officials anonymously share information on malware attacks they are fighting, in hopes of fighting back against industrial espionage.

The threat analysis system plows through a repository of some 100,000 pieces of malicious code per day, and will give contributors quick feedback on malware samples that can be reverse-engineered by the Titan crew. Titan will also alert members of new threats, such as targeted spear-phishing attacks, and will keep tabs on not just Windows threats, but also those to MacIntosh and iOS, and Google Android systems.

“As a university, Georgia Tech is uniquely positioned to take this white hat role in between industry and government,” said Andrew Howard, a GTRI research scientist who is part of the Titan project . “We want to bring communities together to break down the walls between industry and government to provide a trusted, sharing platform.”

Touch-feely computing

Researchers from the University of Notre Dame, MIT and the University of Memphis are working on educational software that can respond to students’ cognitive and emotional states, and deliver the appropriate content based on how knowledgeable a student is about a subject, or even how bored he or she is with it.

AutoTutor and Affective AutoTutor get a feel for students’ mood and capabilities based on their responses to questions, including their facial expressions, speech patterns and hand movements.

“Most of the 20th-century systems required humans to communicate with computers through windows, icons, menus and pointing devices,” says Notre Dame Assistant Professor of Psychology Sidney D’Mello, an expert in human-computer interaction and AI in education . “But humans have always communicated with each other through speech and a host of nonverbal cues such as facial expressions, eye contact, posture and gesture. In addition to enhancing the content of the message, the new technology provides information regarding the cognitive states, motivation levels and social dynamics of the students.”

Mobile nets on the move

For emergency responders and others who need to take their mobile networks with them, even in fast-moving vehicles, data transmission quality can be problematic. North Carolina State University researchers say they’ve come up with a way to improve the quality of these Mobile ad hoc networks (MANET).

“Our goal was to get the highest data rate possible, without compromising the fidelity of the signal,” says Alexandra Duel-Hallen, a professor of electrical and computer engineering at NC State whose work is outlined in the paper “ Enabling Adaptive Rate and Relay Selection for 802.11 Mobile Ad Hoc Networks .” 

The challenge is that fast moving wireless nodes make it difficult for relay paths to be identified by the network, as channel power tends to fluctuate much more in fast-moving vehicles. The researchers have come up with an algorithm for nodes to choose the best data relay and transmission paths, based on their experience with recent transmissions.

Tweet the Street

Researchers from the University of California, Riverside and Yahoo Research Barcelona have devised a model that uses data about volumes to predict how financial markets will behave. Their model bested other baseline strategies by 1.4% to 11% and outperformed the Dow Jones Industrial Average during a four-month simulation.

“These findings have the potential to have a big impact on market investors,” said Vagelis Hristidis, an associate professor at the Bourns College of Engineering. “With so much data available from social media, many investors are looking to sort it out and profit from it.”

The research, focused on what Twitter volumes, retweets and who is doing the tweeting might say about individual stocks, differs from that of earlier work focused on making sense of the broader market based on positive and negative sentiments in tweets.

As with so many stock-picking techniques, the researchers here tossed out plenty of caveats about their system, which they said might work quite differently, for example, during a period of overall market growth rather than the down market that their research focused on.

Franken-software

University of Texas, Dallas scientists have developed software dubbed Frankenstein that’s designed to be even more monstrous than the worst malware in the wild so that such threats can be understood better and defended against. Frankenstein can disguise itself as it swipes and messes with data, and could be used as a cover for a virus or other malware by stitching together pieces of such data to avoid antivirus detection methods.

“[Mary] Shelley’s story [about Dr. Frankenstein and his monster] is an example of a horror that can result from science, and similarly, we intend our creation as a warning that we need better detections for these types of intrusions,” said Kevin Hamlen, associate professor of computer science at UT Dallas who created the software, along with doctoral student Vishwath Mohan. “Criminals may already know how to create this kind of software, so we examined the science behind the danger this represents, in hopes of creating countermeasures.”

Such countermeasures might include infiltrating terrorist computer networks, the researchers say. To date, they’ve used the NSF and Air Force Office of Scientific Research-funded technology on benign algorithms, not any production systems.

Safer e-wallets

While e-wallets haven’t quite taken off yet, University of Pittsburgh researchers are doing their part to make potential e-wallet users more comfortable with the near-field communications (NRC) and/or RFID-powered technology.

Security has been a chief concern among potential users, who are afraid thieves could snatch their credit card numbers through the air. But these researchers have come up with a way for e-wallet credit cards to turn on and off, rather than being always on whenever in an electromagnetic field.

“Our new design integrates an antenna and other electrical circuitry that can be interrupted by a simple switch, like turning off the lights in the home or office,” says Marlin Mickle, the Nickolas A. DeCecco Professor of Engineering and executive director of the RFID Center for Excellence in the Swanson School. “The RFID or NFC credit card is disabled if left in a pocket or lying on a surface and unreadable by thieves using portable scanners.”

Mickle claims the advance is both simple and inexpensive, and once the researchers have received what they hope will be patent approval, they expect the technology to be adopted commercially.

Digging into Big Data

The University of California, Berkeley has been handed $10 million by the National Science Foundation as part of a broader $200 million federal government effort to encourage the exploration and better exploitation of massive amounts of information dubbed Big Data collected by far-flung wireless sensors, social media systems and more.

UC Berkeley has five years to use its funds for a project called the Algorithms, Machines and People (AMP) Expedition, which will focus on developing tools to extract important information from Big Data, such as trends that could predict everything from earthquakes to cyberattacks to epidemics.

“Buried within this flood of information are the keys to solving huge societal problems and answering the big questions of science,” said Michael Franklin, director of the AMP Expedition team and a UC Berkeley professor of electrical engineering and computer sciences, in a statement . “Our goal is to develop a new generation of data analysis tools that provide a quantum leap in our ability to make sense of the world around us.”

AMP Expedition researchers are building an open-source software stack called the Berkeley Data Analysis System (BDAS) that boasts large-scale machine-learning and data analysis methods, infrastructure that lets programmers take advantage of cloud and cluster computing, and crowdsourcing (in other words, human intelligence). It builds on the AMPLab formed early last year, with backing from Google, SAP and others.

Bob Brown tracks network research in his and Facebook page, as well on Twitter and Google + . 

IDG News Service and other IDG publications contributed to this report

Related content

Ibm drops $6.4b to grab hashicorp multi-cloud automation technology, nvidia to buy ai orchestration software provider run:ai, using the apropos command on linux, 2024 global network outage report and internet health check, newsletter promo module test.

bob_brown

Bob Brown is the former news editor for Network World.

More from this author

Small cell forum seeks advice from large enterprises, how to make fully homomorphic encryption “practical and usable”, iphone 8 rumor rollup: cranking up the processors; 3d cameras; $1k-plus price, snl one step ahead of amazon with echo silver, most popular authors.

recent research topics in networks

Show me more

Accelsius offers liquid cooling without a data center retrofit.

Image

Nvidia supercomputers: new collegiate, research systems come online

Image

Introducing Wi-Fi 7 access points that deliver more

Image

Has the hype around ‘Internet of Things’ paid off? | Ep. 145

Image

Episode 1: Understanding Cisco’s Converged SDN Transport

Image

Episode 2: Pluggable Optics and the Internet for the Future

Image

Has the hype around ‘Internet of Things’ paid off?

Image

Are unused IPv4 addresses a secret gold mine?

Image

Preparing for a 6G wireless world: Exciting changes coming to the wireless industry

Image

Intelligent Wireless Networks: Challenges and Future Research Topics

  • Published: 21 October 2021
  • Volume 30 , article number  18 , ( 2022 )

Cite this article

recent research topics in networks

  • Murad Abusubaih   ORCID: orcid.org/0000-0002-6948-1311 1  

834 Accesses

7 Citations

Explore all metrics

Recently, artificial intelligence (AI) has become a primary tool of serving science and humanity in all fields. This is due to the significant development in computing. The use of AI and machine learning (ML) has extended to wireless networks that are constantly evolving. This enables better operation and management of networks, through algorithms that learn and utilize available data and measurements to optimize network performance. This article provides a detailed review on cognitive, self-organized, and Software-defined networks. We discuss ML concepts and put emphasis on how ML can contribute to the development of optimal management solutions of wireless networks. A focus is put on discussion and analysis of recent research trends and challenges that remain open and require further research and exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

recent research topics in networks

Similar content being viewed by others

recent research topics in networks

Next Generation Wireless Communication: Facilitated by Machine Learning

recent research topics in networks

Trends and Challenges of the Emerging Wireless Networks

recent research topics in networks

Research and Development in the Networks of Cognitive Radio: A Survey

Zhao, Y., Li, Y., Zhang, X., Geng, G., Zhang, W., Sun, Y.: A survey of networking applications applying the software defined networking concept based on machine learning. IEEE Access 7 , 95397–95417 (2019)

Google Scholar  

Elsayed, M., Erol-Kantarci, M.: AI-enabled future wireless networks: challenges, opportunities, and open issues. IEEE Veh. Technol. Mag. 14 (3), 70–77 (2019)

Mao, Q., Hu, F., Hao, Q.: Deep learning for intelligent wireless networks: a comprehensive survey. IEEE Commun. Surv. Tutor. 20 (4), 2595–2621 (2018)

Zhang, C., Patras, P., Haddadi, H.: Deep learning in mobile and wireless networking: a survey. IEEE Commun. Surv. Tutor. 21 (3), 2224–2287 (2019)

Hämäläinen, S., Sanneck, H., Sartori, C., Self-Organising, L.T.E.: Networks (SON): Network Management Automation for Operational Efficiency. Wiley, Hoboken (2011)

Gacanin, H., Ligata, A.: Wi-fi self-organizing networks: challenges and use cases. IEEE Commun. Mag. 55 (7), 158–164 (2017)

Thang, V., Pashchenko, F.: Multistage system-based machine learning techniques for intrusion detection in WiFi network. J. Comput. Netw. Commun. (2019). https://doi.org/10.1155/2019/4708201

Article   Google Scholar  

Russell, S., Norvig, P.: Artificial Intelligence (a Modern Approach), 3rd edn. Prentice Hall, Hoboken (1995)

MATH   Google Scholar  

Liu, Y., Bi, S., Shi, Z., Hanzo, L.: When machine learning meets big: a wireless communication perspective. IEEE Veh. Technol. Mag. 15 , 63–72 (2020)

Hu, F., Hao, Q., Bao, K.: A survey on software-defined network and openflow: from concept to implementation. IEEE Commun. Surv. Tutor. 16 , 2181–2206 (2014)

Agarwal, S., Kodialam, M., Lakshman, T.: Traffic engineering in software defined networks. In: Proc. IEEE INFOCOM, pp. 2211–2219 (2013)

Lin, P., Bi, J., Wolff, S.: A west-east bridge based SDN inter-domain testbed. IEEE Commun. Mag. 53 (2), 190–197 (2015)

Xie, J., Yu, F., Huang, T., Xie, R., Liu, J., Wangz, C., Liu, Y.: A survey of machine learning techniques applied to software defined networking (SDN): research issues and challenges. IEEE Commun. Surv. Tutor. 21 , 393–430 (2019)

Kosmidesa, P., Adamopouloua, E., Demestichasa, K., Anagnostoua, M., Rouskasb, A.: On Intelligent Base Station Activation for Next Generation Wireless Networks, the 6th International Conference on Emerging Ubiquitous Systems and Pervasive Networks. Elsevier, Amsterdam (2015)

Li, R., Zhao, Z., Chen, X., Zhang, H.: Energy saving through a learning framework in greener cellular radio access networks. In: Proceedings of GLOBECOM, pp. 1556–1561 (2012)

Ding, H., Zhao, F., Tian, J., Li, D., Zhang, H.: A deep reinforcement learning for user association and power control in heterogeneous net works. Ad Hoc Netw. 102 , 102069 (2020)

Yu, Y., Wang, T., Liew, S.: Deep-reinforcement learning multiple access for heterogeneous wireless networks. IEEE Int. Conf. Commun. (ICC) 37 , 1277–1290 (2018)

Onireti, O.: A cell outage management framework for dense heterogeneous networks. IEEE Trans. Veh. Technol. 65 , 2097–2113 (2016)

Mohammadi, M., Al-Fuqaha, A.: Enabling cognitive smart cities using big data and machine learning: approaches and challenges. IEEE Commun. Mag. 56 , 94–101 (2018)

He, Y.: Software-defined networks with mobile edge computing and caching for smart cities: a big data deep reinforcement learning approach. IEEE Commun. Mag. 55 , 31–37 (2017)

Jia, G., Yang, Z., Lam, H., Shi, J., Shikh-Bahaei, M.: Channel assignment in uplink wireless communication using machine learning approach. IEEE Commun. Lett. 24 , 787–791 (2020)

Zappone, A., Sanguinetti, L., Debbah, M.: User association and load balancing for massive MIMO through deep learning. In: Proceedings of IEEE Asilomar Conference on Signals, Systems, and Computers, pp. 1262–1266 (2018)

Lin, P.: Large-scale and high-dimensional cell outage detection in 5G self-organizing networks. In: Proceedings of APSIPA Annual Summit and Conference, pp. 8–12 (2019)

Pervez, F., Jaber, M., Qadir, J., Younis, S., Imran, M.: Fuzzy Q-learning-based user-centric backhaul-aware user cell association scheme. In: Proceedings of IWCMC, pp. 1840–1845 (2017)

Kumar, Y., Farooq, H., Imran, A.: Fault prediction and reliability analysis in a real cellular network. In: 13th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 1090–1095 (2017)

Song, Ronggong, Willink, Tricia: Machine Learning-Based Traffic Classification of Wireless Traffic, International Conference on Military Communications and Information Systems (ICMCIS), (2019)

Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. Morgan Kaufmann Publisher, Burlington (2011)

Nguyen, T., Armitage, G., Branch, P., Zander, S.: Timely and continuous machine-learning-based classification for interactive IP traffic. IEEE/ACM Trans. Netw. 20 , 1880–1894 (2012)

Al-Issax, A., Bentaleb, A., Barakabitzex, A., Zinnery, T., Ghita, B.: Bandwidth Prediction Schemes for Defining Bitrate Levels in SDN-enabled Adaptive Streaming, 15th International Conference on Network and Service Management (CNSM) (2019)

Testi, E., Favarelli, E., Giorgetti, A.: Machine Learning For User Traffic Classification in Wireless Systems. 26th European Signal Processing Conference (EUSIPCO) (2018)

Barki, L., Shidling, A., Meti, N., Narayan, D., Mulla, M.: Detection of distributed denial of service attacks in software defined networks. In: Proceedings of IEEE ICACCI, IEEE, pp. 2576–2581 (2016)

Fan, Z., Liu, R.: Investigation of machine learning based network traffic classification. In: Proceedings of ISWCS, pp. 1–6 (2017)

Song, C., Park, Y., Golani, K., Kim, Y., Bhatt, K., Goswami, K.: Machine-learning based threat-aware system in software defined networks. In: Proceedings of IEEE ICCCN, pp. 1–9 (2017)

Glick, M., Rastegarfar, H.: Scheduling and control in hybrid data centers. In: Proceedings IEEE PHOSST’17, pp. 115–116 (2017)

Xiao, P., Qu, W., Qi, H., Xu, Y., Li, Z.: An efficient elephant flow detection with cost-sensitive in SDN. In: Proceedings of IEEE INISCom’15, pp. 24–28, (2015)

Huang, T., Zhang, R., Zhou, C., Sun, L.: QARC: video quality aware rate control for real-time video streaming based on deep reinforcement learning. ACM Multimedia Conference, ACM (2018)

Abdelhadi Azzouni, A., Guy Pujolle, G.: Neutm: A neural network-based framework for traffic matrix prediction in SDN. In: proceedings of the IEEE/IFIP Network Operations and Management Symposium, NOMS (2018). https://doi.org/10.1109/NOMS.2018.8406199

Carner, J., Mestres, A., Alarcn, E., Cabellos, A.: Machine learning-based network modeling: An artificial neural network model vs a theoretical inspired model. In: Proceedings of IEEE ICUFN’17, pp. 522–524 (2017)

Jain, S., Khandelwal, M., Katkar, A., Nygate, J.: Applying big data technologies to manage QoS in an SDN. In: Proceedings of IEEE CNSM’16, pp. 302–306 (2016)

Pasquini, R., Stadler, R.: Learning end-to-end application QoS from OpenFlow switch statistics. In: Proceedings of IEEE NETSOFT’17, pp. 1–9 (2017)

Letaifa, A.: Adaptive QoE monitoring architecture in SDN networks: Video streaming services case. In: Proceedings of IEEE IWCMC’17, pp. 1383–1388 (2017)

Abar, T., Letaifa, A., Asmi, S.: Machine learning based QoE prediction in SDN networks. In: Proceedings of IEEE IWCMC’17, pp. 1395–1400 (2017)

Tayyaba, S., Khattak, H., Almogren, A., Shah, M., Din, I., Alkhalifa, I., Guizani, M.: 5G vehicular network resource management for improving radio access through machine learning. IEEE Access 8 , 6792–6800 (2020)

Comaneci, D., Dobre, C.: Securing networks using SDN and machine learning. In: IEEE International Conference on Computational Science and Engineering (2018)

Murudkar, Chetana V., Gitlin, Richard D.: QoE-driven Anomaly Detection in Self Organizing Mobile Networks Using Machine Learning, 18th annual IEEE Wireless Telecommunications Symposium (WTS) (2019)

Murudkar, C., Gitlin, R.: Machine learning for QoE prediction and anomaly detection in self-organizing mobile networking systems. Int. J. Wirel. Mob. Netw. (IJWMN) (2019). https://doi.org/10.2139/ssrn.3383948

Lim, S.: Software defined network detection system. Int. J. Recent Technol. Eng. (IJRTE) 8 , 1391–1395 (2019)

Yao, H., Mai, T., Xu, X., Zhang, P., Li, M., Liu, Y.: NetworkAI: an intelligent network architecture for self-learning control strategies in software defined networks. IEEE Internet Things J. 5 , 4319–4327 (2018)

Zhu, L., Tang, X., Shen, M., Du, X., Guizani, M.: Privacy-preserving DDoS attack detection using cross-domain traffic in software defined networks. IEEE J. Sel. Areas Commun. 36 , 628–643 (2018)

Côté, D.: Using machine learning in communication networks. J. Opt. Commun. Netw. 10 , D100–D109 (2018)

Gazis, V., Sasloglou, K., Frangiadakis, N., Kikiras, P., Merentitis, A., Mathioudakis, K., Mazarakis, G.: Cooperative communication in channel assignment strategies for IEEE 802.11k WLAN systems. In: IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1924–1929 (2013)

Seyedebrahimi, M., Bouhafs, F., Raschella, A., Mackay, M., Shi, Q.: Fine-grained radio resource management to control interference in dense wi-fi networks. In: IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6 (2017)

Hartog, F., Raschella, A., Bouhafs, F., Kempker, P., Boltjes, B., Seyedebrahimi, M.: A pathway to solving the wi-fi tragedy of the commons in apartment blocks. In: 27th International Telecommunication Networks and Applications Conference (ITNAC), pp. 1–6 (2017)

Moura, H., Alves, A., Borges, J., Macedo, D., Vieira, M.: Ethanol: a software-defined wireless networking architecture for IEEE 802.11 networks, computer communications, pp. 176–188. Elsevier, Amsterdam (2020)

Lei, T., Wen, X., Lu, Z., Li, Y.: A semi-matching based load balancing scheme for dense IEEE 802.11 WLANs. IEEEIEEE Access 5 , 15332–15339 (2017)

Peng, M., He, G., Wang, L., Kai, C.: AP selection scheme based on achievable throughputs in SDN-enabled WLANs. IEEE Access 7 , 4763–4772 (2019)

Ernst, J., Kremer, S., Rodrigues, J.: A utility based access point selection method for IEEE 802.11 wireless networks with enhanced quality of experience. In: Proceedings of IEEE ICC, pp. 2363–2368 (2014)

Chen, J., Liu, B., Zhou, H., Yu, Q., Gui, L., Shen, X.: QoS-driven efficient client association in high-density software-defined WLAN. IEEE Trans. Veh. Technol. 66 , 7372–7383 (2017)

Bojovic, B., Baldo, N., Nin-Guerrero, J., Dini, P.: A supervised learning approach to cognitive access point selection. In: GLOBECOM Workshops. IEEE, Piscataway (2011)

Wilhelmi, F., Barrachina-Muñnoz, S., Bellalta, B., Cano, C., Jonsson, A., Ram, V.: A flexible machine learning-aware architecture for future WLANs. IEEE Commun. Mag. 58 , 25–31 (2020)

Testolin, A., Zanforlin, M., De Grazia,M., Munaretto, D., Zanella, A., Zorzi, M.: A machine learning approach to qoe-based video admission control and resource allocation in wireless systems. In: Ad Hoc Networking Workshop (MED-HOC-NET), IEEE, pp. 31–38 (2014)

Vassis, D., Kampouraki, A., Belsis, P., Skourlas, C.: Admission control of video sessions over ad hoc networks using neural classifiers. In: IEEE Military Communications Conference, IEEE, pp. 15–20 (2014)

Quer, G., Baldo, N., Zorzi, M.: Cognitive call admission control for voip over ieee 802.11 using bayesian networks. In: Proceedings of GLOBECOM, IEEE, pp. 1–6 (2011)

Coronado, E., Villalon, J., Garrido, A.: Wi-balance: SDN-based load-balancing in enterprise WLANs. In: IEEE Conference on Network Softwarization (NetSoft), pp. 1–2 (2017)

Jagannath, J., Polosky, N., Jagannath, A., Restuccia, F., Melodia, T.: Machine learning for wireless communications in the internet of things: a comprehensive survey. Ad Hoc Netw. 93 , 101913 (2019)

Schmidt, M., Block, D., Meier, U.: Wireless interference identification with convolutional neural networks. In: 15th International Conference on Industrial Informatics (INDIN), IEEE (2017)

Sanguanpuak, T., Guruacharya, S., Rajatheva, N., Bennis, M., Latva-Aho, M.: Multi-operator spectrum sharing for small cell networks: a matching game perspective. IEEE Trans. Wirel. Commun. 16 , 3761–3774 (2017)

Grimaldi, S., Mahmood, A., Gidlund, M.: An SVM-based method for classification of external interference in industrial wireless sensor and actuator networks. J. Sens. Actuator Netw. 6 , 9 (2017)

Kulin, M., Kazaz, T., Moerman, I., Poorter, E.: End-to-end learning from spectrum data: a deep learning approach for wireless signal identification in spectrum monitoring applications. IEEE Access 6 , 18484–18501 (2018)

Davaslioglu, K., Soltani, S., Erpek, T., Sagduyu, Y.: DeepWiFi: cognitive WiFi with deep learning. IEEE Trans. Mob. Comput. 20 , 429–444 (2019)

Jeunen, O., Bosch, P., Herwegen, M., Doorselaer, K., Godman, N., Latre, S.: A machine learning approach for ieee 802.11 channel allocation. In: 14th International Conference on Network and Service Management (CNSM), pp. 28–36 (2018)

Lim, T., Jeon, W., Jeong, D.: Centralized channel allocation scheme in densely deployed 802.11 wireless lans. In: 18th International Conference on Advanced Communication Technology (ICACT), pp. 249–253 (2016)

Baid, A., Raychaudhuri, D.D.: Understanding channel selection dynamics in dense Wi-Fi networks. IEEE Commun. Mag. 53 , 110–117 (2015)

Moura, H., Macedo, D., Vieira, M.: Automatic quality of experience management for wlan networks using multi-armed bandit. In: IFIP/IEEE Symposium on Integrated Network and Service Management (IM), pp. 279–288 (2019)

Singh, S.: SDN (Software Defined Network) and Machine Learning for High-Density WLANs. In: Proceedings of National Conference on Machine Learning, pp. 82–91 (2019)

Herzen, J., Lundgren, H., Hegde, N.: Learning Wi-Fi Performance, 12th Annual International Conference on Sensing, Communication, and Networking (SECON), IEEE (2015)

Boutaba, R., Salahuddin, M., Limam, N., Ayoubi, S., Shahriar, N., Estrada-Solano, F., Caicedo, O.: A comprehensive survey on machine learning for networking: evolution, applications and research opportunities. J. Internet Serv. Appl. 9 , 1–99 (2018)

Han, K., Lee, J., Kim, B.: Machine-Learning based Loss Discrimination Algorithm for Wireless TCP Congestion Control. International Conference on Electronics, Information, and Communication (ICEIC) (2019)

Moriyama, Tomokazu, Yamamoto, Ryo, Ohzahata, Satoshi, Kato, Toshihiko: TCP Congestion Control over IEEE 802.11 Wireless Lans based on K-Means Clustering Focusing on Congestion Window Size and Round-trip Time. International Conference on Data Communication Networking (2018)

Sui, K., Zhou, M., Liu, D., Ma, M., Pei, D., Zhao, Y., Li, Z., Moscibroda, T.: Characterizing and Improving WiFi Latency in Large-Scale Operational Networks, The 14th ACM International Conference on Mobile Systems, Applications, and Services, ACM (2016)

Coronado, E., Thomas, A., Riggio, R.: Adaptive ML-based frame length optimization in enterprise SD-WLANs. J. Netw. Syst. Manage. (2020). https://doi.org/10.1007/s10922-020-09527-y

Ibarrola, E., Davis, M., Voisin, C., Close, C., Cristobo, L.: QoE enhancement in next generation wireless ecosystems: a machine learning approach. IEEE Commun. Stand. Mag. 3 , 63–70 (2019)

Košťál, K., Bencel, R., Ries, M., Trúchly, P., Kotuliak, I.: High performance SDN WLAN architecture, Sensors. In: Proceedings of PMC (2019)

Wang, Z., Xu, Y., Li, L., Tian, H., Cui, S.: Handover control in wireless systems via asynchronous multi-user deep reinforcement learning. IEEE Internet Things J. 5 , 4296–4307 (2018)

Zhou, P., Chang, Y., Copeland, J.: Determination of wireless networks parameters through parallel hierarchical support vector machines. IEEE Trans. Parallel Distrib. Syst. 23 , 505–512 (2012)

Yu, C., Chen, K., Cheng, S.: Cognitive radio network tomography. IEEE Trans. Veh. Technol. 59 , 1980–1997 (2010)

Xia, M.: Optical and wireless hybrid access networks: design and optimization. OSA/IEEE J. Opt. Commun. Netw. 4 , 749–759 (2012)

Sequeira, L., Cruz, J., Ruiz-Mas, J., Saldana, J., Fernandez-Navajas, J., Almodovar, J.: Building an SDN enterprise WLAN based on virtual APs. IEEE Commun. Lett. 21 , 374–377 (2017)

Download references

Author information

Authors and affiliations.

Palestine Polytechnic University, Hebron, Palestine

Murad Abusubaih

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Murad Abusubaih .

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Abusubaih, M. Intelligent Wireless Networks: Challenges and Future Research Topics. J Netw Syst Manage 30 , 18 (2022). https://doi.org/10.1007/s10922-021-09625-5

Download citation

Received : 07 July 2020

Revised : 18 May 2021

Accepted : 22 August 2021

Published : 21 October 2021

DOI : https://doi.org/10.1007/s10922-021-09625-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Artificial intelligence
  • Machine learning
  • Network management
  • Network optimization
  • Find a journal
  • Publish with us
  • Track your research

You are using an outdated browser. Please upgrade your browser to improve your experience.

recent research topics in networks

Health & Nursing

Courses and certificates.

  • Bachelor's Degrees
  • View all Business Bachelor's Degrees
  • Business Management – B.S. Business Administration
  • Healthcare Administration – B.S.
  • Human Resource Management – B.S. Business Administration
  • Information Technology Management – B.S. Business Administration
  • Marketing – B.S. Business Administration
  • Accounting – B.S. Business Administration
  • Finance – B.S.
  • Supply Chain and Operations Management – B.S.
  • Accelerated Information Technology Bachelor's and Master's Degree (from the School of Technology)
  • Health Information Management – B.S. (from the Leavitt School of Health)

Master's Degrees

  • View all Business Master's Degrees
  • Master of Business Administration (MBA)
  • MBA Information Technology Management
  • MBA Healthcare Management
  • Management and Leadership – M.S.
  • Accounting – M.S.
  • Marketing – M.S.
  • Human Resource Management – M.S.
  • Master of Healthcare Administration (from the Leavitt School of Health)
  • Data Analytics – M.S. (from the School of Technology)
  • Information Technology Management – M.S. (from the School of Technology)
  • Education Technology and Instructional Design – M.Ed. (from the School of Education)

Certificates

  • View all Business Degrees

Bachelor's Preparing For Licensure

  • View all Education Bachelor's Degrees
  • Elementary Education – B.A.
  • Special Education and Elementary Education (Dual Licensure) – B.A.
  • Special Education (Mild-to-Moderate) – B.A.
  • Mathematics Education (Middle Grades) – B.S.
  • Mathematics Education (Secondary)– B.S.
  • Science Education (Middle Grades) – B.S.
  • Science Education (Secondary Chemistry) – B.S.
  • Science Education (Secondary Physics) – B.S.
  • Science Education (Secondary Biological Sciences) – B.S.
  • Science Education (Secondary Earth Science)– B.S.
  • View all Education Degrees

Bachelor of Arts in Education Degrees

  • Educational Studies – B.A.

Master of Science in Education Degrees

  • View all Education Master's Degrees
  • Curriculum and Instruction – M.S.
  • Educational Leadership – M.S.
  • Education Technology and Instructional Design – M.Ed.

Master's Preparing for Licensure

  • Teaching, Elementary Education – M.A.
  • Teaching, English Education (Secondary) – M.A.
  • Teaching, Mathematics Education (Middle Grades) – M.A.
  • Teaching, Mathematics Education (Secondary) – M.A.
  • Teaching, Science Education (Secondary) – M.A.
  • Teaching, Special Education (K-12) – M.A.

Licensure Information

  • State Teaching Licensure Information

Master's Degrees for Teachers

  • Mathematics Education (K-6) – M.A.
  • Mathematics Education (Middle Grade) – M.A.
  • Mathematics Education (Secondary) – M.A.
  • English Language Learning (PreK-12) – M.A.
  • Endorsement Preparation Program, English Language Learning (PreK-12)
  • Science Education (Middle Grades) – M.A.
  • Science Education (Secondary Chemistry) – M.A.
  • Science Education (Secondary Physics) – M.A.
  • Science Education (Secondary Biological Sciences) – M.A.
  • Science Education (Secondary Earth Science)– M.A.
  • View all Technology Bachelor's Degrees
  • Cloud Computing – B.S.
  • Computer Science – B.S.
  • Cybersecurity and Information Assurance – B.S.
  • Data Analytics – B.S.
  • Information Technology – B.S.
  • Network Engineering and Security – B.S.
  • Software Engineering – B.S.
  • Accelerated Information Technology Bachelor's and Master's Degree
  • Information Technology Management – B.S. Business Administration (from the School of Business)
  • View all Technology Master's Degrees
  • Cybersecurity and Information Assurance – M.S.
  • Data Analytics – M.S.
  • Information Technology Management – M.S.
  • MBA Information Technology Management (from the School of Business)
  • Full Stack Engineering
  • Web Application Deployment and Support
  • Front End Web Development
  • Back End Web Development

3rd Party Certifications

  • IT Certifications Included in WGU Degrees
  • View all Technology Degrees
  • View all Health & Nursing Bachelor's Degrees
  • Nursing (RN-to-BSN online) – B.S.
  • Nursing (Prelicensure) – B.S. (Available in select states)
  • Health Information Management – B.S.
  • Health and Human Services – B.S.
  • Psychology – B.S.
  • Health Science – B.S.
  • Healthcare Administration – B.S. (from the School of Business)
  • View all Nursing Post-Master's Certificates
  • Nursing Education—Post-Master's Certificate
  • Nursing Leadership and Management—Post-Master's Certificate
  • Family Nurse Practitioner—Post-Master's Certificate
  • Psychiatric Mental Health Nurse Practitioner —Post-Master's Certificate
  • View all Health & Nursing Degrees
  • View all Nursing & Health Master's Degrees
  • Nursing – Education (BSN-to-MSN Program) – M.S.
  • Nursing – Leadership and Management (BSN-to-MSN Program) – M.S.
  • Nursing – Nursing Informatics (BSN-to-MSN Program) – M.S.
  • Nursing – Family Nurse Practitioner (BSN-to-MSN Program) – M.S. (Available in select states)
  • Nursing – Psychiatric Mental Health Nurse Practitioner (BSN-to-MSN Program) – M.S. (Available in select states)
  • Nursing – Education (RN-to-MSN Program) – M.S.
  • Nursing – Leadership and Management (RN-to-MSN Program) – M.S.
  • Nursing – Nursing Informatics (RN-to-MSN Program) – M.S.
  • Master of Healthcare Administration
  • MBA Healthcare Management (from the School of Business)
  • Business Leadership (with the School of Business)
  • Supply Chain (with the School of Business)
  • Back End Web Development (with the School of Technology)
  • Front End Web Development (with the School of Technology)
  • Web Application Deployment and Support (with the School of Technology)
  • Full Stack Engineering (with the School of Technology)
  • Single Courses
  • Course Bundles

Apply for Admission

Admission requirements.

  • New Students
  • WGU Returning Graduates
  • WGU Readmission
  • Enrollment Checklist
  • Accessibility
  • Accommodation Request
  • School of Education Admission Requirements
  • School of Business Admission Requirements
  • School of Technology Admission Requirements
  • Leavitt School of Health Admission Requirements

Additional Requirements

  • Computer Requirements
  • No Standardized Testing
  • Clinical and Student Teaching Information

Transferring

  • FAQs about Transferring
  • Transfer to WGU
  • Transferrable Certifications
  • Request WGU Transcripts
  • International Transfer Credit
  • Tuition and Fees
  • Financial Aid
  • Scholarships

Other Ways to Pay for School

  • Tuition—School of Business
  • Tuition—School of Education
  • Tuition—School of Technology
  • Tuition—Leavitt School of Health
  • Your Financial Obligations
  • Tuition Comparison
  • Applying for Financial Aid
  • State Grants
  • Consumer Information Guide
  • Responsible Borrowing Initiative
  • Higher Education Relief Fund

FAFSA Support

  • Net Price Calculator
  • FAFSA Simplification
  • See All Scholarships
  • Military Scholarships
  • State Scholarships
  • Scholarship FAQs

Payment Options

  • Payment Plans
  • Corporate Reimbursement
  • Current Student Hardship Assistance
  • Military Tuition Assistance

WGU Experience

  • How You'll Learn
  • Scheduling/Assessments
  • Accreditation
  • Student Support/Faculty
  • Military Students
  • Part-Time Options
  • Virtual Military Education Resource Center
  • Student Outcomes
  • Return on Investment
  • Students and Gradutes
  • Career Growth
  • Student Resources
  • Communities
  • Testimonials
  • Career Guides
  • Skills Guides
  • Online Degrees
  • All Degrees
  • Explore Your Options

Admissions & Transfers

  • Admissions Overview

Tuition & Financial Aid

Student Success

  • Prospective Students
  • Current Students
  • Military and Veterans
  • Commencement
  • Careers at WGU
  • Advancement & Giving
  • Partnering with WGU

Emerging Research Areas in 5G Network Technology

  • Information Technology
  • See More Tags

recent research topics in networks

What is 5G?

Short for “fifth generation,” 5G is the latest version of mobile internet connection and an upgrade from the 4G network. Compared to earlier generations, it’s designed to be better at handling large amounts of data consumption and deployment when people are trying to access the same mobile service at the same time. New 5G also provides faster browsing and download speeds—up to 20 times faster than the 4G or LTE mobile networks, according to 5G research.

5G also promises lower latency than LTE and other mobile networks for connected devices, which can boost the performance of digital experiences such as video streaming, automated cars, virtual reality, smart factories, online gaming, and more.

Given these improvements it’s no wonder that, since hitting the market in 2019, 5G is already making a major impact around the globe. In fact, the number of 5G users is expected to hit 3 billion by 2025 , according to reports by Statista.

5G has the potential to create a smarter and more connected world, but it’s still a relatively new technology and much research is being done to understand it. This article explores the emerging research in 5G technology and its potential impact on today’s organizations.

What are Challenges Facing 5G Research?

While the future for this emerging technology seems promising, realizing its potential has come with its own set of challenges. Here are some of the obstacles facing 5G research:

5G research and development is expensive to coordinate and administer, and the potential benefits aren’t certain. On top of that, 5G wireless networks and improved tech cost billions to build. Global spending on 5G network infrastructure will total 19.1 billion in 2021—up 39% from 2020 according to 5G research. In countries like China, governments are taking some of the strain off operators to fund the upfront costs. But in the United States, mobile operators like AT&T, Verizon, and T-Mobile have greater pressure to sign on customers to cover the cost of a 5G buildout.

Technological Deficiencies

It’s difficult to study 5G capabilities when the technology needed to do so isn’t fully developed. Two technologies in particular—high-band technology and end-to-end network slicing—are important for network performance but aren’t yet fully developed. It's also difficult to know how the tech will work in real time, what bandwidth is truly needed to make the technology worthwhile, and more.

5G means more data—which introduces new modes of cyberattacks and expands the potential of security breaches. This presents an additional challenge for researchers to come up with solutions that will be to safely move forward with 5G technology.

Misinformation

Since the emergence of 5G, there has been misinformation regarding its safety—namely, the possible health effects of radio-frequency (RF) energy transmitted by 5G base stations. However, a 2019 review of environmental levels of RF signals in the environment did not find an increase in overall levels since 2012 despite the rapid increase of wireless communications. Currently, there is no solid evidence that 5G causes negative health effects in humans or animals, especially compared to LTE and other existing technologies.

recent research topics in networks

What is the Importance of 5G Research?

5G research and technology has paved the way for a powerful new communication standard that can connect billions of devices and sensors to the internet. This is referred to as the Internet of Things (IoT). IoT allows devices to communicate and share data faster than ever before, empowering industries such as healthcare, education, automotive, and more.

5G’s faster network speeds and higher bandwidth not only save organization’s time and money, but in the case of the healthcare industry, this improved technology has the power to save lives. For example, 5G allows doctors to treat patients remotely and provide care—and even robotic surgery—to remote areas.

Another industry that’s benefitting from 5G technology and research is automotive.

According to a recent article by Forbes , “Vehicle automation is expected to be a top use case for the adoption of 5G in IoT applications. This includes the capability to deliver autonomous vehicles that can guide themselves, as well as new services based on the collection of more real-time and granular data about the health and performance of a vehicle.“

5G research has also helped develop safer and more efficient cars. In fact, many of 5G’s applications relate to safety, such as automatic notifications that alert drivers to cars traveling in the wrong direction on one-way roads.

Areas for Further Research in 5G Technology

When most of us think of 5G we think of its obvious uses—smartphones and mobile devices. However, there are other important areas and industries that 5G research is currently exploring.

Healthcare organizations use telehealth more than ever before, and 5G research and technology has played a large role in empowering that growth.

According to a study by Market Research Future, telemedicine is expected to grow by 16.5% by 2023. The research determined this growth is due in large part to the increased demand for healthcare in rural areas. With more telehealth systems in place that are powered by 5G technology, healthcare systems can reach more patients and help them get them treated sooner.

Small Cells

Researchers are currently focusing on small cells to meet the higher data capacity demands of 5G networks. Small cells are low-powered portable base stations that can be placed throughout small geographical areas to improve mobile communication. Because they’re capable of handling high data rates, as well as IoT devices, small cells are well equipped to handle more 5G rollouts.

Research suggests that the speed and reliability of 5G network connectivity will enable more cost-effective and reliable energy transmission. With smart power grids, the energy industry can more effectively manage power consumption and distribution based on need. This will allow them to tap into more off-grid energy sources such as windmills and solar panels.

Smart Cities

Research into 5G and IoT is looking at the potential to create smart city networks that can benefit the lives of citizens. An article by Forbes describes an IoT-equipped smart city powered by 5G where “sports fans driving to a sold-out game could receive real-time notifications of available parking locations while they’re en route.” The article goes on to add, “Integrating video analytics and artificial intelligence (AI) could result in adjustments to traffic signals and traffic flows, reducing congestion and travel times. Minimizing the time cars idle at red lights could save time and frustration while increasing safety and lowering pollution by reducing peak traffic on roadways.”

Cybersecurity

Cybersecurity is becoming a major area of focus for 5G research. Because this new technology makes everything more software based, the rollout of 5G opens more opportunities for organizations and IT teams to enhance security measures and combat cybercriminals. Additionally, the use of 5G-enabled technologies such as AI, IoT, and cloud computing will help IT pros prevent new cybersecurity threats and operate entire business networks more securely.

5G research is also exploring ways to improve farm efficiency. By using artificial intelligence (AI) combined with 5G technology, farmers get faster, more accurate information from their fields. For example, farm equipment coupled with ground sensors, will be able to give farmers instant updates on the health and performance of their crops. Researchers are also looking into self-driving tractors paired with drones that could guide their work.

Keep in mind these are just the latest areas that researchers and IT experts are exploring. But just like any new technology, the future of 5G is changing every day. With the right training, current and prospective IT experts may easily discover even more ways to use 5G. 

Ready to Start Your Journey?

HEALTH & NURSING

Recommended Articles

Take a look at other articles from WGU. Our articles feature information on a wide variety of subjects, written with the help of subject matter experts and researchers who are well-versed in their industries. This allows us to provide articles with interesting, relevant, and accurate information. 

{{item.date}}

{{item.preTitleTag}}

{{item.title}}

The university, for students.

  • Student Portal
  • Alumni Services

Most Visited Links

  • Business Programs
  • Student Experience
  • Diversity, Equity, and Inclusion
  • Student Communities
  • IEEE Xplore Digital Library
  • IEEE Standards
  • IEEE Spectrum

IEEE

Join the IEEE Future Networks Community

  • Research areas in 5G technology

Research areas in 5G Technology

We are currently on the cusp of 5G rollout. As industry experts predict , 5G deployments will gain momentum, and the accessibility of 5G devices will grow in 2020 and beyond. But as the general public waits for mass-market 5G devices, our understanding of this new technology is continuing to develop. Public and private organizations are exploring several research areas in 5G technology, helping to create more awareness of breakthroughs in this technology, its potential applications and implications, and the challenges surrounding it. 

What is especially clear at this point is that 5G technology offers a transformative experience for mobile communications around the globe. Its benefits, which include higher data rates, faster connectivity, and potentially lower power consumption, promise to benefit industry, professional users, casual consumers, and everyone in between. As this article highlights, researchers have not yet solved or surmounted all of the challenges and obstacles surrounding the wide scale deployment of 5G technology. But the potential impact that it will have on the entire matrix of how we communicate is limited only by the imagination of the experts currently at its frontier. 

INGR 2021Ed Banner

New developments and applications in 5G technologies

Much of the transformative impact of 5G stems from the higher data transmission speeds and lower latency that this fifth generation of cellular technology enables. Currently, when you click on a link or start streaming a video, the lag time between your request to the network and its delivery to your device is about twenty milliseconds. 

That may not seem like a long time. But for the expert mobile robotics surgeon, that lag might be the difference between a successful or failed procedure. With 5G, latency can be as low as one millisecond. 

5G will greatly increase bandwidth capacity and transmission speeds. Wireless carriers like Verizon and AT&T have recorded speeds of one gigabyte per second. That’s anywhere from ten to one hundred times faster than an average cellular connection and even faster than a fiber-optic cable connection. Such speeds offer exciting possibilities for new developments and applications in numerous industries and economic sectors.

E-health services

For example, 5G speeds allow telemedicine services to enhance their doctor-patient relationships by decreasing troublesome lag times in calls. This helps patients return to the experience of intimacy they are used to from in-person meetings with health-care professionals. 

As 5G technology continues to advance its deployment, telemedicine specialists find that they can live anywhere in the world, be licensed in numerous states, and have faster access to cloud data storage and retrieval. This is especially important during the COVID-19 pandemic , which is spurring new developments in telemedicine as a delivery platform for medical services. 

Energy infrastructure

In addition to transforming e-health services, the speed and reliability of 5G network connectivity can improve the infrastructure of America’s energy sector with smart power grids. Such grids bring automation to the legacy power arrangement, optimizing the storage and delivery of energy. With smart power grids, the energy sector can more effectively manage power consumption and distribution based on need and integrate off-grid energy sources such as windmills and solar panels.

Another specific area to see increased advancement due to 5G technology is artificial intelligence (AI). One of the main barriers to successful integration of AI is processing speeds. With 5G, data transfer speeds are ten times faster than those possible with 4G. This makes it possible to receive and analyze information much more efficiently. And it puts AI on a faster track in numerous industries in both urban and rural settings. 

In rural settings, for example, 5G is helping improve cattle farming efficiency . By placing sensors on cows, farmers capture data that AI and machine learning can process to predict when cows are likely to give birth. This helps both farmers and veterinarians better predict and prepare for cow pregnancies.

However, it’s heavily populated cities across the country that are likely to witness the most change as mobile networks create access to heretofore unexperienced connectivity. 

Smart cities

Increased connectivity is key to the emergence of smart cities . These cities conceive of improving the living standards of residents by increasing the connectivity infrastructure of the city. This affects numerous aspects of city life, from traffic management and safety and security to governance, education, and more. 

Smart cities become “smarter” when services and applications become remotely accessible. Hence, innovative smartphone applications are key to smart city infrastructure. But the potential of these applications is seriously limited in cities with spotty connectivity and wide variations in data transmission speed. This is why 5G technology is crucial to continued developments in smart cities.

Other applications

Many other industries and economic sectors will benefit from 5G. Additional examples include automotive communication, smart retail and manufacturing. 

Wave spectrum challenges with 5G

While the potential applications of 5G technology are exciting, realizing the technology’s potential is not without its challenges. Notably, 5G global upgrades and changes are producing wave spectrum challenges.

A number of companies, such as Samsung, Huawei Technologies, ZTE Corporation, Nokia Networks, Qualcomm, Verizon, AT&T, and Cisco Systems are competing to make 5G technology available across the globe. But while in competition with each other, they all share the same goal and face the same dilemma.

Common goal

The goal for 5G is to provide the requisite bandwidth to every user with a device capable of higher data rates. Networks can provide this bandwidth by using a frequency spectrum above six gigahertz . 

Though the military has already been using frequencies above six gigahertz, commercial consumer-based networks are now doing so for the first time. All over the globe, researchers are exploring the new possibilities of spectrum and frequency channels for 5G communications. And they are focusing on the frequency range between twenty-five and eighty-six gigahertz.

Common dilemma

While researchers see great potential with a high-frequency version of 5G, it comes with a key challenge. It is very short range. Objects such as trees and buildings cause significant signal obstruction, necessitating numerous cell towers to avoid signal path loss. 

However, multiple-input, multiple-output (MIMO) technology is proving to be an effective technique for expanding the capacity of 5G connectivity and addressing signal path challenges. Researchers are keying into MIMO deployment due to its design simplicity and multiple offered features. 

A massive MIMO network can provide service to an increased multiplicity of mobile devices in a condensed area at a single frequency simultaneously. And by facilitating a greater number of antennas, a massive MIMO network is more resistant to signal interference and jamming.

Even with MIMO technology, however, line of sight will still be important for high-frequency 5G. Base stations on top of most buildings are likely to remain a necessity. As such, a complete 5G rollout is potentially still years away. 

Current solutions and the way forward

In the interim, telecommunication providers have come up with an alternative to high-frequency 5G— “midband spectrum.” This is what T-Mobile uses. But this compromise does not offer significant performance benefits in comparison to 4G and thus is unlikely to satisfy user expectations. 

Despite the frequency challenges currently surrounding 5G, it is important to keep in mind that there is a common evolution with new technological developments. Initial efforts to develop new technology are often complex and proprietary at the outset. But over time, innovation and advancements provide a clear, unified pathway forward.

This is the path that 5G is bound to follow. Currently, however, MIMO technological advancements notwithstanding, 5G rollout is still in its early, complex phase.

Battery life and energy storage for 5G equipment

For users to enjoy the full potential of 5G technology, longer battery life and better energy storage is essential. So this is what the industry is aiming for.

Currently, researchers are looking to lithium battery technology to boost battery life and optimize 5G equipment for user expectations. However, the verdict is mixed when it comes to the utility of lithium batteries in a 5G world. 

Questions about battery demands and performance

In theory, 5G smartphones will be less taxed than current smartphones. This is because a 5G network with local 5G base stations will dramatically increase computation speeds and enable the transfer of the bulk of computation from your smartphone to the cloud. This means less battery usage for daily tasks and longer life for your battery. Or does it?

A competing theory focuses on the 5G phones themselves. Unlike 4G chips, the chips that power 5G phones are incredibly draining to lithium batteries. 

Early experiments indicate that the state-of-the-art radio frequency switches running in smartphones are continually jumping from 3G to 4G to Wi-Fi. As a smartphone stays connected to these different sources, its battery drains faster.

The present limited infrastructure of 5G exacerbates this problem. Current 5G smartphones need to maintain a connection to multiple networks in order to ensure consistent phone call, text message, and data delivery. And this multiplicity of connections contributes to battery drain.

Until the technology improves and becomes more widely available, consumers are left with a choice: the regular draining expectations that come with 4G devices or access to the speeds and convenience of 5G Internet. 

Possibilities for improvement on the horizon

Fortunately, what can be expected with continuous 5G rollout is continuous improvements in battery performance. As 5G continues to expand across the globe, increasing the energy density and extending the lifetime of batteries will be vital. So market competition for problem-solving battery solutions promises to be fierce and drive innovation to meet user expectations. 

Additional research areas in 5G technology

While research in battery technology remains important, researchers are also focusing their attention on a number of other areas of concern. This research is likewise aimed at meeting user expectations and realizing the full potential of 5G technology as it gains more footing in public and private sectors. 

Small cell research

For example, researchers are focusing on small cells to meet the much higher data capacity demands of 5G networks. As mobile carriers look to densify their networks, small cell research is leading the way toward a solution.

Small cells are low-powered radio access points that take the place of traditional wireless transmission systems or base stations. By making use of low-power and short-range transmissions in small geographic areas, small cells are particularly well suited for the rollout of high-frequency 5G. As such, small cells are likely to appear by the hundreds of thousands across the United States as cellular companies work to improve mobile communication for their subscribers. The faster small cell technology advances, the sooner consumers will have specific 5G devices connected to 5G-only Internet. 

Security-oriented research

Security is also quickly becoming a major area of focus amid the push for a global 5G rollout. Earlier iterations of cellular technology were based primarily on hardware. When voice and text were routed to separate physical devices, each device managed its own network security. There was network security for voice calls, network security for short message system (SMS), and so forth.

5G moves away from this by making everything more software based. In theory, this makes things less secure, as there are now more ways to attack the network. Originally, 5G did have some security layers built in at the federal level. Under the Obama administration, legislation mandating clearly defined security at the network stage passed. However, the Trump administration is looking to replace these security layers with its own “national spectrum strategy.”

With uncertainty about existing safeguards, the cybersecurity protections available to citizens and governments amid 5G rollout is a matter of critical importance. This is creating a market for new cybersecurity research and solutions—solutions that will be key to safely and securely realizing the true value of 5G wireless technology going forward.

Interested in learning more about   technology roadmaps ? IEEE Roadmaps provides guidance and structure to support technical roadmap development and activities. Joining this initiative will provide you the opportunity to discuss common challenges and objectives while continuing progress towards your roadmap goals. Connect with other industry, academia, and governmental experts providing this critical resource for the advancement of technology.

Networking is central to modern computing, from WANs connecting cell phones to massive data stores, to the data-center interconnects that deliver seamless storage and fine-grained distributed computing. Because our distributed computing infrastructure is a key differentiator for the company, Google has long focused on building network infrastructure to support our scale, availability, and performance needs, and to apply our expertise and infrastructure to solve similar problems for Cloud customers. Our research combines building and deploying novel networking systems at unprecedented scale, with recent work focusing on fundamental questions around data center architecture, cloud virtual networking, and wide-area network interconnects. We helped pioneer the use of Software Defined Networking, the application of ML to networking, and the development of large-scale management infrastructure including telemetry systems. We are also addressing congestion control and bandwidth management, capacity planning, and designing networks to meet traffic demands. We build cross-layer systems to ensure high network availability and reliability. By publishing our findings at premier research venues, we continue to engage both academic and industrial partners to further the state of the art in networked systems.

Recent Publications

Some of our teams.

Cloud networking

Global networking

Network infrastructure

We're always looking for more talented, passionate people.

Careers

Communications and Networking Research Group

Search form.

  • Publications

PUBLICATIONS

Journal articles | other papers | conference papers | book chapters | technical reports, journal articles.

134. Vishrant Tripathi, Nick Jones, Eytan Modiano, Fresh-CSMA: A Distributed Protocol for Minimizing Age of Information, IEEE Journal on Communications and Networks, 2024.

133. Bai Liu, Quang Nguyen, Qingkai Liang, Eytan Modiano, Tracking Drift-Plus-Penalty: Utility Maximization for Partially Observable and Controllable Networks, IEEE/ACM Transactions on Networking, 2024.

132. Xinzhe Fu, Eytan Modiano, Optimal Routing to Parallel Servers with Unknown Utilities – Multi-armed Bandit With Queues, IEEE/ACM Transactions on Networking, January 2022.

131. Bai Liu, Qingkai Liang, Eytan Modiano, Tracking MaxWeight: Optimal Control for Partially Observable and Controllable Networks, IEEE/ACM Transactions on Networking, August 2023.

130. Xinzhe Fu, Eytan Modiano, Joint Learning and Control in Stochastic Queueing Networks with unknown Utilities, Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2023.

129. Vishrant Tripathi, Rajat Talak, Eytan Modiano, Information Freshness in Multi-Hop Wireless Networks, IEEE/ACM Transactions on Networking,” April 2023.

128.  Xinzhe Fu, Eytan Modiano, “ Learning-NUM: Network Utility Maximization with Unknown Utility Functions and Queueing Delay ,”  IEEE/ACM Transactions on Networking,” 2022.

127.  Bai Liu, Qiaomin Xie, Eytan Modiano,  " RL-QN: A Reinforcement Learning Framework for Optimal Control of Queueing Systems ,"  ACM Transactions on Modeling and Performance Evaluation of Computing Systems (TOMPECS), 2022.

126. Xinzhe Fu and E. Modiano,  “ Elastic Job Scheduling with Unknown Utility Functions ,” Performance Evaluation, 2021.

125. Bai Liu and E. Modiano, “ Optimal Control for Networks with Unobservable Malicious Nodes ,”  Performance Evaluation, 2021.

124. Vishrant Tripathi, Rajat Talak, Eytan Modiano, " Age Optimal Information Gathering and Dissemination on Graphs ,”  Transactions on Mobile Computing, April 2021.

123.  Xinyu Wu, Dan Wu, Eytan Modiano, “ Predicting Failure Cascades in Large Scale Power Systems via the Influence Model Framework, ”  IEEE Transactions on Power Systems, 2021.

122.   Roy D. Yates, Yin Sun, D. Richard Brown III, Sanjit K. Kaul, Eytan Modiano and Sennur Ulukus, “ Age of Information: An Introduction and Survey, ”  Journal on Selected Areas in Communications, February 2021.

121.   Jianan Zhang, Abhishek Sinha, Jaime Llorca, Anonia Tulino, Eytan Modiano, “ Optimal Control of Distributed Computing Networks with Mixed-Cast Traffic Flows ,”  IEEE/ACM Transactions on Networking, 2021.

120.   Thomas Stahlbuhk, Brooke Shrader, Eytan Modiano, " Learning Algorithms for Minimizing Queue Length Regret ,”  IEEE Transactions on Information Theory, 2021.

119.   Thomas Stahlbuhk, Brooke Shrader, Eytan Modiano, “ Throughput Maximization in Uncooperative Spectrum Sharing Networks ,”  IEEE/ACM IEEE/ACM Transactions on Networking, Vol. 28, No. 6, December 2020.

118.   Thomas Stahlbuhk, Brooke Shrader, Eytan Modiano, “ Learning algorithms for scheduling in wireless networks with unknown channel statistics ,” Ad Hoc Networks, Vol. 85, pp. 131-144, 2019.

117.   Rajat Talak, Eytan Modiano, “ Age-Delay Tradeoffs in Queueing Systems ,”  IEEE Transactions on Information Theory, 2021.

116.   Rajat Talak, Sertac Karaman, Eytan Modiano, " Improving Age of Information in Wireless Networks with Perfect Channel State Information ,”  IEEE/ACM Transactions on Networking, Vol. 28, No. 4, August 2020.

115.   Igor Kadota and Eytan Modiano, “ Minimizing the Age of Information in Wireless Networks with Stochastic Arrivals ,” IEEE Transactions on Mobile Computing, 2020.

114.   Rajat Talak, Sertac Karaman, Eytan Modiano, “ Optimizing Information Freshness in Wireless Networks under General Interference Constraints ,”  IEEE/ACM transactions on Networking, Vol. 28, No. 1, February 2020.

113.   X. Fu and E. Modiano, " Fundamental Limits of Volume-based Network DoS Attacks ," Proceedings of the ACM on Measurement and Analysis of Computing Systems, Vol. 3, No. 3, December 2019. 

112.   Rajat Talak, Sertac Karaman, Eytan Modiano, “ Capacity and Delay Scaling for Broadcast Transmission in Highly Mobile Wireless Networks ,” IEEE Transactions on Mobile Computing, 2019.

111.   Abhishek Sinha and Eytan Modiano, “ Throughput-Optimal Broadcast in Wireless Networks with Point-to-Multipoint Transmissions , IEEE Transactions on Mobile Computing, Vol. 19, No. 9, September 2020.

110.   Yu-Pin Hsu, Eytan Modiano, Lingjie Duan, “ Scheduling Algorithms for Minimizing Age of Information in Wireless Broadcast Networks with Random Arrivals ,”  IEEE Transactions on Mobile Computing, Vol. 19, No. 12, December 2020.

109.   Xiaolin Jiang, Hossein S. Ghadikolaei, Gabor Fodor, Eytan Modiano, Zhibo Pang, Michele Zorzi, Carlo Fischione, " Low-latency Networking: Where Latency Lurks and How to Tame It ,”  Proceedings of the IEEE, 2019.

108.   Jianan Zhang, Edmund Yeh, Eytan Modiano, “ Robustness of Interdependent Random Geometric Networks ,” IEEE Transactions on Network Science and Engineering, Vol. 6, No. 3, July-September 2019.

107.   Qingkai Liang, Hyang-Won Lee, Eytan Modiano, “ Robust Design of Spectrum-Sharing Networks ,” IEEE Transactions on Mobile Computing, Vol. 18, No. 8, August 2019.

106.   A. Sinha, L. Tassiulas, E. Modiano, “ Throughput-Optimal Broadcast in Wireless Networks with Dynamic Topology ,”  IEEE Transactions on Mobile Computing, Vol. 18, No. 5, May 2019.

105. Igor Kadota, Abhishek Sinha, Eytan Modiano, “ Scheduling Algorithms for Optimizing Age of Information in Wireless Networks With Throughput Constraints ,”  IEEE/ACM Transactions on Networking, August 2019.

104.   Igor Kadota, Abhishek Sinha, Rahul Singh, Elif Uysal-Biyikoglu, Eytan Modjano, “ Scheduling Policies for Minimizing Age of Information in Broadcast Wireless Networks ,” IEEE/ACM Transactions on Networking, Vol. 26, No. 5, October 2018.

103.   Jianan Zhang and Eytan Modiano, “ Connectivity in Interdependent Networks ,”  IEEE/ACM Transactions on Networking, 2018.

102.   Qingkai Liang, Eytan Modiano, “ Minimizing Queue Length Regret Under Adversarial Network Models ,” Proceedings of the ACM on Measurement and Analysis of Computing Systems, Volume 2, Issue 1, April 2018, Article No.: 11, pp 1-32. (same as Sigmetrics 2018).

101.   A. Sinha and E. Modiano, “ Optimal Control for Generalized Network Flow Problems ,”  IEEE/ACM Transactions on Networking, 2018.

100.   Hossein Shokri-Ghadikolaei, Carlo Fischione, Eytan Modiano  “ Interference Model Similarity Index and Its Applications to mmWave Networks ,”  IEEE Transactions on Wireless Communications, 2018.

99.   Matt Johnston, Eytan Modiano, “ Wireless Scheduling with Delayed CSI: When Distributed Outperforms Centralized, ’ IEEE Transactions on Mobile Computing, 2018.

98.   A. Sinha, G. Paschos, E. Modiano, “ Throughput-Optimal Multi-hop Broadcast Algorithms ," IEEE/ACM Transactions on Networking, 2017.

97.   Nathan Jones, Georgios Paschos, Brooke Shrader, Eytan Modiano, " An Overlay Architecture for Throughput Optimal Multipath Routing ,” IEEE/ACM Transactions on Networking, 2017.

96.   Greg Kuperman, Eytan Modiano, “ Providing Guaranteed Protection in Multi-Hop Wireless Networks with Interference Constraints ,” IEEE Transactions on Mobile Computing, 2017.

95.   Matt Johnston, Eytan Modiano, Isaac Kesslassy, “ Channel Probing in Opportunistic Communications Systems ,”  IEEE Transactions on Information Theory, November, 2017.

94.   Anurag Rai, Georgios Paschos, Chih-Ping Lee, Eytan Modiano, " Loop-Free Backpressure Routing Using Link-Reversal Algorithms ", IEEE/ACM Transactions on Networking, October, 2017.

93.   Matt Johnston and Eytan Modiano, “" Controller Placement in Wireless Networks with Delayed CSI ,” IEEE/ACM Transactions on Networking, 2017.

92.   Jianan Zheng, E. Modiano, D. Hay, " Enhancing Network Robustness via Shielding ,”  IEEE Transactions on Networking, 2017.

91.   M. Markakis, E. Modiano, J.N. Tsitsiklis, “ Delay Analysis of the Max-Weight Policy under Heavy-Tailed Traffic via Fluid Approximations ,” Mathematics of Operations Research, October, 2017.

90.   Qingkai Liang and E. Modiano, “ Survivability in Time-Varying Graphs ,”  IEEE Transactions on Mobile Computing, 2017.

89.   A. Sinha, G. Paschos, C. P. Li, and E. Modiano, “ Throughput-Optimal Multihop Broadcast on Directed Acyclic Wireless Networks ," IEEE/ACM Transactions on Networking, Vol. 25, No. 1, Feb. 2017.

88.   G. Celik, S. Borst, , P. Whiting , E. Modiano, “ Dynamic Scheduling with Reconfiguration Delays ,”  Queueing Systems, 2016.

87.  G. Paschos, C. P. Li, E. Modiano, K. Choumas, T. Korakis, “ In-network Congestion Control for Multirate Multicast ,”   IEEE/ACM Transactions on Networking,  2016.

86.   H. Seferoglu and E. Modiano, “ TCP-Aware Backpressure Routing and Scheduling ,” IEEE Transactions on Mobile Computing, 2016.

85.   H. Seferoglu and E. Modiano, “ Separation of Routing and Scheduling in Backpressure-Based Wireless Networks ," IEEE/ACM Transactions on Networking, Vol. 24, No. 3, 2016.

84.   M. Markakis, E. Modiano, J.N. Tsitsiklis, “ Delay Stability of Back-Pressure Policies in the presence of Heavy-Tailed Traffic ,”  IEEE/ACM Transactions on Networking, 2015.

83.   S. Neumayer, E. Modiano,  “ Network Reliability Under Geographically Correlated Line and Disk Failure Models ,” Computer Networks, to appear, 2016.

82.   S. Neumayer, E. Modiano, A. Efrat, “ Geographic Max-Flow and Min-Cut Under a Circular Disk Failure Model ,” Computer Networks, 2015.

81.   Marzieh Parandehgheibi, Hyang-Won Lee, Eytan Modiano, Survivable Path Sets:  A new approach to survivability in multi-layer networks ,”  IEEE Journal on Lightwave Technology, 2015.

80.   G. Kuperman, E. Modiano, A. Narula-Tam, “ Network Protection with Multiple Availability Guarantees ,” Computer Networks, 2015.

79.   G. Kuperman, E. Modiano, A. Narula-Tam, “ Analysis and Algorithms for Partial Protection in Mesh Networks ,” IEEE/OSA Journal of Optical Communications and Networks, 2014.

78.   Krishna Jagannathan, Mihalis Markakis, Eytan Modiano, John Tsitsiklis, " Throughput Optimal Scheduling over Time-Varying Channels in the presence of Heavy-Tailed Traffic ,” IEEE Transactions on Information Theory, 2014.

77.   Chih-Ping Li and Eytan Modiano, “ Receiver-Based Flow Control for Networks in Overload ," IEEE/ACM Transactions on Networking, Vol. 23, No. 2, 2015.

76.   Matthew Johnston, Hyang-Won Lee, Eytan Modiano, “ A Robust Optimization Approach to Backup Network Design with Random Failures ,” IEEE/ACM Transactions on Networking, Vol. 23, No. 4, 2015.

75.   Guner Celik and Eytan Modiano, “ Scheduling in Networks with Time-Varying Channels and Reconfiguration Delay ," IEEE/ACM Transactions on Networking, Vol. 23, No. 1, 2015.

74.   Matt Johnston, H.W. Lee, E. Modiano, “ Robust Network Design for Stochastic Traffic Demands ," IEEE Journal of Lightwave Technology, 2013.

73.   Mihalis Markakis, Eytan Modiano, John Tsitsiklis, “ Max-Weight Scheduling in Queueing Networks With Heavy-Tailed Traffic, ” IEEE/ACM Transactions on Networking, 2014.

72.   Kayi Lee, Hyang-Won Lee, Eytan Modiano, " Maximizing Reliability in WDM Networks through Lightpath Routing ,”  IEEE ACM Transactions on Networking, 2014.

71.   Krishna Jaggannathan and Eytan Modiano, “ The Impact of Queue Length Information on Buffer Overflow in Parallel Queues ,”  IEEE transactions on Information Theory, 2013.

70.   Krishna Jagannathan, Ishai Menashe, Gil Zussman, Eytan Modiano, “ Non-cooperative Spectrum Access - The Dedicated vs. Free Spectrum Choice ,” IEEE JSAC, special issue on Economics of Communication Networks & Systems, to appear, 2012.

69.   Guner Celik and Eytan Modiano, “ Dynamic Server Allocation over Time Varying Channels with Switchover Delay ," IEEE Transactions on Information Theory, to appear, 2012.

68.   Anand Srinivas and Eytan Modiano, " Joint Node Placement and Assignment for Throughput Optimization in Mobile Backbone Networks ,” IEEE JSAC, special issue on Communications Challenges and Dynamics for Unmanned Autonomous Vehicles, June, 2012.

67.   Guner Celik and Eytan Modiano, “ Controlled Mobility in Stochastic and Dynamic Wireless Networks ," Queueing Systems, 2012.

66.   Krishna Jagannathan, Shie Mannor, Ishai Menache, Eytan Modiano, “ A State Action Frequency Approach to Throughput Maximization over Uncertain Wireless Channels ,” Internet Mathematics, Vol. 9, Nos. 2–3: 136–160.

65.   Long Le, E. Modiano, N. Shroff, “Optimal Control of Wireless Networks with Finite Buffers ,” IEEE/ACM Transactions on Networking, to appear, 2012.

64.   K. Jagannathan, M. Markakis, E. Modiano, J. Tsitsiklis, “Queue Length Asymptotics for Generalized Max-Weight Scheduling in the presence of Heavy-Tailed Traffic,” IEEE/ACM Transactions on Networking, Vol. 20, No. 4, August 2012.

63.   Kayi Lee, Hyang-Won Lee, Eytan Modiano, “ Reliability in Layered Networks with Random Link Failures, ” IEEE/ACM Transactions on Networking, December 2011.

62.   Krishna Jagannathan, Eytan Modiano, Lizhong Zheng, “ On the Role of Queue Length Information in Network Control ,” IEEE Transactions on Information Theory, September 2011.

61.   Hyang-Won Lee, Long Le, Eytan Modiano, “ Distributed Throughput Maximization in Wireless Networks via Random Power Allocation, ” IEEE Transactions on Mobile Computing, 2011.

60.   Sebastian Neumayer, Gil Zussman, Rueven Cohen, Eytan Modiano, " Assessing the Vulnerability of the Fiber Infrastructure to Disasters, " IEEE/ACM Transactions on Networking, December 2011.

59.   Kayi Lee, Eytan Modiano, Hyang-Won Lee, “ Cross Layer Survivability in WDM-based Networks ,” IEEE/ACM Transactions on Networking, August 2011.

58.   Emily Craparo, Jon How, and Eytan Modiano, “Throughput Optimization in Mobile Backbone Networks,” IEEE Transactions on Mobile Computing, April, 2011.

57.   Hyang-Won Lee, Kayi Lee, and Eytan Modiano, “Diverse Routing in Networks with Probabilistic Failures,” IEEE/ACM Transactions on Networking, December, 2010.

56.   Guner Celik, Gil Zussman, Wajahat Khan and Eytan Modiano, “MAC Protocols For Wireless Networks With Multi-packet Reception Cabaility ,” IEEE Transactions on Mobile Computing, February, 2010.

55.   Atilla Eryilmaz, Asuman Ozdaglar, Devavrat Shah, and Eytan Modiano, “Distributed Cross-Layer Algorithms for the Optimal Control of Multi-hop Wireless Networks,” IEEE/ACM Transactions on Networking, April 2010.

54.   Murtaza Zafer and Eytan Modiano, “Minimum Energy Transmission over a Wireless Channel With Deadline and Power Constraints ,” IEEE Transactions on Automatic Control, pp. 2841-2852, December, 2009.

53.   Murtaza Zafer and Eytan Modiano, “A Calculus Approach to Energy-Efficient Data Transmission with Quality of Service Constraints,” IEEE/ACM Transactions on Networking, 2009.

52.   Anand Srinivas, Gil Zussman, and Eytan Modiano, “Construction and Maintenance of Wireless Mobile Backbone Networks,” IEEE/ACM Transactions on Networking, 2009.

51.   Andrew Brzezinski, Gil Zussman, and Eytan Modiano, “Distributed Throughput Maximization in Wireless Mesh Networks Via Pre-Partitioning,” IEEE/ACM Transactions on Networking, December, 2008.

50.   Amir Khandani, Eytan Modiano, Jinane Abounadi, Lizhong Zheng, “Reliability and Route Diversity in Wireless Networks,” IEEE Transactions on Wireless Communications, December, 2008.

49.   Alessandro Tarello, Jun Sun, Murtaza Zafer and Eytan Modiano, “Minimum Energy Transmission Scheduling Subject to Deadline Constraints,” ACM Wireless Networks, October, 2008.

48.   Murtaza Zafer, Eytan Modiano, “Optimal Rate Control for Delay-Constrained Data Transmission over a Wireless Channel,” IEEE Transactions on Information Theory, September, 2008.

47.   Andrew Brzezinski and Eytan Modiano, “Achieving 100% Throughput In Reconfigurable IP/WDM Networks,” IEEE/ACM Transactions on Networking, August, 2008.

46.   Michael Neely, Eytan Modiano and C. Li, “Fairness and Optimal Stochastic Control for Heterogeneous Networks,” IEEE/ACM Transactions on Networking, September, 2008.

45.   Amir Khandani, Jinane Abounadi, Eytan Modiano, Lizhong Zheng, “Cooperative Routing in Static Wireless Networks,” IEEE Transactions on Communications, November 2007.

44.   Murtaza Zafer, Eytan Modiano, “Joint Scheduling of Rate-guaranteed and Best-effort Users over a Wireless Fading Channel,” IEEE Transactions on Wireless Communications, October, 2007.

43.   Krishna Jagannathan, Sem Borst, Phil Whiting and Eytan Modiano, “Scheduling of Multi-Antenna Broadcast Systems with Heterogeneous Users,” IEEE Journal of Selected Areas in Communications, September, 2007.Amir Khandani, Jinane

42.   Anand Ganti, Eytan Modiano, and John Tsitsiklis, “Optimal Transmission Scheduling in Symmetric Communication Models with Intermittent Connectivity, ” IEEE Transactions on Information Theory, March, 2007.

41.   Michael Neely and Eytan Modiano, “Logarithmic Delay for NxN Packet Switches Under Crossbar Constraints,” IEEE/ACM Transactions on Networking, November, 2007.

40.   Jun Sun, Jay Gao, Shervin Shambayati and Eytan Modiano, “Ka-Band Link Optimization with Rate Adaptation for Mars and Lunar Communications,”   International Journal of Satellite Communications and Networks, March, 2007.

39.   Jun Sun and Eytan Modiano, "Fair Allocation of A Wireless Fading Channel: An Auction Approach" Institute for Mathematics and its Applications, Volume 143: Wireless Communications, 2006.

38.   Jun Sun, Eytan Modiano and Lizhong Zhang, “Wireless Channel Allocation Using An Auction Algorithm,” IEEE Journal on Selected Areas in Communications, May, 2006.

37.   Murtaza Zafer and Eytan Modiano, "Blocking Probability and Channel Assignment for Connection Oriented Traffic in Wireless Networks," IEEE Transactions on Wireless Communications, April, 2006.

36.   Alvin Fu, Eytan Modiano, and John Tsitsiklis, "Optimal Transmission Scheduling over a fading channel with Energy and Deadline Constraints" IEEE Transactions on Wireless Communications, March,2006.

35.   Poompat Saengudomlert, Eytan Modiano and Rober Gallager, “On-line Routing and Wavelength Assignment for Dynamic Traffic in WDM Ring and Torus Networks,” IEEE Transactions on Networking, April, 2006.

34.   Li-Wei Chen, Eytan Modiano and Poompat Saengudomlert, "Uniform vs. Non-Uniform band Switching in WDM Networks," Computer Networks (special issue on optical networks), January, 2006.

33.   Andrew Brzezinski and Eytan Modiano, "Dynamic Reconfiguration and Routing Algorithms for IP-over-WDM networks with Stochastic Traffic," IEEE Journal of Lightwave Technology, November, 2005

32.   Randall Berry and Eytan Modiano, "Optimal Transceiver Scheduling in WDM/TDM Networks," IEEE Journal on Selected Areas in Communications, August, 2005.

31.   Poompat Saengudomlert, Eytan Modiano, and Robert G. Gallager, “Dynamic Wavelength Assignment for WDM All-Optical Tree Networks,” IEEE Transactions on Networking, August, 2005.

30.   Ashwinder Ahluwalia and Eytan Modiano, "On the Complexity and Distributed Construction of Energy Efficient Broadcast Trees in Wireless Ad Hoc Networks," IEEE Transactions on Wireless Communications, October, 2005.

29.   Michael Neely, Charlie Rohrs and Eytan Modiano, "Equivalent Models for Analysis of Deterministic Service Time Tree Networks," IEEE Transactions on Information Theory, October, 2005.

28.   Michael Neely and Eytan Modiano, "Capacity and Delay Tradeoffs for Ad Hoc Mobile Networks," IEEE Transactions on Information Theory, May, 2005.

27.   Li-Wei Chen and Eytan Modiano, "Efficient Routing and Wavelength Assignment for Reconfigurable WDM Networks with Wavelength Converters," IEEE/ACM Transactions on Networking, February, 2005. Selected as one of the best papers from Infocom 2003 for fast-track publication in IEEE/ACM Transactions on Networking.

26.   Michael Neely and Eytan Modiano, "Convexity in Queues with General Inputs," IEEE Transactions on Information Theory, May, 2005.

25.   Anand Srinivas and Eytan Modiano, "Finding Minimum Energy Disjoint Paths in Wireless Ad Hoc Networks," ACM Wireless Networks, November, 2005. Selected to appear in a special issue dedicated to best papers from Mobicom 2003.

24.   Michael Neely, Eytan Modiano and Charlie Rohrs, "Dynamic Power Allocation and Routing for Time-Varying Wireless Networks," IEEE Journal of Selected Areas in Communication, January, 2005.

23.   Chunmei Liu and Eytan Modiano, "On the performance of additive increase multiplicative decrease (AIMD) protocols in hybrid space-terrestrial networks," Computer Networks, September, 2004.

22.   Li-Wei Chen and Eytan Modiano, "Dynamic Routing and Wavelength Assignment with Optical Bypass using Ring Embeddings," Optical Switching and Networking (Elsevier), December, 2004.

21.   Aradhana Narula-Tam, Eytan Modiano and Andrew Brzezinski, "Physical Topology Design for Survivable Routing of Logical Rings in WDM-Based Networks," IEEE Journal of Selected Areas in Communication, October, 2004.

20.   Randall Berry and Eytan Modiano, "'The Role of Switching in Reducing the Number of Electronic Ports in WDM Networks," IEEE Journal of Selected Areas in Communication, October, 2004.

19.   Jun Sun and Eytan Modiano, "Routing Strategies for Maximizing Throughput in LEO Satellite Networks,," IEEE JSAC, February, 2004.

18.   Jun Sun and Eytan Modiano, "Capacity Provisioning and Failure Recovery for Low Earth Orbit Satellite Networks," International Journal on Satellite Communications, June, 2003.

17.   Alvin Fu, Eytan Modiano, and John Tsitsiklis, "Optimal Energy Allocation and Admission Control for Communications Satellites," IEEE Transactions on Networking, June, 2003.

16.   Michael Neely, Eytan Modiano and Charles Rohrs, "Power Allocation and Routing in Multi-Beam Satellites with Time Varying Channels," IEEE Transactions on Networking, February, 2003.

15.   Eytan Modiano and Aradhana Narula-Tam, "Survivable lightpath routing: a new approach to the design of WDM-based networks," IEEE Journal of Selected Areas in Communication, May 2002.

14.   Aradhana Narula-Tam, Phil Lin and Eytan Modiano, "Efficient Routing and Wavelength Assignment for Reconfigurable WDM Networks," IEEE Journal of Selected Areas in Communication, January, 2002.

13.   Brett Schein and Eytan Modiano, "Quantifying the benefits of configurability in circuit-switched WDM ring networks with limited ports per node," IEEE Journal on Lightwave Technology, June, 2001.

12.   Aradhana Narula-Tam and Eytan Modiano, "Dynamic Load Balancing in WDM Packet Networks with and without Wavelength Constraints," IEEE Journal of Selected Areas in Communications, October 2000.

11.   Randy Berry and Eytan Modiano, "Reducing Electronic Multiplexing Costs in SONET/WDM Rings with Dynamically Changing Traffic," IEEE Journal of Selected Areas in Communications, October 2000.

10.   Eytan Modiano and Richard Barry, "A Novel Medium Access Control Protocol for WDM-Based LANs and Access Networks Using a Master-Slave Scheduler," IEEE Journal on Lightwave Technology, April 2000.

9.   Eytan Modiano and Anthony Ephremides, "Communication Protocols for Secure Distributed Computation of Binary Functions," Information and Computation, April 2000.

8.   Angela Chiu and Eytan Modiano, "Traffic Grooming Algorithms for Reducing Electronic Multiplexing Costs in WDM Ring Networks," IEEE Journal on Lightwave Technology, January 2000.

7.   Eytan Modiano, "An Adaptive Algorithm for Optimizing the Packet Size Used in Wireless ARQ Protocols," Wireless Networks, August 1999.

6.   Eytan Modiano, "Random Algorithms for Scheduling Multicast Traffic in WDM Broadcast-and-Select Networks," IEEE Transactions on Networking, July, 1999.

5.   Eytan Modiano and Richard Barry, "Architectural Considerations in the Design of WDM-based Optical Access Networks," Computer Networks, February 1999.

4.   V.W.S. Chan, K. Hall, E. Modiano and K. Rauschenbach, "Architectures and Technologies for High-Speed Optical Data Networks," IEEE Journal of Lightwave Technology, December 1998.

3.   Eytan Modiano and Anthony Ephremides, "Efficient Algorithms for Performing Packet Broadcasts in a Mesh Network," IEEE Transactions on Networking, May 1996.

2.   Eytan Modiano, Jeffrey Wieselthier and Anthony Ephremides, "A Simple Analysis of Queueing Delay in a Tree Network of Discrete-Time Queues with Constant Service Times," IEEE Transactions on Information Theory, February 1996.

1.   Eytan Modiano and Anthony Ephremides, "Communication Complexity of Secure Distributed Computation in the Presence of Noise," IEEE Transactions on Information Theory, July 1992.

Other Papers

5.  Eytan Modiano, "Satellite Data Networks," AIAA Journal on Aerospace Computing, Information and Communication, September, 2004.

4.  Eytan Modiano and Phil Lin, "Traffic Grooming in WDM networks," IEEE Communications Magazine, July, 2001.

3.  Eytan Modiano and Aradhana Narula, "Mechanisms for Providing Optical Bypass in WDM-based Networks," SPIE Optical Networks, January 2000.

2.  K. Kuznetsov, N. M. Froberg, Eytan Modiano, et. al., "A Next Generation Optical Regional Access Networks," IEEE Communications Magazine, January, 2000.

1.  Eytan Modiano, "WDM-based Packet Networks," (Invited Paper) IEEE Communications Magazine, March 1999.

Conference Papers

246. Xinyu Wu, Dan Wu, Eytan Modiano, “ Overload Balancing in Single-Hop Networks With Bounded Buffers ,” IFIP Networking, 2022.

245.  Xinzhe Fu, Eytan Modiano, “ Optimal Routing for Stream Learning Systems ,”  IEEE Infocom, April 2022.

244.  Vishrant Tripathi, Luca Ballotta, Luca Carlone, E. Modiano, “ Computation and Communication Co-Design for Real-Time Monitoring and Control in Multi-Agent Systems ,”  IEEE Wiopt, 2021.

243. Eray Atay, Igor Kadota, E. Modiano, “ Aging Wireless Bandits: Regret Analysis and Order-Optimal Learning Algorithm ,”  IEEE Wiopt 2021.

242. Xinzhe Fu and E. Modiano,  “ Elastic Job Scheduling with Unknown Utility Functions ,” IFIP Performance, Milan, 2021.

241. Bai Liu and E. Modiano, “ Optimal Control for Networks with Unobservable Malicious Nodes ,”  IFIP Performance, Milan, 2021.

240. Bai Liu, Qiaomin Xie,  Eytan Modiano, “ RL-QN:  A Reinforcement Learning Framework for Optimal Control of Queueing Systems ,”  ACM Sigmetrics Workshop on Reinforcement Learning in Networks and Queues (RLNQ), 2021.

239. Xinzhe Fu and E. Modiano,  “ Learning-NUM: Network Utility Maximization with Unknown Utility Functions and Queueing Delay ,  ACM MobiHoc 2021.  

238. Vishrant Tripathi and Eytan Modiano,  “ An Online Learning Approach to Optimizing Time-Varying Costs of AoI ,”  ACM MobiHoc 2021. 

237.   Igor Kadota, Muhammad Shahir Rahman, and Eytan Modiano, " WiFresh: Age-of-Information from Theory to Implementation ,”  International Conference on Computer Communications and Networks (ICCCN), 2021.

236. Vishrant Tripathi and Eytan Modiano, “ Age Debt: A General Framework For Minimizing Age of Information ,”  IEEE Infocom Workshop on Age-of-Information, 2021.

235. Igor Kadota, Eytan Modiano, “ Age of Information in Random Access Networks with Stochastic Arrivals ,” IEEE Infocom, 2020.

234. Igor Kadota, M. Shahir Rahman, Eytan Modiano, Poster: Age of Information in Wireless Networks: from Theory to Implementation , ACM Mobicom, 2020.

233. Xinyu Wu, Dan Wu, Eytan Modiano, “ An Influence Model Approach to Failure Cascade Prediction in Large Scale Power Systems ,” IEEE American Control Conference, July, 2020.

232. X. Fu and E. Modiano, " Fundamental Limits of Volume-based Network DoS Attacks ," Proc. ACM Sigmetrics, Boston, MA, June 2020.

231. Vishrant Tripathi, Eytan Modiano, “ A Whittle Index Approach to Minimizing Functions of Age of Information ,” Allerton Conference on Communication, Control, and Computing, September 2019.

230. Bai Liu, Xiaomin Xie, Eytan Modiano, “ Reinforcement Learning for Optimal Control of Queueing Systems ,” Allerton Conference on Communication, Control, and Computing, September 2019.

229. Rajat Talak, Sertac Karaman, Eytan Modiano, “ A Theory of Uncertainty Variables for State Estimation and Inference ,” Allerton Conference on Communication, Control, and Computing, September 2019.

228. Rajat Talak, Eytan Modiano, “ Age-Delay Tradeoffs in Single Server Systems ,” IEEE International Symposium on Information Theory, Paris, France, July, 2019.

227. Rajat Talak, Sertac Karaman, Eytan Modiano, “ When a Heavy Tailed Service Minimizes Age of Information ,” IEEE International Symposium on Information Theory, Paris, France, July, 2019.

226. Qingkai Liang, Eytan Modiano, “ Optimal Network Control with Adversarial Uncontrollable Nodes ,” ACM MobiHoc, Catania, Italy, June 2019.

225. Igor Kadota, Eytan Modiano, “ Minimizing the Age of Information in Wireless Networks with Stochastic Arrivals ,” ACM MobiHoc, June 2019.

224. Maotong Xu, Jelena Diakonikolas, Suresh Subramaniam, Eytan Modiano, “ A Hierarchical WDM-based Scalable Data Center Network Architecture ,” IEEE International Conference on Communications (ICC), Shanghai, China, June 2019.

223. Maotong Xu, Min Tian, Eytan Modiano, Suresh Subramaniam, " RHODA Topology Configuration Using Bayesian Optimization

222.   Anurag Rai, Rahul Singh and Eytan Modiano, " A Distributed Algorithm for Throughput Optimal Routing in Overlay Networks ,”  IFIP Networking 2019, Warsaw, Poland, May 2019.

221.   Qingkai Liang and Eytan Modiano, " Optimal Network Control in Partially-Controllable Networks ,”  IEEE Infocom, Paris, April 2019.

220.   Xinzhe Fu and Eytan Modiano, " Network Interdiction Using Adversarial Traffic Flows ,”  IEEE Infocom, Paris, April 2019.

219.   Vishrant Tripathi, Rajat Talak, Eytan Modiano, " Age Optimal Information Gathering and Dissemination on Graphs ,”  IEEE Infocom, Paris, April 2019.

218.   Jianan Zhang, Hyang-Won Lee, Eytan Modiano, " On the Robustness of Distributed Computing Networks ,”  DRCN 2019, Coimbra, Portugal, March, 2019.

217.   Hyang-Won Lee, Jianan Zhang and Eytan Modiano, " Data-driven Localization and Estimation of Disturbance in the Interconnected Power System ,”  IEEE Smartgridcomm, October, 2018.

216.   Jianan Zhang and Eytan Modiano, " Joint Frequency Regulation and Economic Dispatch Using Limited Communication ,”  IEEE Smartgridcomm, October, 2018.

215.   Rajat Talak, Sertac Karaman, Eytan Modiano, " Scheduling Policies for Age Minimization in Wireless Networks with Unknown Channel State ,”  IEEE International Symposium on Information Theory, July 2018.

214.   Thomas Stahlbuhk, Brooke Shrader, Eytan Modiano, " Online Learning Algorithms for Minimizing Queue Length Regret ,”  IEEE International Symposium on Information Theory, July 2018.

213.   Rajat Talak, Sertac Karaman, Eytan Modiano, " Distributed Scheduling Algorithms for Optimizing Information Freshness in Wireless Networks ,”  IEEE SPAWC, Kalamata, Greece, June, 2018.

212.   Rajat Talak, Sertac Karaman, Eytan Modiano, " Optimizing Information Freshness in Wireless Networks under General Interference Constraints ,”  ACM MobiHoc 2018, Los Angeles, CA, June 2018.

211.   Thomas Stahlbuhk, Brooke Shrader, Eytan Modiano, " Learning Algorithms for Scheduling in Wireless Networks with Unknown Channel Statistics ,”  ACM MobiHoc, June 2018.

210.   Khashayar Kamran, Jianan Zhang, Edmund Yeh, Eytan Modiano, " Robustness of Interdependent Geometric Networks Under Inhomogeneous Failures ,”  Workshop on Spatial Stochastic Models for Wireless Networks (SpaSWiN), Shanghai, China, May 2018.

209.   Rajat Talak, Sertac Karaman, Eytan Modiano, " Optimizing Age of Information in Wireless Networks with Perfect Channel State Information ,”  Wiopt 2018, Shanghai, China, May 2018.

208.   Abhishek Sinha, Eytan Modiano, " Network Utility Maximization with Heterogeneous Traffic Flows ,”  Wiopt 2018, Shanghai, China, May 2018.

207.   Qingkai Liang, Eytan Modiano, " Minimizing Queue Length Regret Under Adversarial Network Models ,”  ACM Sigmetrics, 2018.

206.   Jianan Zhang, Abhishek Sinha, Jaime Llorca, Anonia Tulino, Eytan Modiano, " Optimal Control of Distributed Computing Networks with Mixed-Cast Traffic Flows ,”  IEEE Infocom, Honolulu, HI, April 2018.

205.   Qingkai Liang, Eytan Modiano, " Network Utility Maximization in Adversarial Environments ,”  IEEE Infocom, Honolulu, HI, April 2018.

204.   Igor Kadota, Abhishek Sinha, Eytan Modiano, " Optimizing Age of Information in Wireless Networks with Throughput Constraints ,”  IEEE Infocom, Honolulu, HI, April 2018.

203.   QIngkai Liang, Verina (Fanyu) Que, Eytan Modiano, " Accelerated Primal-Dual Policy Optimization for Safe Reinforcement Learning ,”  NIPS workshop on “Transparent and interpretable machine learning in safety critical environments,"December 2017.

202.   Rahul Singh, Xueying Guo,Eytan Modiano, " Risk-Sensitive Optimal Control of Queues ,”  IEEE Conference on Decision and Control (CDC), December 2017.

201.   Rajat Talak, Sertac Karaman, Eytan Modiano, " Minimizing Age of Information in Multi-Hop Wireless Networks ,”  Allerton Conference on Communication, Control, and Computing, September 2017.

200.   Abhishek Sinha, Eytan Modiano, " Throughput-Optimal Broadcast in Wireless Networks with Point-to-Multipoint Transmissions ,”  ACM MobiHoc, Madras, India, July 2017.

199.   Rajat Talak, Sertac Karaman, Eytan Modiano, " Capacity and delay scaling for broadcast transmission in highly mobile wireless networks ,”  ACM MobiHoc, Madras, India, July 2017.

198.5 . Y.-P. Hsu, E. Modiano, and L. Duan, " Age of Information: Design and Analysis of Optimal Scheduling Algorithms ,”  IEEE International Symposium on Information Theory (ISIT), 2017.

198.   Qingkai Liang and Eytan Modiano, " Coflow Scheduling in Input-Queued Switches: Optimal Delay Scaling and Algorithms ,”  IEEE Infocom, Atlanta, GA, May 2017.

197.   Jianan Zhang and Eytan Modiano, " Robust Routing in Interdependent Networks ,”  IEEE Infocom, Atlanta, GA, May 2017.

196.   Abhishek Sinha, Eytan Modiano, " Optimal Control for Generalized Network Flow Problems ,”  IEEE Infocom, Atlanta, GA, May 2017.

195.   Rajat Talak*, Sertac Karaman, Eytan Modiano, " Speed Limits in Autonomous Vehicular Networks due to Communication Constraints ,”  IEEE Conference on Decision and Control (CDC), Las Vegas, NV, December 2016.

194.   Marzieh Parandehgheibi*, Konstantin Turitsyn, Eytan Modiano, " Distributed Frequency Control in Power Grids Under Limited Communication ,”  IEEE Conference on Decision and Control (CDC), Las Vegas, NV, December 2016.

193.   Igor Kadota, Elif Uysal-Biyikoglu, Rahul Singh, Eytan Modiano, " Minimizing Age of Information in Broadcast Wireless Networks ,”  Allerton Allerton Conference on Communication, Control, and Computing, September 2016.

192.   Jianan Zhang, Edmund Yeh, Eytan Modiano, " Robustness of Interdependent Random Geometric Networks ,”  Allerton Conference on Communication, Control, and Computing, September 2016.

191.   Abhishek Sinha, Leandros Tassiulas, Eytan Modiano, " Throughput-Optimal Broadcast in Wireless Networks with Dynamic Topology ,”  ACM MobiHoc'16, Paderborn, Germany, July, 2016. (winner of best paper award)

190.   Abishek Sinha, Georgios Paschos, Eytan Modiano, " Throughput-Optimal Multi-hop Broadcast Algorithms ,”  ACM MobiHoc'16, Paderborn, Germany, July, 2016.

189.   Thomas Stahlbuhk, Brooke Shrader, Eytan Modiano, " Throughput Maximization in Uncooperative Spectrum Sharing Networks ,”  IEEE International Symposium on Information Theory, Barcelona, Spain, July 2016.

188.   Thomas Stahlbuhk, Brooke Shrader, Eytan Modiano, " Topology Control for Wireless Networks with Highly-Directional Antennas ,”  IEEE Wiopt, Tempe, Arizona, May, 2016.

187.   Qingkai Liang, H.W. Lee, Eytan Modiano, " Robust Design of Spectrum-Sharing Networks ,”  IEEE Wiopt, Tempe, Arizona, May, 2016.

186.   Hossein Shokri-Ghadikolae, Carlo Fischione and Eytan Modiano, " On the Accuracy of Interference Models in Wireless Communications ,”  IEEE International Conference on Communications (ICC), 2016.

185.   Qingkai Liang and Eytan Modiano, " Survivability in Time-varying Networks ,”  IEEE Infocom, San Francisco, CA, April 2016.

184.   Kyu S. Kim, Chih-Ping Li, Igor Kadota, Eytan Modiano, " Optimal Scheduling of Real-Time Traffic in Wireless Networks with Delayed Feedback ,”  Allerton conference on Communication, Control, and Computing, September 2015.

183.   Marzieh Parandehgheibi, Eytan Modiano, " Modeling the Impact of Communication Loss on the Power Grid Under Emergency Control ,”  IEEE SmartGridComm, Miami, FL, Nov. 2015.

182.   Anurag Rai, Chih-ping Li, Georgios Paschos, Eytan Modiano, " Loop-Free Backpressure Routing Using Link-Reversal Algorithms ,”  Proceedings of the ACM MobiHoc, July 2015.

181.   Longbo Huang, Eytan Modiano, " Optimizing Age of Information in a Multiclass Queueing System ,”  Proceedings of IEEE ISIT 2015, Hong Kong, Jun 2015.

180.   M. Johnston, E. Modiano, " A New Look at Wireless Scheduling with Delayed Information ,”  Proceedings of IEEE ISIT 2015, Hong Kong, June 2015.

179.   M. Johnston, E. Modiano, " Scheduling over Time Varying Channels with Hidden State Information ,”  Proceedings of IEEE ISIT 2015, Hong Kong, June 2015.

178.   M. Johnston and E. Modiano, " Controller Placement for Maximum Throughput Under Delayed CSI ,”  IEEE Wiopt, Mombai, India, May 2015.

177.   A. Sinha, G. Paschos, C. P. Li, and E. Modiano, " Throughput Optimal Broadcast on Directed Acyclic Graphs ,”  IEEE Infocom, Hong Kong, April 2015.

176.   J. Zheng and E. Modiano, " Enhancing Network Robustness via Shielding ,”  IEEE Design of Reliable Communication Networks, Kansas City, March 2015.

175.   H. W. Lee and E. Modiano, " Robust Design of Cognitive Radio Networks ,”  Information and Communication Technology Convergence (ICTC), 2014.

174.   Greg Kuperman and Eytan Modiano, " Disjoint Path Protection in Multi-Hop Wireless Networks with Interference Constraints ,”  IEEE Globecom, Austin, TX, December 2014.

173.   Marzieh Parandehgheibi, Eytan Modiano, David Hay, " Mitigating Cascading Failures in Interdependent Power Grids and Communication Networks ,”  IEEE Smartgridcomm, Venice, Italy, November 2014.

172.   Georgios Paschos and Eytan Modiano, " Throughput optimal routing in overlay networks ,”  Allerton conference on Communication, Control, and Computing, September 2014.

171.   Nathan Jones, George Paschos, Brooke Shrader, Eytan Modiano, " An overlay architecture for Throughput Optimal Multipath Routing ,”  ACM MobiHoc, August 2014.

170.   Matt Johnston, Eytan Modiano, Yuri Polyanskiy, " Opportunistic Scheduling with Limited Channel State Information: A Rate Distortion Approach ,”  IEEE International Symposium on Information Theory, Honolulu, HI, July 2014.

169.   Chih-Ping Li, Georgios Paschos, Eytan Modiano, Leandros Tassiulas, " Dynamic Overload Balancing in Server Farms ,”  Networking 2014, Trondheim, Norway, June, 2014.

168.   Hulya Seferonglu and Eytan Modiano, " TCP-Aware Backpressure Routing and Scheduling ,”  Information Theory and Applications, San Diego, CA, February 2014.

167.   Mihalis Markakis, Eytan Modiano, John Tsitsiklis, " Delay Stability of Back-Pressure Policies in the presence of Heavy-Tailed Traffic ,”  Information Theory and Applications, San Diego, CA, February 2014.

166.   Kyu Soeb Kim, Chih-ping Li, Eytan Modiano, " Scheduling Multicast Traffic with Deadlines in Wireless Networks ,”  IEEE Infocom, Toronto, CA, April 2014.

165.   Georgios Paschos, Chih-ping Li, Eytan Modiano, Kostas Choumas, Thanasis Korakis, " A Demonstration of Multirate Multicast Over an 802.11 Mesh Network ,”  IEEE Infocom, Toronto, CA, April 2014.

164.   Sebastian Neumayer, Eytan Modiano, " Assessing the Effect of Geographically Correlated Failures on Interconnected Power-Communication Networks ,”  IEEE SmartGridComm, 2013.

163.   Marzieh Parandehgheibi, Eytan Modiano, " Robustness of Interdependent Networks: The case of communication networks and the power grid ,”  IEEE Globecom, December 2013.

162.   Matt Johnston, Eytan Modiano, " Optimal Channel Probing in Communication Systems: The Two-Channel Case ,”  IEEE Globecom, December 2013.

161.   Mihalis Markakis, Eytan Modiano, John N. Tsitsiklis, " Delay Analysis of the Max-Weight Policy under Heavy-Tailed Traffic via Fluid Approximations ,”  Allerton Conference, October 2013.

160.   Matthew Johnston, Isaac Keslassy, Eytan Modiano, " Channel Probing in Communication Systems: Myopic Policies Are Not Always Optimal ,”  IEEE International Symposium on Information Theory, July 2013.

159.   Krishna P Jagannathan, Libin Jiang, Palthya Lakshma Naik, Eytan Modiano, " Scheduling Strategies to Mitigate the Impact of Bursty Traffic in Wireless Networks ,”  11th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks Wiopt 2013, Japan, May 2013. (Winner – Best Paper Award).

158.   Hulya Seferoglu and Eytan Modiano, " Diff-Max: Separation of Routing and Scheduling in Backpressure-Based Wireless Networks ,”  IEEE Infocom, Turin, Italy, April 2013.

157.   Chih-Ping Li, Eytan Modiano, " Receiver-Based Flow Control for Networks in Overload ,”  IEEE Infocom, Turin, Italy, April 2013.

156.   Nathan Jones, Brooke Shrader, Eytan Modiano, " Distributed CSMA with Pairwise Coding ,”  IEEE Infocom, Turin, Italy, April 2013.

155.   Greg Kuperman and Eytan Modiano, " Network Protection with Guaranteed Recovery Times using Recovery Domains ,”  IEEE Infocom, Turin, Italy, April 2013.

154.   Greg Kuperman and Eytan Modiano, " Providing Protection in Multi-Hop Wireless Networks ,”  IEEE Infocom, Turin, Italy, April 2013.

153.   Greg Kuperman, Eytan Modiano, Aradhana Narula-Tam, " Network Protection with Multiple Availability Guarantees ,”  IEEE ICC workshop on New Trends in Optical Networks Survivability, June 2012.

152.   Nathaniel Jones, Brooke Shrader, Eytan Modiano, " Optimal Routing and Scheduling for a Simple Network Coding Scheme ,”  IEEE Infocom, Orlando, Fl, March, 2012.

151.   Mihalis Markakis, Eytan Modiano, John Tsitsiklis, " Max-Weight Scheduling in Networks with Heavy-Tailed Traffic ,”  IEEE Infocom, Orlando, Fl, March, 2012.

150.   Guner Celik and Eytan Modiano, " Scheduling in Networks with Time-Varying Channels and Reconfiguration Delay ,”  IEEE Infocom, Orlando, Fl, March, 2012.

149.   Sebastian Neumayer, Alon Efrat, Eytan Modiano, " Geographic Max-Flow and Min-cut Under a Circular Disk Failure Model ,”  IEEE Infocom (MC), Orlando, Fl, March, 2012.

148.   Marzieh Parandehgheibi, Hyang-Won Lee, and Eytan Modiano, " Survivable Paths in Multi-Layer Networks ,”  Conference on Information Science and Systems, March, 2012.

147.   Greg Kuperman, Eytan Modiano, and Aradhana Narula-Tam, " Partial Protection in Networks with Backup Capacity Sharing ,”  Optical Fiber Communications Conference (OFC), Anaheim, CA, March, 2012.

146.   Krishna Jagannathan, Libin Jiang, Eytan Modiano, " On Scheduling Algorithms Robust to Heavy-Tailed Traffic ,”  Information Theory and Applications (ITA), San Diego, CA, February 2012.

145.   M. Johnston, H.W. Lee, E. Modiano, " Robust Network Design for Stochastic Traffic Demands ,”  IEEE Globecom, Next Generation Networking Symposium, Houston, TX, December 2011.

144.   S. Neumayer, E. Modiano, " Network Reliability Under Random Circular Cuts ,”  IEEE Globecom, Optical Networks and Systems Symposium, Houston, TX, December 2011.

143.   H.W. Lee, K. Lee, E. Modiano, " Maximizing Reliability in WDM Networks through Lightpath Routing ,”  IEEE Globecom, Optical Networks and Systems Symposium, Houston, TX, December 2011.

142.   Guner Celik, Sem Borst, Eytan Modiano, Phil Whiting, " Variable Frame Based Max-Weight Algorithms for Networks with Switchover Delay ,”  IEEE International Symposium on Information Theory, St. Petersburgh, Russia, August 2011.

141.   Krishna Jaganathan, Ishai Menache, Eytan Modiano, and Gil Zussman, " Non-cooperative Spectrum Access - The Dedicated vs. Free Spectrum Choice ,”  ACM MOBIHOC'11, May 2011.

140.   Krishna Jagannathan, Shie Mannor, Ishai Menache, Eytan Modiano, " A State Action Frequency Approach to Throughput Maximization over Uncertain Wireless Channels ,”  IEEE Infocom (Mini-conference), Shanghai, China, April 2011.

139.   Guner Celik, Long B. Le, Eytan Modiano, " Scheduling in Parallel Queues with Randomly Varying Connectivity and Switchover Delay ,”  IEEE Infocom (Mini-conference), Shanghai, China, April 2011.

138.   Gregory Kuperman, Eytan Modiano, Aradhana Narula-Tam, " Analysis and Algorithms for Partial Protection in Mesh Networks ,”  IEEE Infocom (Mini-conference), Shanghai, China, April 2011.

137.   Matthew Johnston, Hyang-Won Lee, Eytan Modiano, " A Robust Optimization Approach to Backup Network Design with Random Failures ,”  IEEE Infocom, Shanghai, China, April 2011.

136.   Krishna Jagannathan, Mihalis Markakis, Eytan Modiano, John Tsitsiklis, " Queue Length Asymptotics for Generalized Max-Weight Scheduling in the presence of Heavy-Tailed Traffic ,”  IEEE Infocom, Shanghai, China, April 2011.

135.   Guner Celik and Eytan Modiano, " Dynamic Vehicle Routing for Data Gathering in Wireless Networks ,”  In Proc. IEEE CDC'10, Dec. 2010..***

134.   Long B. Le, Eytan Modiano, Changhee Joo, and Ness B. Shroff, " Longest-queue-first scheduling under the SINR interference model ,”  ACM MobiHoc, September 2010..***

133.   Krishna Jagannathan, Mihalis Markakis, Eytan Modiano, John Tsitsiklis, " Throughput Optimal Scheduling in the Presence of Heavy-Tailed Traffic ,”  Allerton Conference on Communication, Control, and Computing, September 2010..**

132.   Delia Ciullo, Guner Celik, Eytan Modiano, " Minimizing Transmission Energy in Sensor Networks via Trajectory Control ,”  IEEE Wiopt 2010, Avignon, France, June 2010, (10 pages; CD proceedings – page numbers not available).

131.   Sebastian Neumayer and Eytan Modiano, " Network Reliability with Geographically Correlated Failures ,”  IEEE Infocom 2010, San Diego, CA, March 2010, (9 pages; CD proceedings – page numbers not available).**

130.   Long Le, Eytan Modiano, Ness Shroff, " Optimal Control of Wireless Networks with Finite Buffers ,”  IEEE Infocom 2010, San Diego, CA, March 2010, (9 pages; CD proceedings – page numbers not available).

129.   Kayi Lee, Hyang-Won Lee, Eytan Modiano, " Reliability in Layered Network with Random Link Failures ,”  IEEE Infocom 2010, San Diego, CA, March 2010, (9 pages; CD proceedings – page numbers not available).**

128.   Krishna Jagannathan, Eytan Modiano, " The Impact of Queue length Information on Buffer Overflow in Parallel Queues ,”  Allerton Conference on Communication, Control, and Computing, September 2009, pgs. 1103 -1110 **

127.   Mihalis Markakis, Eytan Modiano, John Tsitsiklis, " Scheduling Policies for Single-Hop with Heavy-Tailed Traffic ,”  Allerton Conference on Communication, Control, and Computing, September 2009, pgs. 112 – 120..**

126.   Dan Kan, Aradhana Narula-Tam, Eytan Modiano, " Lightpath Routing and Capacity Assignment for Survivable IP-over-WDM Networks ,”  DRCN 2009, Alexandria, VA October 2009, pgs. 37 -44..**

125.   Mehdi Ansari, Alireza Bayesteh, Eytan Modiano, " Opportunistic Scheduling in Large Scale Wireless Networks ,”  IEEE International Symposium on Information Theory, Seoul, Korea, June 2009, pgs. 1624 – 1628.

124.   Hyang-Won Lee, Eytan Modiano and Long Bao Le, " Distributed Throughput Maximization in Wireless Networks via Random Power Allocation ,”  IEEE Wiopt, Seoul, Korea, June 2009. (9 pages; CD proceedings – page numbers not available).

123.   Wajahat Khan, Eytan Modiano, Long Le, " Autonomous Routing Algorithms for Networks with Wide-Spread Failures ,”  IEEE MILCOM, Boston, MA, October 2009. (6 pages; CD proceedings – page numbers not available).**

122.   Guner Celik and Eytan Modiano, " Random Access Wireless Networks with Controlled Mobility ,”  IEEE Med-Hoc-Nets, Haifa, Israel, June 2009, pgs. 8 – 14.**

121.   Hyang-Won Lee and Eytan Modiano, " Diverse Routing in Networks with Probabilistic Failures ,”  IEEE Infocom, April 2009, pgs. 1035 – 1043.

120.   Kayi Lee and Eytan Modiano, " Cross-layer Survivability in WDM-based Networks ,”  IEEE Infocom, April 2009, pgs. 1017 -1025..**

119.   Krishna Jagannathan, Eytan Modiano, Lizhong Zheng, " On the Trade-off between Control Rate and Congestion in Single Server Systems ,”  IEEE Infocom, April 2009, pgs. 271 – 279.**

118.   Sebastian Neumayer, Gil Zussman, Rueven Cohen, Eytan Modiano, " Assessing the Vulnerability of the Fiber Infrastructure to Disasters ,”  IEEE Infocom, April 2009, pgs. 1566 – 1574.**

117.   Long Le, Krishna Jagannathan and Eytan Modiano, " Delay analysis of max-weight scheduling in wireless ad hoc networks ,”  Conference on Information Science and Systems, Baltimore, MD, March, 2009, pgs. 389 – 394.**

116.   Krishna Jagannathan, Eytan Modiano, Lizhong Zheng, " Effective Resource Allocation in a Queue: How Much Control is Necessary? ,”  Allerton Conference on Communication, Control, and Computing, September 2008, pgs. 508 – 515.**

115.   Sebastian Neumayer, Gil Zussman, Rueven Cohen, Eytan Modiano, " Assessing the Impact of Geographically Correlated Network Failures ,”  IEEE MILCOM, November 2008. (6 pages; CD proceedings – page numbers not available).**

114.   Emily Craparo, Jonathan P. How, and Eytan Modiano, " Simultaneous Placement and Assignment for Exploration in Mobile Backbone Networks ,”  IEEE conference on Decision and Control (CDC), November 2008, pgs. 1696 – 1701 **

113.   Anand Srinivas and Eytan Modiano, " Joint node placement and assignment for throughput optimization in mobile backbone networks ,”  IEEE INFOCOM'08, pp. 1130 – 1138, Phoenix, AZ, Apr. 2008, pgs. 1130 – 1138.**

112.   Guner Celik, Gil Zussman, Wajahat Khan and Eytan Modiano, " MAC for Networks with Multipacket Reception Capability and Spatially Distributed Nodes ,”  IEEE INFOCOM'08, Phoenix, AZ, Apr. 2008, pgs. 1436 – 1444.**

111.   Gil Zussman, Andrew Brzezinski, and Eytan Modiano, " Multihop Local Pooling for Distributed Throughput Maximization in Wireless Networks ,”  IEEE INFOCOM'08, Phoenix, AZ, Apr. 2008, pgs 1139 – 1147.**

110.   Emily Craparo, Jonathan How and Eytan Modiano, " Optimization of Mobile Backbone Networks: Improved Algorithms and Approximation ,”  IEEE American Control Conference, Seattle, WA, June 2008, pgs. 2016 – 2021.**

109.   Atilla Eryilmaz, Asuman Ozdaglar, Devavrat Shah, Eytan Modiano, " Imperfect Randomized Algorithms for the Optimal Control of Wireless Networks ,”  Conference on Information Science and Systems, Princeton, NJ, March, 2008, pgs. 932 – 937.

108.   Anand Srinivas and Eytan Modiano, " Optimal Path Planning for Mobile Backbone Networks ,”  Conference on Information Science and Systems, Princeton, NJ, March, 2008, pgs. 913 – 918.

107.   Kayi Lee and Eytan Modiano, " Cross-layer Survivability in WDM Networks with Multiple Failures ,”  IEEE Optical Fiber Communications Conference, San Diego, CA February, 2008 (3 pages; CD proceedings – page numbers not available).

106.   Andrew Brzezinski, Gil Zussman and Eytan Modiano, " Local Pooling Conditions for Joint Routing and Scheduling ,”  Workshop on Information Theory and Applications, pp. 499 – 506, La Jolla, CA, January, 2008, pgs. 499 – 506.

105.   Murtaza Zafer and Eytan Modiano, " Minimum Energy Transmission over a Wireless Fading Channel with Packet Deadlines ,”  Proceedings of IEEE Conference on Decision and Control (CDC), New Orleans, LA, December, 2007, pgs. 1148 – 1155.**

104.   Atilla Eryilmaz, Asuman Ozdaglar, Eytan Modiano, " Polynomial Complexity Algorithms for Full Utilization of Multi-hop Wireless Networks ,”  IEEE Infocom, Anchorage, AK, April, 2007, pgs. 499 – 507.

103.   Murtaza Zafer and Eytan Modiano, " Delay Constrained Energy Efficient Data Transmission over a Wireless Fading Channel ,”  Workshop on Information Theory and Application, University of California, San Diego, CA, February, 2007, pgs. 289 – 298.**

102.   Atilla Eryilmaz, Eytan Modiano, Asuman Ozdaglar, " Randomized Algorithms for Throughput-Optimality and Fairness in Wireless Networks ,”  Proceedings of IEEE Conference on Decision and Control (CDC), San Diego, CA, December, 2006, pgs. 1936 – 1941.

101.   Anand Srinivas, Gil Zussman, and Eytan Modiano, " Distributed Mobile Disk Cover - A Building Block for Mobile Backbone Networks ,”  Proc. Allerton Conf. on Communication, Control, and Computing, Allerton, IL, September 2006, (9 pages; CD proceedings – page numbers not available).**

100.   Krishna Jagannathan, Sem Borst, Phil Whiting, Eytan Modiano, " Scheduling of Multi-Antenna Broadcast Systems with Heterogeneous Users ,”  Allerton Conference on Communication, Control and Computing, Allerton, IL, September 2006, (10 pages; CD proceedings – page numbers not available).**

99.   Andrew Brzezinski, Gil Zussman, and Eytan Modiano, " Enabling Distributed Throughput Maximization in Wireless Mesh Networks - A Partitioning Approach ,”  Proceedings of ACM MOBICOM'06, Los Angeles, CA, Sep. 2006, (12 pages; CD proceedings – page numbers not available).**

98.   Eytan Modiano, Devavrat Shah, and Gil Zussman, " Maximizing Throughput in Wireless Networks via Gossiping ,”  Proc. ACM SIGMETRICS / IFIP Performance'06, Saint-Malo, France, June 2006, (12 pages; CD proceedings – page numbers not available). (best paper award)

97.   Anand Srinivas, Gil Zussman, and Eytan Modiano, " Mobile Backbone Networks – Construction and Maintenance ,”  Proc. ACM MOBIHOC'06, Florence, Italy, May 2006, (12 pages; CD proceedings – page numbers not available).**

96.   Andrew Brzezinski and Eytan Modiano, " Achieving 100% throughput in reconfigurable optical networks ,”  IEEE INFOCOM 2006 High-Speed Networking Workshop, Barcelona, Spain, April 2006, (5 pages; CD proceedings – page numbers not available).**

95.   Krishna P. Jagannathan, Sem Borst, Phil Whiting, Eytan Modiano, " Efficient scheduling of multi-user multi-antenna systems ,”  Proceedings of WiOpt 2006, Boston, MA, April 2006, (8 pages; CD proceedings – page numbers not available).**

94.   Andrew Brzezinski and Eytan Modiano, " Greedy weighted matching for scheduling the input-queued switch ,”  Conference on Information Sciences and Systems (CISS), Princeton, NJ, March 2006, pgs. 1738 – 1743.**

93.   Murtaza Zafer and Eytan Modiano, " Optimal Adaptive Data Transmission over a Fading Channel with Deadline and Power Constraints ,”  Conference on Information Sciences and Systems (CISS), Princeton, New Jersey, March 2006, pgs. 931 – 937.**

92.   Li-Wei Chen and E. Modiano, " A Geometric Approach to Capacity Provisioning in WDM Networks with Dynamic Traffic ,”  Conference on Information Science and Systems (CISS), Princeton, NJ, March, 2006, pgs. 1676 – 1683, **

91.   Jun Sun and Eytan Modiano, " Channel Allocation Using Pricing in Satellite Networks ,”  Conference on Information Science and Systems (CISS), Princeton, NJ, March, 2006, pgs. 182 – 187.**

90.   Jun Sun, Jay Gao, Shervin Shambayatti and Eytan Modiano, " Ka-Band Link Optimization with Rate Adaptation ,”  IEEE Aerospace Conference, Big Sky, MN, March, 2006. (7 pages; CD proceedings – page numbers not available).

89.   Alessandro Tarello, Eytan Modiano and Jay Gao, " Energy efficient transmission scheduling over Mars proximity links ,”  IEEE Aerospace Conference, Big Sky, MN, March, 2006. (10 pages; CD proceedings – page numbers not available).

88.   A. Brzezinski and E. Modiano, " RWA decompositions for optimal throughput in reconfigurable optical networks ,”  INFORMS Telecommunications Conference, Dallas, TX, March 2006 (3 pages; CD proceedings – page numbers not available).**

87.   Li Wei Chen and E. Modiano, " Geometric Capacity Provisioning for Wavelength Switched WDM Networks ,”  Workshop on Information Theory and Application, University of California, San Diego, CA, February, 2006. (8 pages; CD proceedings – page numbers not available).**

86.   Murtaza Zafer and Eytan Modiano, " Joint Scheduling of Rate-guaranteed and Best-effort Services over a Wireless Channel ,”  IEEE Conference on Decision and Control, Seville, Spain, December, 2005, pgs. 6022–6027.**

85.   Jun Sun and Eytan Modiano, " Opportunistic Power Allocation for Fading Channels with Non-cooperative Users and Random Access ,”  IEEE BroadNets – Wireless Networking Symposium, Boston, MA, October, 2005, pgs. 397–405.**

84.   Li Wei Chen and Eytan Modiano, " Uniform vs. Non-uniform Band Switching in WDM Networks ,”  IEEE BroadNets-Optical Networking Symposium, Boston, MA, October, 2005, pgs. 219– 228.**

83.   Sonia Jain and Eytan Modiano, " Buffer Management Schemes for Enhanced TCP Performance over Satellite Links ,”  IEEE MILCOM, Atlantic City, NJ, October 2005 (8 pages; CD proceedings – page numbers not available).**

82.   Murtaza Zafer and Eytan Modiano, " Continuous-time Optimal Rate Control for Delay Constrained Data Transmission ,”  Allerton Conference on Communications, Control and Computing, Allerton, IL, September, 2005 (10 pages; CD proceedings – page numbers not available).**

81.   Alessandro Tarello, Eytan Modiano, Jun Sun, Murtaza Zafer, " Minimum Energy Transmission Scheduling subject to Deadline Constraints ,”  IEEE Wiopt, Trentino, Italy, April, 2005, pgs. 67–76. (Winner of best student paper award).**

80.   Amir Khandani, Eytan Modiano, Jinane Abounadi, Lizhong Zheng, " Reliability and Route Diversity in Wireless Networks ,”  Conference on Information Science and System, Baltimore, MD, March, 2005, (8 pages; CD proceedings – page numbers not available).**

79.   Andrew Brzezinski, Iraj Saniee, Indra Widjaja, Eytan Modiano, " Flow Control and Congestion Management for Distributed Scheduling of Burst Transmissions in Time-Domain Wavelength Interleaved Networks ,”  IEEE/OSA Optical Fiber Conference (OFC), Anaheim, CA, March, 2005, pgs. WC4-1–WC4-3.

78.   Andrew Brzezinski and Eytan Modiano, " Dynamic Reconfiguration and Routing Algorithms for IP-over-WDM Networks with Stochastic Traffic ,”  IEEE Infocom 2005, Miami, FL, March, 2005, pgs. 6–11.**

77.   Murtaza Zafer and Eytan Modiano, " A Calculus Approach to Minimum Energy Transmission Policies with Quality of Service Guarantees ,”  IEEE Infocom 2005, Miami, FL, March, 2005, pgs. 548–559.**

76.   Michael Neely and Eytan Modiano, " Fairness and optimal stochastic control for heterogeneous networks ,”  IEEE Infocom 2005, Miami, FL, March, 2005, pgs. 1723 – 1734.**

75.   Aradhana Narula-Tam, Thomas G. Macdonald, Eytan Modiano, and Leslie Servi, " A Dynamic Resource Allocation Strategy for Satellite Communications ,”  IEEE MILCOM, Monterey, CA, October, 2004, pgs. 1415 – 1421.

74.   Li-Wei Chen, Poompat Saengudomlert and Eytan Modiano, " Optimal Waveband Switching in WDM Networks ,”  IEEE International Conference on Communication (ICC), Paris, France, June, 2004, pgs. 1604 – 1608.**

73.   Michael Neely and Eytan Modiano, " Logarithmic Delay for NxN Packet Switches ,”  IEEE Workshop on High performance Switching and Routing (HPSR 2004), Phoenix, AZ, April, 2004, pgs. 3–9.**

72.   Li-Wei Chen and Eytan Modiano, " Dynamic Routing and Wavelength Assignment with Optical Bypass using Ring Embeddings ,”  IEEE Workshop on High performance Switching and Routing (HPSR 2004), Phoenix, Az, April, 2004, pgs. 119–125.**

71.   Randall Berry and Eytan Modiano, " On the Benefits of Tunability in Reducing Electronic Port Counts in WDM/TDM Networks ,”  IEEE Infocom, Hong Kong, March 2004, pgs. 1340–1351.

70.   Andrew Brzezinski and Eytan Modiano, " A new look at dynamic traffic scheduling in WDM networks with transceiver tuning latency ,”  Informs Telecommunications Conference, Boca Raton, FL, March 2004, pgs. 25–26.**

69.   Chunmei Liu and Eytan Modiano, " Packet Scheduling with Window Service Constraints ,”  Conference on Information Science and System, Princeton, NJ, March, 2004, pgs. 178–184.**

68.   Jun Sun, Eytan Modiano, and Lizhong Zheng, " A Novel Auction Algorithm for Fair Allocation of a Wireless Fading Channel ,”  Conference on Information Science and System, Princeton, NJ, March, 2004, pgs. 1377–1383.**

67.   Murtaza Zafer and Eytan Modiano, " Impact of Interference and Channel Assignment on Blocking Probability in Wireless Networks ,”  Conference on Information Science and System, Princeton, NJ, March, 2004, pgs. 430–436.**

66.   Chunmei Liu and Eytan Modiano, " An Analysis of TCP over Random Access Satellite Links ,”  IEEE Wireless Communications and Networking Conference (WCNC), Atlanta, GA, February, 2004, pgs. 2033–2040..**

65.   Randall Berry and Eytan Modiano, " Using tunable optical transceivers for reducing the number of ports in WDM/TDM Networks ,”  IEEE/OSA Optical Fiber Conference (OFC), Los Angeles, CA, February, 2004, pgs. 23–27.

64.   Aradhana Narula-Tam, Eytan Modiano and Andrew Brzezinski, " Physical Topology Design for Survivable Routiing of Logical Rings in WDM-based Networks ,”  IEEE Globecom, San francisco, CA, December, 2003, pgs. 2552–2557.

63.   Jun Sun, Lizhong Zheng and Eytan Modiano, " Wireless Channel Allocation Using an Auction Algorithm ,”  Allerton Conference on Communications, Control and Computing, October, 2003, pgs. 1114–1123..**

62.   Amir Khandani, Jinane Abounadi, Eytan Modiano, Lizhong Zhang, " Cooperative Routing in Wireless Networks ,”  Allerton Conference on Communications, Control and Computing, October, 2003, pgs. 1270–1279.**

61.   Poompat Saengudomlert, Eytan Modiano and Robert Gallager, " Dynamic Wavelength Assignment for WDM all optical Tree Networks ,”  Allerton Conference on Communications, Control and Computing, October, 2003, 915–924.**

60.   Aradhana Narula-Tam and Eytan Modiano, " Designing Physical Topologies that Enable Survivable Routing of Logical Rings ,”  IEEE Workshop on Design of Reliable Communication Networks (DRCN), October, 2003, pgs. 379–386.

59.   Anand Srinivas and Eytan Modiano, " Minimum Energy Disjoint Path Routing in Wireless Ad Hoc Networks ,”  ACM Mobicom, San Diego, Ca, September, 2003, pgs. 122–133.**

58.   Michael Neely and Eytan Modiano, " Improving Delay in Ad-Hoc Mobile Networks Via Redundant Packet Transfers ,”  Conference on Information Science and System, Baltimore, MD, March, 2003 (6 pages; CD proceedings – page numbers not available).**

57.   Michael Neely, Eytan Modiano and Charles Rohrs, " Dynamic Power Allocation and Routing for Time Varying Wireless Networks ,”  IEEE Infocom 2003, San Francisco, CA, April, 2003, pgs. 745–755.**

56.   Alvin Fu, Eytan Modiano, and John Tsitsiklis, " Optimal Energy Allocation for Delay-Constrained Data Transmission over a Time-Varying Channel ,”  IEEE Infocom 2003, San Francisco, CA, April, 2003, pgs. 1095–1105.**

55.   Poompat Saengudomlert, Eytan Modiano and Rober Gallager, " On-line Routing and Wavelength Assignment for Dynamic Traffic in WDM Ring and Torus Networks ,”  IEEE Infocom 2003, San Francisco, CA, April, 2003, pgs. 1805–1815.**

54.   Li-Wei Chen and Eytan Modiano, " Efficient Routing and Wavelength Assignment for Reconfigurable WDM Networks with Wavelength Converters ,”  IEEE Infocom 2003, San Francisco, CA, April, 2003, pgs. 1785–1794. Selected as one of the best papers of Infocom 2003 for fast track publication in IEEE/ACM Transactions on Networking.**

53.   Mike Neely, Jun Sun and Eytan Modiano, " Delay and Complexity Tradeoffs for Dynamic Routing and Power Allocation in a Wireless Network ,”  Allerton Conference on Communication, Control, and Computing, Allerton, Illinois, October, 2002, pgs. 157 –159.**

52.   Anand Ganti, Eytan Modiano and John Tsitsiklis, " Transmission Scheduling for Multi-Channel Satellite and Wireless Networks ,”  Allerton Conference on Communication, Control, and Computing, Allerton, Illinois, October, 2002, pgs. 1318–1327.**

51.   Poompat Saengudomlert, Eytan Modiano, and Robert G. Gallager, " Optimal Wavelength Assignment for Uniform All-to-All Traffic in WDM Tree Networks ,”  Allerton Conference on Communication, Control, and Computing, Allerton, Illinois, October, 2002, pgs. 528–537.**

50.   Hungjen Wang, Eytan Modiano and Muriel Medard, " Partial Path Protection for WDM Networks: End-to-End Recovery Using Local Failure Information ,”  IEEE International Symposium on Computer Communications (ISCC), Taormina, Italy, July 2002, pgs. 719–725.**

49.   Jun Sun and Eytan Modiano, " Capacity Provisioning and Failure Recovery in Mesh-Torus Networks with Application to Satellite Constellations ,”  IEEE International Symposium on Computer Communications (ISCC), Taormina, Italy, July 2002, pgs. 77–84.**

48.   Alvin Fu, Eytan Modiano, and John Tsitsiklis, " Optimal Energy Allocation and Admission Control for Communications Satellites ,”  IEEE INFOCOM 2002, New York, June, 2002, pgs. 648–656.**

47.   Michael Neely, Eytan Modiano and Charles Rohrs, " Power and Server Allocation in a Multi-Beam Satellite with Time Varying Channels ,”  IEEE INFOCOM 2002, New York, June, 2002, pgs. 1451–1460..**

46.   Mike Neely, Eytan Modiano and Charles Rohrs, " Tradeoffs in Delay Guarantees and Computation Complexity for N x N Packet Switches ,”  Conference on Information Science and Systems, Princeton, NJ, March, 2002, pgs. 136–148.**

45.   Alvin Fu, Eytan Modiano and John Tsitsiklis, " Transmission Scheduling Over a Fading Channel with Energy and Deadline Constraints ,”  Conference on Information Science and System, Princeton, NJ, March, 2002, pgs. 1018–1023.**

44.   Chunmei Liu and Eytan Modiano, " On the Interaction of Layered Protocols: The Case of Window Flow Control and ARQ ,”  Conference on Information Science and System, Princeton, NJ, March, 2002, pgs. 118–124.**

43.   Mike Neely, Eytan Modiano and Charles Rohrs, " Packet Routing over Parallel Time-varying Queues with Application to Satellite and Wireless Networks ,”  Conference on Information Science and System, Princeton, NJ, March, 2002, pgs. 360–366.**

42.   Ahluwalia Ashwinder, Eytan Modiano and Li Shu, " On the Complexity and Distributed Construction of Energy Efficient Broadcast Trees in Static Ad Hoc Wireless Networks ,”  Conference on Information Science and System, Princeton, NJ, March, 2002, pgs. 807–813.**

41.   Jun Sun and Eytan Modiano, " Capacity Provisioning and Failure Recovery for Satellite Constellations ,”  Conference on Information Science and System, Princeton, NJ, March, 2002, pgs. 1039–1045.**

40.   Eytan Modiano, Hungjen Wang, and Muriel Medard, " Partial Path Protection for WDM networks ,”  Informs Telecommunications Conference, Boca Raton, FL, March 2002, pgs. 78–79.**

39.   Poompat Saengudomlert, Eytan H. Modiano, and Robert G. Gallager, " An On-Line Routing and Wavelength Assignment Algorithm for Dynamic Traffic in a WDM Bidirectional Ring ,”  Joint Conference on Information Sciences (JCIS), Durham, North Carolina, March, 2002, pgs. 1331–1334.**

38.   Randy Berry and Eytan Modiano, " Switching and Traffic Grooming in WDM Networks ,”  Joint Conference on Information Sciences (JCIS), Durham, North Carolina, March, 2002, pgs. 1340–1343.

37.   Eytan Modiano, Hungjen Wang, and Muriel Medard, " Using Local Information for WDM Network Protection ,”  Joint Conference on Information Sciences (JCIS), Durham, North Carolina, March, 2002, pgs. 1398–1401.**

36.   Aradhana Narula-Tam and Eytan Modiano, " Network architectures for supporting survivable WDM rings ,”  IEEE/OSA Optical Fiber Conference (OFC) 2002, Anaheim, CA, March, 2002, pgs. 105–107.

35.   Michael Neely, Eytan Modiano, Charles Rohrs, " Packet Routing over Parallel Time-Varying Queues with Application to Satellite and Wireless Networks ,”  Allerton Conference on Communication, Control, and Computing, Allerton, Illinois, September, 2001, pgs. 1110-1111.**

34.   Eytan Modiano and Randy Berry, " The Role of Switching in Reducing Network Port Counts ,”  Allerton Conference on Communication, Control, and Computing, Allerton, Illinois, September, 2001, pgs. 376-385.

33.   Eytan Modiano, " Resource allocation and congestion control in next generation satellite networks ,”  IEEE Gigabit Networking Workshop (GBN 2001), Anchorage, AK, April 2001, (2 page summary-online proceedings).

32.   Eytan Modiano and Aradhana Narula-Tam, " Survivable Routing of Logical Topologies in WDM Networks ,”  IEEE Infocom 2001, Anchorage, AK, April 2001, pgs. 348–357.

31.   Michael Neely and Eytan Modiano, " Convexity and Optimal Load Distribution in Work Conserving */*/1 Queues ,”  IEEE Infocom 2001, Anchorage, AK, April 2001, pgs. 1055–1064.

30.   Eytan Modiano and Randy Berry, " Using Grooming Cross- Connects to Reduce ADM Costs in Sonet/WDM Ring Networks ,”  IEEE/OSA Optical Fiber Conference (OFC) 2001, Anaheim, CA March 2001, pgs. WL1- WL3.

29.   Eytan Modiano and Aradhana Narula-Tam, " Designing Survivable Networks Using Effective Rounting and Wavelenght Assignment (RWA) ,”  IEEE/OSA Optical Fiber Conference (OFC) 2001, Anaheim, CA March 2001, pgs. TUG5-1 – TUG5– 3.

28.   Roop Ganguly and Eytan Modiano, " Distributed Algorithms and Architectures for Optical Flow Switching in WDM networks ,”  IEEE International Symposium on Computer Communications (ISCC 2000), Antibes, France, July 2000, pgs. 134–139.

27.   Aradhana Narula-Tam, Philip J. Lin and Eytan Modiano, " Wavelength Requirements for Virtual topology Reconfiguration in WDM Ring Networks ,”  IEEE International Conference on Communications (ICC 2000), New Orleans, LA, June 2000, pgs. 1650–1654.

26.   Eytan Modiano, "Optical Flow Switching for the Next Generation Internet,”  IEEE Gigabit Networking Workshop (GBN 2000), Tel-aviv, March 2000 (2 page summary-online proceedings).

25.   Aradhana Narula and Eytan Modiano, " Dynamic Reconfiguration in WDM Packet Networks with Wavelength Limitations ,”  IEEE/OSA Optical Fiber Conference (OFC) 2000, Baltimore, MD, March, 2000, pgs. 1210–1212.

24.   Brett Schein and Eytan Modiano, " Quantifying the benefits of configurability in circuit-switched WDM ring networks ,”  IEEE Infocom 2000, Tel Aviv, Israel, April, 2000, pgs.1752–1760..***

23.   Aradhana Narula-Tam and Eytan Modiano, " Load Balancing Algorithms for WDM-based IP networks ,”  IEEE Infocom 2000, Tel Aviv, Israel, April, 2000, pgs. 1010–1019.

22.   Nan Froberg, M. Kuznetsov, E. Modiano, et. al., " The NGI ONRAMP test bed: Regional Access WDM technology for the Next Generation Internet ,”  IEEE LEOS ’99, October, 1999, pgs. 230–231.

21.   Randy Berry and Eytan Modiano, " Minimizing Electronic Multiplexing Costs for Dynamic Traffic in Unidirectional SONET Ring Networks ,”  IEEE International Conference on Communications (ICC ’99), Vancouver, CA, June 1999, pgs. 1724–1730..***

20.   Brett Schein and Eytan Modiano, "Increasing Traffic Capacity in WDM Ring Networks via Topology Reconfiguration,”  Conference on Information Science and Systems, Baltimore, MD, March 1999, pgs. 201 – 206.

19.   Eytan Modiano and Richard Barry, " Design and Analysis of an Asynchronous WDM Local Area Network Using a Master/Slave Scheduler ,”  IEEE Infocom ’99, New York, NY, March 1999, pgs. 900–907.

18.   Randy Berry and Eytan Modiano, " Grooming Dynamic Traffic in Unidirectional SONET Ring Networks ,”  IEEE/OSA Optical Fiber Conference (OFC) ’99, San Diego, CA, February 1999, pgs. 71–73.

17.   Angela Chiu and Eytan Modiano, " Reducing Electronic Multiplexing Costs in Unidirectional SONET/WDM Ring Networks Via Efficient Traffic Grooming ,”  IEEE Globecom '98, Sydney, Australia, November 1998, pgs. 322–327.

16.   Eytan Modiano, " Throughput Analysis of Unscheduled Multicast Transmissions in WDM Broadcast-and-Select Networks ,”  IEEE International Symposium on Information Theory, Boston, MA, September 1998, pg. 167.

15.   Eytan Modiano and Angela Chiu, "Traffic Grooming Algorithms for Minimizing Electronic Multiplexing Costs in Unidirectional SONET/WDM Ring Networks,”  Conference on Information Science and Systems, Princeton, NJ, March 1998, 653–658.

14.   Eytan Modiano and Eric Swanson, " An Architecture for Broadband Internet Services over a WDM-based Optical Access Network ,”  IEEE Gigabit Networking Workshop (GBN '98), San Francisco, CA, March 1998 (2 page summary-online proceedings).

13.   Eytan Modiano, " Unscheduled Multicasts in WDM Broadcast-and-Select Networks ,”  IEEE Infocom '98, San Francisco, CA, March 1998, pgs. 86–93.

12.   Eytan Modiano, Richard Barry and Eric Swanson, " A Novel Architecture and Medium Access Control (MAC) protocol for WDM Networks ,”  IEEE/OSA Optical Fiber Conference (OFC) '98, San Jose, CA, February 1998, pgs. 90–91.

11.   Eytan Modiano, " Scheduling Algorithms for Message Transmission Over a Satellite Broadcast System ,”  IEEE MILCOM 97, Monterey, CA, November 1997, pgs. 628–634.

10.   Eytan Modiano, " Scheduling Packet Transmissions in A Multi-hop Packet Switched Network Based on Message Length ,”  IEEE International Conference on Computer Communications and Networks (IC3N) Las Vegas, Nevada, September 1997, pgs. 350–357.

9.   Eytan Modiano, "A Simple Algorithm for Optimizing the Packet Size Used in ARQ Protocols Based on Retransmission History,”  Conference on Information Science and Systems, Baltimore, MD, March 1997, pgs. 672–677.

8.   Eytan Modiano, " A Multi-Channel Random Access Protocol for the CDMA Channel ,”  IEEE PIMRC '95, Toronto, Canada, September 1995, pgs. 799–803.

7.   Eytan Modiano Jeffrey Wieselthier and Anthony Ephremides, " A Simple Derivation of Queueing Delay in a Tree Network of Discrete-Time Queues with Deterministic Service Times ,”  IEEE International Symposium on Information Theory, Trondheim, Norway, June 1994, pg. 372.

6.   Eytan Modiano, Jeffrey Wieselthier and Anthony Ephremides, "An Approach for the Analysis of Packet Delay in an Integrated Mobile Radio Network,”  Conference on Information Sciences and Systems, Baltimore, MD, March 1993, pgs. 138-139.

5.   Eytan Modiano and Anthony Ephremides, " A Method for Delay Analysis of Interacting Queues in Multiple Access Systems ,”  IEEE INFOCOM 1993, San Francisco, CA, March 1993, pgs. 447 – 454.

4.   Eytan Modiano and Anthony Ephremides, " A Model for the Approximation of Interacting Queues that Arise in Multiple Access Schemes ,”  IEEE International Symposium on Information Theory, San Antonio, TX, January 1993, pg. 324.

3.   Eytan Modiano and Anthony Ephremides, " Efficient Routing Schemes for Multiple Broadcasts in a Mesh ,”  Conference on Information Sciences and Systems, Princeton, NJ, March 1992, pgs. 929 – 934.

2.   Eytan Modiano and Anthony Ephremides, " On the Secrecy Complexity of Computing a Binary Function of Non-uniformly Distributed Random Variables ,”  IEEE International Symposium on Information Theory, Budapest, Hungary, June 1991, pg. 213.

1.   Eytan Modiano and Anthony Ephremides, "Communication Complexity of Secure Distributed Computation in the Presence of Noise,”  IEEE International Symposium on Information Theory, San Diego, CA, January 1990, pg. 142.

Book Chapters

  • Hyang-Won Lee, Kayi Lee, Eytan Modiano, " Cross-Layer Survivability " in Cross-Layer Design in Optical Networks, Springer, 2013.
  • Li-Wei Chen and Eytan Modiano, " Geometric Capacity Provisioning for Wavelength-Switched WDM Networks ," Chapter in Computer Communications and Networks Series: Algorithms for Next Generation Networks, Springer, 2010.
  • Amir Khandani, Eytan Modiano, Lizhong Zhang, Jinane Aboundi, " Cooperative Routing in Wireless Networks ," Chapter in Advances in Pervasive Computing and Networking, Kluwer Academic Publishers, 2005.
  • Jian-Qiang Hu and Eytan Modiano, " Traffic Grooming in WDM Networks ," Chapter in Emerging Optical Network Technologies, Kluwer Academic Publishers, to appear, 2004.
  • Eytan Modiano, " WDM Optical Networks ," Wiley Encyclopedia of Telecommunications (John Proakis, Editor), 2003.
  • Eytan Modiano, " Optical Access Networks for the Next Generation Internet ," in Optical WDM Networks: Principles and Practice, Kluwer Academic Prublishers, 2002.
  • Eytan Modiano, Richard Barry and Eric Swanson, " A Novel Architecture and Medium Access Control protocol for WDM Networks ," Trends in Optics and Photonics Series (TOPS) volume on Optical Networks and Their Applications, 1998.
  • Eytan Modiano and Kai-Yeung Siu, "Network Flow and Congestion Control," Wiley Encyclopedia of Electrical and Electronics Engineering, 1999.

Technical Reports

  • Amir Khandani, Eytan Modiano, Jinane Abounadi, Lizhong Zheng, "Reliability and Route Diversity in Wireless Networks, " MIT LIDS Technical Report number 2634, November, 2004.
  • Anand Srinivas and Eytan Modiano, "Minimum Energy Disjoint Path Routing in Wireless Ad Hoc Networks, " MIT LIDS Technical Report, P-2559, March, 2003.
  • Eytan Modiano and Aradhana Narula-Tam, "Survivable lightpath routing: a new approach to the design of WDM-based networks, " LIDS report 2552, October, 2002.
  • Michael Neely, Eytan Modiano and Charles Rohrs, "Packet Routing over Parallel Time-Varying Queues with Application to Satellite and Wireless Networks," LIDS report 2520, September, 2001.
  • Jun Sun and Eytan Modiano, "Capacity Provisioning and Failure Recovery in Mesh-Torus Networks with Application to Satellite Constellations," LIDS report 2518, September, 2001.
  • Hungjen Wang, Eytan Modiano and Muriel Medard, "Partial Path Protection for WDM Networks: End-to-End Recovery Using Local Failure Information, " LIDS report 2517, Sept. 2001.
  • Alvin Fu, Eytan Modiano, and John Tsitsiklis, "Optimal Energy Allocation and Admission Control for Communications Satellites, " LIDS report 2516, September, 2001.
  • Michael Neely, Eytan Modiano and Charles Rohrs, "Power and Server Allocation in a Multi-Beam Satellite with Time Varying Channels, " LIDS report 2515, September, 2001.
  • Eytan Modiano, "Scheduling Algorithms for Message Transmission Over the GBS Satellite Broadcast System, " Lincoln Laboratory Technical Report Number TR-1035, June 1997.
  • Eytan Modiano, "Scheduling Packet Transmissions in A Multi-hop Packet Switched Network Based on Message Length, " Lincoln Laboratory Technical Report number TR-1036, June, 1997.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals

Complex networks articles from across Nature Portfolio

Complex networks are networks that feature patterns of connection between their elements that are neither purely regular nor purely random. Most real-world networks, such as transportation, social or gene-regulatory networks, are complex.

Latest Research and Reviews

recent research topics in networks

Mapping philanthropic support of science

  • Louis M. Shekhtman
  • Alexander J. Gates
  • Albert-László Barabási

recent research topics in networks

Long ties accelerate noisy threshold-based contagions

How is contagion affected by changes to network structure? Recent work has claimed a ‘weakness of long ties’ for complex contagions that rely on social reinforcement, unlike biological contagions. Eckles et al. substantially revise this conclusion.

  • Dean Eckles
  • Elchanan Mossel
  • Subhabrata Sen

recent research topics in networks

Scaling theory of fractal complex networks

  • Agata Fronczak
  • Piotr Fronczak
  • Maciej J. Mrowinski

recent research topics in networks

Inequality in economic shock exposures across the global firm-level supply network

Thurner and colleagues explore how economic shocks spread risk through the globalized economy. They find that rich countries expose poor countries stronger to systemic risk than vice-versa. The risk is highly concentrated, however higher risk levels are not compensated with a risk premium in GDP levels, nor higher GDP growth. The findings put the often-praised benefits for developing countries from globalized production in a new light, by relating them to risks involved in the production processes

  • Abhijit Chakraborty
  • Tobias Reisch
  • Stefan Thurner

recent research topics in networks

Motif-based community detection in heterogeneous multilayer networks

recent research topics in networks

Enhancing predictive accuracy in social contagion dynamics via directed hypergraph structures

Directed hypergraphs emerge as a potent framework for analyzing social contagion phenomena, incorporating the nuances of individual heterogeneity and the amplifying effects of environmental contagion reinforcement. The authors demonstrate that the interval of bistability within discontinuous phase transitions contracts with diminishing directedness strength

Advertisement

News and Comment

recent research topics in networks

Using stakeholder network analysis to enhance the impact of participation in water governance

Citizen participation in water governance can improve the relevance, implementation, and effectiveness of public policies. However, participation can be expressed in a great diversity of forms, on a gradient ranging from mere public consultation to shared governance of natural resources. Positive outcomes ultimately depend on the conditions under which participation takes place, with key factors such as leadership, the degree of trust among stakeholders, and the interaction of public authorities with citizens. Social network analysis has been used to operationalize participatory processes, contributing to the identification of leaders, intersectoral integration, strategic planning, and conflict resolution. In this commentary, we analyze the potential and limitations of participation in water governance and illustrate it with the case of the Campina de Faro aquifer in southern Portugal. We propose that stakeholder network analysis is particularly useful for promoting decentralized decision-making and consensual water resources management. The delegation of power to different interest groups is a key process in the effectiveness of governance, which can be operationalized with network analysis techniques.

  • Isidro Maya Jariego

recent research topics in networks

Identifying the power-grid bottlenecks responsible for cascading failures during extreme storms

During extreme storms, the failure of a small fraction of transmission lines can trigger a cascade of outages in a power grid. Going beyond static approaches, it is now demonstrated that resolving the spatio-temporal interactions between the storm and the power grid is key to identifying these critical lines.

recent research topics in networks

Intrinsic simplicity of complex systems

Predicting the large-scale behaviour of complex systems is challenging because of their underlying nonlinear dynamics. Theoretical evidence now verifies that many complex systems can be simplified and still provide an insightful description of the phenomena of interest.

Graph theory captures hard-core exclusion

Physical networks, composed of nodes and links that occupy a spatial volume, are hard to study with conventional techniques. A meta-graph approach that elucidates the impact of physicality on network structure has now been introduced.

  • Zoltán Toroczkai

Approaching disease transmission with network science

Social connections are an important means for people to cope with adversity and illness. Thus, technologies, such as social network analysis, that can leverage close, face-to-face social networks could help optimize healthcare interventions and reduce healthcare-related costs, particularly in low-resource settings.

  • Shivkumar Vishnempet Shridhar
  • Nicholas A. Christakis

recent research topics in networks

Authorship agreements benefit researchers and research culture

  • Lisa M. Rasmussen
  • George Banks
  • Scott Tonidandel

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

recent research topics in networks

  • IEEE CS Standards
  • Career Center
  • Subscribe to Newsletter
  • IEEE Standards

recent research topics in networks

  • For Industry Professionals
  • For Students
  • Launch a New Career
  • Membership FAQ
  • Membership FAQs
  • Membership Grades
  • Special Circumstances
  • Discounts & Payments
  • Distinguished Contributor Recognition
  • Grant Programs
  • Find a Local Chapter
  • Find a Distinguished Visitor
  • Find a Speaker on Early Career Topics
  • Technical Communities
  • Collabratec (Discussion Forum)
  • Start a Chapter
  • My Subscriptions
  • My Referrals
  • Computer Magazine
  • ComputingEdge Magazine
  • Let us help make your event a success. EXPLORE PLANNING SERVICES
  • Events Calendar
  • Calls for Papers
  • Conference Proceedings
  • Conference Highlights
  • Top 2024 Conferences
  • Conference Sponsorship Options
  • Conference Planning Services
  • Conference Organizer Resources
  • Virtual Conference Guide
  • Get a Quote
  • CPS Dashboard
  • CPS Author FAQ
  • CPS Organizer FAQ
  • Find the latest in advanced computing research. VISIT THE DIGITAL LIBRARY
  • Open Access
  • Tech News Blog
  • Author Guidelines
  • Reviewer Information
  • Guest Editor Information
  • Editor Information
  • Editor-in-Chief Information
  • Volunteer Opportunities
  • Video Library
  • Member Benefits
  • Institutional Library Subscriptions
  • Advertising and Sponsorship
  • Code of Ethics
  • Educational Webinars
  • Online Education
  • Certifications
  • Industry Webinars & Whitepapers
  • Research Reports
  • Bodies of Knowledge
  • CS for Industry Professionals
  • Resource Library
  • Newsletters
  • Women in Computing
  • Digital Library Access
  • Organize a Conference
  • Run a Publication
  • Become a Distinguished Speaker
  • Participate in Standards Activities
  • Peer Review Content
  • Author Resources
  • Publish Open Access
  • Society Leadership
  • Boards & Committees
  • Local Chapters
  • Governance Resources
  • Conference Publishing Services
  • Chapter Resources
  • About the Board of Governors
  • Board of Governors Members
  • Diversity & Inclusion
  • Open Volunteer Opportunities
  • Award Recipients
  • Student Scholarships & Awards
  • Nominate an Election Candidate
  • Nominate a Colleague
  • Corporate Partnerships
  • Conference Sponsorships & Exhibits
  • Advertising
  • Recruitment
  • Publications
  • Education & Career

The 4 Most Important Networking Trends in 2020 and Beyond

networking trends

In today’s digital world, networking technology is everything. It’s what makes the internet possible. It’s how businesses support sprawling multinational footprints. It’s even stitching together the appliances in our homes into one, smart, convenient fabric. For all of its importance, though, networking technology as a whole doesn’t tend to change much. For example, the internet itself runs on an iteration of a protocol that’s now 40 years old . Most of the developments in networking over that time have revolved around capacity and speed – not capability. As we move into the 2020s, though, there are a number of trends and technologies that are poised to create real change in the world of networking. Here are the four most important ones among them.

Next-Generation Wireless Technology

Without a doubt, the biggest networking technology development of the 2020s is one that’s going to be all around us very soon – the deployment of next-generation wireless networks. In the mobile networking arena, it’s the 5G standard that’s going to rewrite the rules of what’s possible for technology on-the-go. It’s these new cellular networks that are going to unleash the true potential of things like augmented reality and the IoT, as well as bringing us closer to a world filled with “ smart everything “. Indoors, the wireless revolution’s going to be led by Wi-Fi 6, the soon-to-go-mainstream standard that’s making its way into devices right now . It will not only triple the theoretical maximum throughput of its immediate predecessor, but will deliver better indoor signal penetration and support greater device density. In a world where every electrical device is gaining networking capabilities, the effects of Wi-Fi 6 can’t be overstated.

SD-WAN Becoming Common

Over the course of the last decade, cloud providers, SaaS and IaaS solutions, and mobile computing have come to challenge the traditional notion of boundary-driven networking. In the past, corporate and other private networks were animated by the concept of fenced-off access using firewalls and other location-centric controls. Now, as business computing assets have started to spread to remote data centers and mobile systems, a new concept has emerged – software-defined wide area networks (SD-WAN). This new paradigm in networking makes it possible to use a variety of network interconnections to create a private business LAN analog consisting of assets in the cloud, data centers, and branch offices that function like a single, seamless system. More than anything, this is made possible by continued improvements in WAN link bandwidth, which now allow geographically disbursed resources to move data at or near LAN speeds across vast distances. As the 2020s wear on, SD-WAN will come to replace traditional hardware-based onsite networking approaches.

Want More Tech News? Subscribe to ComputingEdge Newsletter Today!

Encryption Everywhere

One of the glaring deficiencies in the internet’s infrastructure has always been a lack of built-in data security and privacy features. That reality is increasing the pressure on website operators, app developers, and networking vendors to take steps to make encryption a part of their platforms as a means of making up for the underlying insecurity of the networks they rely on. And even though the tech media would have you believe that users looking for ways to watch any country’s Netflix is what’s driving the increase in the use of consumer VPN services, it too is a result of the push toward encryption everywhere. In the networking world, the push for encryption everywhere hasn’t gone unnoticed. It has in fact spurred hardware developers toward making encryption at the network layer a standard feature of their hardware going forward. It’s become so important that estimates now believe that the network encryption market will be worth $5.8 billion by 2026 , almost doubling in size in little more than five years.

UCaaS Displacing VoIP, OTT Messaging

One of the biggest results of the explosion of networking technology over the past 40 years is that it has revolutionized the way that we communicate. The internet began by displacing switched telephone networks as the primary means of real-time communication around the globe, and in the years since has spawned myriad ways for people to talk to one another. The result has been a fragmented communications environment that networked systems often struggle to keep up with. Between traffic shaping and prioritization to support VoIP protocols and managing the traffic generated by innumerable over-the-top messaging platforms on computers, tablets, and smartphones, the lack of standardization has been tough to navigate. In the 2020s, though, a trend toward Unified Communications as a Service (UCaaS) solutions aims to reset the landscape and allow network hardware developers to move away from supporting multiple application-specific protocols and specifications.

Connecting the Future

Judging by these and other trends now reshaping the world of networking, the 2020s are going to see the technology landscape in that field change significantly. Many of the longest-held concepts and traditional infrastructures will be replaced with more modern ones that take the needs of next-generation connected devices into account. In many ways, the idea of data networks themselves will be updated to reflect the new reality of border-free, seamless connectivity that we have now come to expect. There’s sure to be plenty of hurdles to overcome and obstacles to the remaking of networking technology as we’ve known it, but one thing is clear: networking technology, which has remained mostly unchanged for much of its history, is due for disruption on several fronts – and it’s coming in more ways than anyone is likely to be able to foresee. It’s going to make it an interesting time to be a networking professional, and that part is certain.

About the Author

Andrej is a digital marketing expert, editor at  TechLoot , and a contributing writer for a variety of other technology-focused online publications. He has covered the intersection of marketing and technology for several years and is pursuing an ongoing mission to share his expertise with business leaders and marketing professionals everywhere.

Recommended by IEEE Computer Society

recent research topics in networks

From Data to Discovery: AI’s Revolutionary Impact on Upstream Oil and Gas Transformation

recent research topics in networks

How to Implement Sustainable Innovation in Your Business

recent research topics in networks

Understanding Cloud Native Security

recent research topics in networks

The Role of a Green Data Center for a Sustainable IT Infrastructure

recent research topics in networks

7 Tips for Implementing an Effective Cyber GRC Program

recent research topics in networks

Continuous Deployment: Trends and Predictions for 2024

recent research topics in networks

5 Ways to Save on Database Costs in AWS

recent research topics in networks

Redefining Trust: Cybersecurity Trends and Tactics for 2024

Articles on Networking

Displaying 1 - 20 of 39 articles.

recent research topics in networks

Despite appearances, digital networking hasn’t killed the business card – yet

Jane Menzies , University of the Sunshine Coast

recent research topics in networks

Networking: an opportunity or an obstacle for women?

Miryam Martinez Martinez , Universidad CEU San Pablo ; Gabriela Contreras , Radboud University , and Susana González Pérez , Universidad CEU San Pablo

recent research topics in networks

Optus has revealed the cause of the major outage. Could it happen again?

Mark A Gregory , RMIT University

recent research topics in networks

Businesses that address social or environmental problems often struggle to survive: 3 things that can help them

Willie Tafadzwa Chinyamurindi , University of Fort Hare ; Motshedisi Mathibe , University of Pretoria , and Progress Hove-Sibanda , Nelson Mandela University

recent research topics in networks

Here’s what to do when you encounter people with ‘dark personality traits’ at work

Cinthia Beccacece Satornino , University of New Hampshire

recent research topics in networks

Fishing, strip clubs and golf: How male-focused networking in medicine blocks female colleagues from top jobs

Jennifer R. Grandis , University of California, San Francisco

recent research topics in networks

Got $1.2T to invest in roads and other infrastructure? Here’s how to figure out how to spend it wisely

Anna Nagurney , UMass Amherst

recent research topics in networks

Study shows the power of networking in alleviating hardship during  COVID-19

Naiema Taliep , University of South Africa and Ghouwa Ismail , University of South Africa

recent research topics in networks

4 ways that volunteering can be good for you

Jennifer A. Jones , University of Florida

recent research topics in networks

How to narrow the gap between what universities produce and what employers expect

Angelo Fynn , University of South Africa

recent research topics in networks

How WhatsApp groups support Nigeria’s nurse graduates

Ademola Johnson Ajuwon , University of the Witwatersrand and Christoph Pimmer , University of Applied Sciences Northwestern Switzerland

recent research topics in networks

How immigrants give American companies a powerful boost against Chinese rivals

Benjamin A.T. Graham , USC Dornsife College of Letters, Arts and Sciences

recent research topics in networks

Research shows networking is painful, but it can be a lot better

Libby (Elizabeth) Sander , Bond University

recent research topics in networks

Internet openness pits collaborative history against competitive future

Lorenzo De Carli , Colorado State University

recent research topics in networks

Access to mobile phones won’t magically fix youth unemployment in Africa

Gina Porter , Durham University and Ariane De Lannoy , University of Cape Town

recent research topics in networks

Unraveling what’s holding back women economists in academia

Michael E. Rose , University of Cape Town

recent research topics in networks

Why the FCC’s proposed internet rules may spell trouble ahead

David Choffnes , Northeastern University

recent research topics in networks

Creating a high-speed internet lane for emergency situations

Nirmala Shenoy , Rochester Institute of Technology ; Erik Golen , Rochester Institute of Technology , and Jennifer Schneider , Rochester Institute of Technology

recent research topics in networks

New research highlights challenges of building networks for employees and entrepreneurs

recent research topics in networks

From communities to territories: towards a Mediterranean coworking network

Raphaël Besson , Université Grenoble Alpes (UGA)

Related Topics

  • Cybersecurity
  • Internet of Things
  • Net neutrality
  • Open internet
  • Social networks
  • Telecommunications

Top contributors

recent research topics in networks

MBA Director & Assistant Professor of Organisational Behaviour, Bond Business School, Bond University

recent research topics in networks

Professor and Eugene M. Isenberg Chair in Integrative Studies, UMass Amherst

recent research topics in networks

Associate Professor, School of Psychology, UNSW Sydney

recent research topics in networks

Associate Professor, Rotterdam School of Management, Erasmus University Rotterdam

recent research topics in networks

Professor, Computer Networking and Telecommunications, University of Salford

recent research topics in networks

Professor, Information Security Group, Royal Holloway University of London

recent research topics in networks

Professor of Theoretical Economics, Queen's University Belfast

recent research topics in networks

Adjunct professor, Universidad CEU San Pablo

recent research topics in networks

Profesora Adjunta Área de Comercialización e Investigación de Mercados, Universidad CEU San Pablo

recent research topics in networks

Assistant Professor, Radboud University

recent research topics in networks

Senior Lecturer in Computer science, Queen Mary University of London

recent research topics in networks

Professor of Cybersecurity, School of Computer Science and Informatics, De Montfort University

recent research topics in networks

Professor of Physics, University of the Witwatersrand

recent research topics in networks

Associate Professor, University of the Free State

recent research topics in networks

Associate Professor of Marketing, Curtin University

  • X (Twitter)
  • Unfollow topic Follow topic

wireless sensor networks Recently Published Documents

Total documents.

  • Latest Documents
  • Most Cited Documents
  • Contributed Authors
  • Related Sources
  • Related Keywords

Dynamic Key Distribution Method For Wireless Sensor Networks Based On Exponential Algorithm

Development of an organic photovoltaic energy harvesting system for wireless sensor networks; application to autonomous building information management systems and optimisation of opv module sizes for future applications, energy sink-holes avoidance method based on fuzzy system in wireless sensor networks.

The existence of a mobile sink for gathering data significantly extends wireless sensor networks (WSNs) lifetime. In recent years, a variety of efficient rendezvous points-based sink mobility approaches has been proposed for avoiding the energy sink-holes problem nearby the sink, diminishing buffer overflow of sensors, and reducing the data latency. Nevertheless, lots of research has been carried out to sort out the energy holes problem using controllable-based sink mobility methods. However, further developments can be demonstrated and achieved on such type of mobility management system. In this paper, a well-rounded strategy involving an energy-efficient routing protocol along with a controllable-based sink mobility method is proposed to extirpate the energy sink-holes problem. This paper fused the fuzzy A-star as a routing protocol for mitigating the energy consumption during data forwarding along with a novel sink mobility method which adopted a grid partitioning system and fuzzy system that takes account of the average residual energy, sensors density, average traffic load, and sources angles to detect the optimal next location of the mobile sink. By utilizing diverse performance metrics, the empirical analysis of our proposed work showed an outstanding result as compared with fuzzy A-star protocol in the case of a static sink.

Secure Routing using Multi-Objective Trust Aware Hybrid Optimization for Wireless Sensor Networks

Adaptive monitor placement for near real-time node failure localisation in wireless sensor networks.

As sensor-based networks become more prevalent, scaling to unmanageable numbers or deployed in difficult to reach areas, real-time failure localisation is becoming essential for continued operation. Network tomography, a system and application-independent approach, has been successful in localising complex failures (i.e., observable by end-to-end global analysis) in traditional networks. Applying network tomography to wireless sensor networks (WSNs), however, is challenging. First, WSN topology changes due to environmental interactions (e.g., interference). Additionally, the selection of devices for running network monitoring processes (monitors) is an NP-hard problem. Monitors observe end-to-end in-network properties to identify failures, with their placement impacting the number of identifiable failures. Since monitoring consumes more in-node resources, it is essential to minimise their number while maintaining network tomography’s effectiveness. Unfortunately, state-of-the-art solutions solve this optimisation problem using time-consuming greedy heuristics. In this article, we propose two solutions for efficiently applying Network Tomography in WSNs: a graph compression scheme, enabling faster monitor placement by reducing the number of edges in the network, and an adaptive monitor placement algorithm for recovering the monitor placement given topology changes. The experiments show that our solution is at least 1,000× faster than the state-of-the-art approaches and efficiently copes with topology variations in large-scale WSNs.

AHP based relay selection strategy for energy harvesting wireless sensor networks

A hole repair algorithm for wireless sensor networks based on virtual attractive force constraint, layered routing algorithm for wireless sensor networks based on energy balance, solution for intra/inter-cluster event-reporting problem in cluster-based protocols for wireless sensor networks.

<span>In recent years, wireless sensor networks (WSNs) have been considered one of the important topics for researchers due to their wide applications in our life. Several researches have been conducted to improve WSNs performance and solve their issues. One of these issues is the energy limitation in WSNs since the source of energy in most WSNs is the battery. Accordingly, various protocols and techniques have been proposed with the intention of reducing power consumption of WSNs and lengthen their lifetime. Cluster-oriented routing protocols are one of the most effective categories of these protocols. In this article, we consider a major issue affecting the performance of this category of protocols, which we call the intra/inter-cluster event-reporting problem (IICERP). We demonstrate that IICERP severely reduces the performance of a cluster-oriented routing protocol, so we suggest an effective Solution for IICERP (SIICERP). To assess SIICERP’s performance, comprehensive simulations were performed to demonstrate the performance of several cluster-oriented protocols without and with SIICERP. Simulation results revealed that SIICERP substantially increases the performance of cluster-oriented routing protocols.</span>

Efficient organization of nodes in wireless sensor networks (clustering location-based LEACH)

The rapid development of connected devices and wireless communication has enabled several researchers to study wireless sensor networks and propose methods and algorithms to improve their performance. Wireless sensor networks (WSN) are composed of several sensor nodes deployed to collect and transfer data to base station (BS). Sensor node is considered as the main element in this field, characterized by minimal capacities of storage, energy, and computing. In consequence of the important impact of the energy on network lifetime, several researches are interested to propose different mechanisms to minimize energy consumption. In this work, we propose a new enhancement of low-energy adaptive clustering hierarchy (LEACH) protocol, named clustering location-based LEACH (CLOC-LEACH), which represents a continuity of our previous published work location-based LEACH (LOC-LEACH). The proposed protocol organizes sensor nodes into four regions, using clustering mechanism. In addition, an efficient concept is adopted to choose cluster head. CLOC-LEACH considers the energy as the principal metric to choose cluster heads and uses a gateway node to ensure the inter-cluster communication. The simulation with MATLAB shows that our contribution offers better performance than LEACH and LOC-LEACH, in terms of stability, energy consumption and network lifetime.

Export Citation Format

Share document.

  • How to Use Copilot In Word
  • Traveling? Get These Gadgets!

5 Computer Networking Trends for 2024 and Beyond

AI will continue to dominate the headlines

  • Massachusetts Institute of Technology
  • University of Illinois
  • The Wireless Connection
  • Routers & Firewalls
  • Network Hubs
  • Installing & Upgrading
  • Wi-Fi & Wireless

Computer network technology continues to develop in new and interesting ways. Here are five of the most important areas and trends to watch in the year ahead.

AI Will Continue to Expand

The ability of computer systems like Deep Blue to play chess at world champion levels helped legitimize artificial intelligence (AI) decades ago. Since then, both computer processing speed and the ability to exploit it have advanced tremendously.

One key barrier to more general-purpose artificial intelligence has been limitations on the ability of AI systems to communicate and interact with the outside world. With the much faster wireless speeds available today, it's possible to add sensors and network interfaces to AI systems that will enable impressive new applications.

Watch for applications in the healthcare and manufacturing industries. Also, look for new ways to establish AI trustworthiness and security.

IoT Gadgets Will Become Commonplace

 Busakorn Pongparnit/Getty Images

In 2024, an array of internet-connected products will compete for your attention. The Internet of Things (IoT) is another name for these "wired" items, and some categories will be especially interesting to watch:

  • Wearables. You will likely see operational improvements, including processing speed and battery life. Watches will continue to focus on health and fitness tracking.
  • Smart kitchens.  Keep an eye out for things like temperature-controlled smart mugs, microwaves you can command with your voice, blenders that know the exact amount of ingredients to add, and improved food recognition in your connected fridge.
  • Smarter light bulbs . Be on the lookout for Wi-Fi or Bluetooth -enabled lighting systems and expect additional improvements in bulb quality, programming options, and ease of integration.
  • Public applications. Besides home equipment, IoT functionality will appear more in stores, restaurants, and municipal locations.

Along with these innovations, expect accompanying security concerns. Many fear the privacy risks accompanying IoT devices, given their access to users' homes, activities, and personal data.

We'll See Even More Hype Over 5G

Even while 4G LTE mobile networks don’t reach many parts of the world (and won’t for years), the telecommunications industry has been hard at work developing the next-generation, 5G cellular communication technology.

5G is set to boost the speeds of mobile connections dramatically. But, exactly how fast consumers should expect these connections to go and when they can buy 5G devices might not be known until industry technical standards are set.  

However, like when 4G was initially being developed, companies aren’t waiting to advertise their 5G efforts. Researchers will continue to test prototype versions of what might become part of standard 5G networks. While reports from these tests will tout maximum data rates of many gigabits per second ( Gbps ), consumers should be just as interested in the promise of improved signal coverage with 5G.

Some vendors will undoubtedly start to retrofit this tech into their 4G installations, so look for “4.5G” and “pre-5G” products (and the confusing marketing claims that go along with these vaguely defined labels) to appear on the scene soon.

IPv6 Rollout Will Continue to Accelerate

Internet Protocol Version 6 (IPv6) will one day replace the traditional Internet Protocol addressing system we are familiar with, IPv4. The Google IPv6 Adoption page illustrates roughly how quickly the deployment of IPv6 is progressing. As shown, the pace of IPv6 rollout has continued to accelerate since 2013 but will require many more years to reach a complete replacement of IPv4. In 2024, expect to see IPv6 mentioned more often in the news, especially about business computer networks.

IPv6 benefits everyone either directly or indirectly. With an expanded number of available IP address space to accommodate almost unlimited devices, internet providers will find it easier to manage subscriber accounts. IPv6 also adds other improvements that boost the efficiency and security of TCP/IP traffic management on the internet. Those who administer home networks must learn a new style of IP address notation.

SD-WAN Will Become the Norm

ID 36177459 © Wilm Ihlenfeld | Dreamstime.com 

A software-defined wide-area network (SD-WAN) is a networking technology that offers greater flexibility for companies than previous WAN systems. While a traditional WAN enables businesses with multiple locations to give employees access to data, files, and applications at the home office via multiprotocol label switching (MPLS), SD-WAN takes that process a step further, using Long Term Evolution (LTE) and broadband internet services to provide access. SD-WAN adds cloud-based applications, allowing employees to gain remote entry to enterprise-wide programs like Salesforce, Amazon Web Services, and Microsoft 365.

The technology is still relatively new, so customers and providers have been experimenting to understand how best to use this innovation to increase productivity, enhance business agility, and improve security. But now that it's been available for a few years, SD-WAN will likely become the new norm.

Get the Latest Tech News Delivered Every Day

  • The 3 Most Important Tech Trends to Watch in 2024
  • Where Is 5G Available in the UK? (Updated for 2024)
  • CES 2025: Dates, News, Announcements, Rumors, and Everything Else to Know
  • Where Is 5G Available in South Korea? (Updated for 2024)
  • 6G: What It Is & When to Expect It
  • What Happened to IPv5?
  • IPv4 vs. IPv6: What's the Difference?
  • Where Is 5G Available in Canada? (Updated for 2024)
  • tvOS 18: News and Anticipated Price (Free), Release Date, Features and Other Rumors
  • What Is an IP Address?
  • Nvidia GTC 2024: Dates, News, Rumors, and Everything Else to Know
  • AT&T 5G: When and Where You Can Get It (Updated for 2024)
  • Predicting the Future of Computer Networks and the Internet
  • The Best Free and Public DNS Servers (2024)
  • Where Is 5G Available in the US? (2024)
  • What is a Wireless Network?

edugate

Latest Research Topics in Networking

                Latest Research Topics in Networking offer newfangled project topics for our students from bachelors and master degree (B.E/M.E/M.Phil/M.Tech/MCA) in the field of networking. Networking is the biggest and fastest emerging area, making it hinder students with new research into networking technologies. However, students spend more money on their networking projects. To help our students, we also offer the latest networking projects at optimum cost as far as we also provided 5000+ projects from 120+ countries students from all over the world.

We develop projects both in software and hardware, and in software, we use both open source and proprietary software. We also suggest our students always choose the latest topics because the latest ideas only give something innovative and colorful.

Think well…Always be a part of us… we pose your pioneering projects…..

Topics in Networking

                  Latest Research Topics in Networking covers possible list of topics intended also for under graduate and also post graduate students and scholars. In networking, security is one of the major issues in all types of wired and wireless networks, e.g., cloud networking. There is also a lot of research in the networking field because it is also a vast area that prefers among more users.  

Generally,  networking is defined as the computing devices that exchange information and share ideas among individuals or groups of devices or users using either wired or wireless connection.

Let us see the latest topics in networking,

  • Secure and control sensitive data also in cloud environment (any)
  • The future of IoT and also bio metrics
  • Software defined networking
  • Network security and also cryptography
  • Network Function Virtualization
  • Cognitive computing and also machine learning
  • Micro services architecture
  • Adaptive security
  • Augmented and virtual reality
  • Cloud networking
  • Big data analytics in mobile networking
  • Smart personal assistants
  • Wearable’s in sensor networks
  • Blockchain as a service (BaaS)
  • Containerization (traditional virtualization)
  • Resource allocation SDN
  • Ultra dense wireless networks planning
  • SDN + Virtualized radio Access Networks also with Fog computing
  • Spectrum efficiency enhancement by LTE-U also with Wi-Fi
  • 5G wireless backhaul networks
  • SDN based Elastic optical networks also in cloud.
  • Green mobile cloud network: Green cloudlet
  • C-RAN: Cloud Radio Access Network
  • 5G networks multicasting
  • Traffic engineering also in software defined networks
  • D2D communication in 5G
  • Over Wi-Fi secure device-to-device communication
  • Cloud Robotics
  • 5G networks for visible light communication
  • Big data in mobile cloud networks
  • Prevention and also in detection of network attacks
  • SDN network automation to 802.11ac and also in IPv6

Simulation Tools, Software’s and Programming Languages Used in Networking Projects

Programming languages:.

  • R-programming
  • Matlab and also in scilab

Simulation Software’s:

  • Psimulator2
  • Network simulators (NS2 and also in NS3)

Other Tools:

  • Matlab Simulink
  • Matlab tool boxes
  • Word net tool
  • And also in MADAMIRA tool

        We also provide a few collections of networking and simulation tools, software, and programming languages for developing projects in the networking and other areas. For each project, we give PPT, documents, video files, and also completed code implementation. Our additional support for our students is journal paper writing support, paper publication in high reputed journals, and thesis writing support.

A good beginning is often overt as happy endings…..

Let us come together for your immense research…… , related pages, services we offer.

Mathematical proof

Pseudo code

Conference Paper

Research Proposal

System Design

Literature Survey

Data Collection

Thesis Writing

Data Analysis

Rough Draft

Paper Collection

Code and Programs

Paper Writing

Course Work

share this!

April 22, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

trusted source

Neural networks can mediate between download size and quality, according to researcher

by Evan Koblentz, New Jersey Institute of Technology

Neural networks can mediate between download size and quality, according to NJIT researcher

Application data requirements vs. available network bandwidth have been the ongoing Battle of the Information Age, but now it appears that a truce is within reach, based on new research from NJIT Associate Professor Jacob Chakareski.

Chakareski and his team, collaborating with peers from the University of Massachusetts-Amherst, devised a system to make network requests err on the side of smallness and upscale the difference through a neural network running on the receiving hardware.

They call it BONES—Buffer Occupancy-based Neural-Enhanced Streaming—which will be presented at the ACM Sigmetrics conference in Venice, Italy this summer, where only about 10% of submitted papers are accepted.

"Accessing high-quality video content can be challenging due to insufficient and unstable network bandwidth … neural enhancement has shown promising results in improving the quality of degraded videos through deep learning ," they stated.

Employing a mathematical function known as a Lyapunov optimization, "Our comprehensive experimental results indicate that BONES increases quality-of-experience by 4% to 13% over state-of-the-art algorithms, demonstrating its potential to enhance the video streaming experience for users."

"People have thought about this before. But this is the first work where this is mathematically characterized and made sure that it fits within the latency constraints. People have talked of this idea of super-resolving data," Chakareski elaborated. "The client carries out rate scheduling and computation scheduling decisions together. It is key to the approach. This has not been done before."

"We have a prototype that we built, so the results that are shown in the paper are based on the prototype. And it runs really well. The results are equally as good as those that we were able to observe through simulations," he said. The team is also sharing its code and data in public.

A proof-of-concept application is in the works. The BONES team is working with the University of Illinois Urbana-Champaign on a mixed-reality project called MiVirtualSeat: Semantics-Aware Content Distribution for Immersive Meeting Environments, which faces the network challenges that BONES addresses.

Chakareski said he's hopeful that popular video conferencing services may also adopt the method. "I think there will be a push for that because neural computation is becoming something. You hear a lot about machine learning in different domains, and this could be one more application where it could be used. We haven't thought about commercializing the technology, but this is certainly something that one could pursue, and we may pursue."

"There is this continuous race between the quality of the content and the capabilities of the network. As long as they both go side-by-side, this will always be an issue."

The research is published on the arXiv preprint server.

Explore further

Feedback to editors

recent research topics in networks

High-energy-density capacitors with 2D nanomaterials could significantly enhance energy storage

2 hours ago

recent research topics in networks

Study shows potential of super grids when hurricanes overshadow solar panels

3 hours ago

recent research topics in networks

Rubber-like stretchable energy storage device fabricated with laser precision

recent research topics in networks

On the trail of deepfakes, researchers identify 'fingerprints' of AI-generated video

recent research topics in networks

New tech could help traveling VR gamers experience 'ludicrous speed' without motion sickness

5 hours ago

recent research topics in networks

Why can't robots outrun animals?

recent research topics in networks

Virtual sensors help aerial vehicles stay aloft when rotors fail

6 hours ago

recent research topics in networks

New insights lead to better next-gen solar cells

recent research topics in networks

Scientists pioneer new X-ray microscopy method for data analysis 'on the fly'

recent research topics in networks

Going with the flow: Research dives into electrodes on energy storage batteries

Related stories.

recent research topics in networks

Enhanced video quality despite poor network conditions

Jan 22, 2019

recent research topics in networks

Classical optical neural network exhibits 'quantum speedup'

Apr 2, 2024

recent research topics in networks

Video streaming framework allows users to download content collaboratively

Jun 6, 2019

recent research topics in networks

Accelerating AI computing to the speed of light

Jan 11, 2021

recent research topics in networks

Improving energy efficiency of Wi-Fi networks on drones using slime mold method and a neural network

Jan 16, 2024

recent research topics in networks

Content-oriented video anomaly detection using a self-attention–based deep learning model

May 9, 2023

Recommended for you

recent research topics in networks

Emulating neurodegeneration and aging in artificial intelligence systems

13 hours ago

recent research topics in networks

Microsoft claims that small, localized language models can be powerful as well

8 hours ago

recent research topics in networks

A new framework to generate human motions from language prompts

Apr 23, 2024

recent research topics in networks

Personalization has the potential to democratize who decides how LLMs behave

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Tech Xplore in any form.

Your Privacy

This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use .

E-mail newsletter

  • Alzheimer's disease & dementia
  • Arthritis & Rheumatism
  • Attention deficit disorders
  • Autism spectrum disorders
  • Biomedical technology
  • Diseases, Conditions, Syndromes
  • Endocrinology & Metabolism
  • Gastroenterology
  • Gerontology & Geriatrics
  • Health informatics
  • Inflammatory disorders
  • Medical economics
  • Medical research
  • Medications
  • Neuroscience
  • Obstetrics & gynaecology
  • Oncology & Cancer
  • Ophthalmology
  • Overweight & Obesity
  • Parkinson's & Movement disorders
  • Psychology & Psychiatry
  • Radiology & Imaging
  • Sleep disorders
  • Sports medicine & Kinesiology
  • Vaccination
  • Breast cancer
  • Cardiovascular disease
  • Chronic obstructive pulmonary disease
  • Colon cancer
  • Coronary artery disease
  • Heart attack
  • Heart disease
  • High blood pressure
  • Kidney disease
  • Lung cancer
  • Multiple sclerosis
  • Myocardial infarction
  • Ovarian cancer
  • Post traumatic stress disorder
  • Rheumatoid arthritis
  • Schizophrenia
  • Skin cancer
  • Type 2 diabetes
  • Full List »

share this!

April 24, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

trusted source

Researchers identify novel gene networks associated with aggressive type of breast cancer

by Savannah Williamson, Georgia Institute of Technology

Researchers identify novel gene networks associated with aggressive type of breast cancer

Breast cancer is the second-most common cancer diagnosis for U.S. women, and the second-leading cause of female cancer deaths. In recent years, breast cancer treatments have improved significantly, thanks to targeted gene therapy and immunotherapy. However, for the small group of patients diagnosed with the most aggressive basal-like type of breast cancer, such approaches are less successful.

Recently, scientists in the Georgia Tech Integrated Cancer Research Center (ICRC) have found that this particular breast cancer displays a unique interactive gene network structure. Using a type of mathematics called " graph theory ," which models relationships between a pair of objects, the researchers computationally detected changes in gene-gene interactions as this breast cancer occurs and develops.

"The discovery of novel gene networks associated with basal-like breast cancers has helped us identify potential new gene targets to treat this very aggressive type of breast cancer," said John McDonald, ICRC founding director, professor emeritus in the School of Biological Sciences, and the study's corresponding author. "We would not have discovered these possible treatments through analyses of gene expression alone."

While causing just 10%–20% of breast cancer diagnoses, basal-like breast cancer is much more aggressive than other subtypes—and if not identified early, when it can be treated by surgery and/or radiation therapy , effective anti-cancer drug treatment can be challenging. The basal-like subtype does not respond to traditional hormonal therapies.

One theory as to why, advocated by many cancer researchers, is that individual genes do not function autonomously; as such, changes in how genes interact with one another in cancer may be as important as the cancer-driving genes themselves.

"The components of any complex system, like the human genome , are certainly important," said McDonald. "The way in which these independent components interact with one another is also critical."

For this study, the researchers analyzed three major subtypes of breast cancer, with particular emphasis on the most aggressive basal-like subtype. The researchers found that gene-gene interactive networks are quite different in the aggressive basal-like subtype, compared to the more prevalent luminal A and luminal B subtypes.

Many of the genes comprising these unique networks were found to be involved in functions not previously associated with breast cancer. Stephen Housley, a neurobiology researcher in the School of Biological Sciences and a co-author on the paper, noted that "an unexpected and intriguing result from our study is that neural processes appear to play a prominent role in distinguishing the highly aggressive basal-like tumors from the less aggressive luminal A and luminal B subtypes."

In total, the researchers examined more than 300 million pairs of genes, comparing healthy women to those with breast cancer. Study co-author Zainab Ashard, a computational biologist who recently worked in McDonald's lab, explained, "Differences in the gene network structure between healthy individuals and breast cancer patients allowed us to identify changes in patterns of gene-gene interactions within breast cancer development."

The team's results are detailed in a new paper , "Changes in Gene Network Interactions in Breast Cancer Onset and Development," published in the April 2024 issue of GEN Biotechnology .

Based on the results of this study and their previously published analyses of eight other types of cancer, the researchers believe they have established the usefulness of network analysis in identifying potential new candidates for the diagnosis of and targeted gene therapy treatment for breast and other types of cancers.

In addition to McDonald, Housley, and Ashard, Kara Keun Lee, a former bioinformatics Ph.D. student who worked in McDonald's lab, is also a co-author on the paper.

The results shown here are in whole or in part based on data generated by the TCGA Research Network.

Explore further

Feedback to editors

recent research topics in networks

Study highlights increased risk of second cancers among breast cancer survivors

8 minutes ago

recent research topics in networks

Opioids during pregnancy not linked to substantially increased risk of psychiatric disorders in children

recent research topics in networks

Research identifies pitfalls and opportunities for generative AI in patient messaging systems

recent research topics in networks

A closed-loop drug-delivery system could improve chemotherapy

2 hours ago

recent research topics in networks

It's easier now to treat opioid addiction with medication—but use has changed little, study finds

recent research topics in networks

Solving the riddle of the sphingolipids in coronary artery disease

recent research topics in networks

New AI technology estimates brain age using low-cost EEG device

recent research topics in networks

Alteration of brain network condition could predict painful vaso-occlusive crisis in patients with sickle cell disease

4 hours ago

recent research topics in networks

Trials reveal that internet-based conversations help sustain brain function in older adults

recent research topics in networks

Study finds that a dash of exercise can help students focus and enjoy university lectures

Related stories.

recent research topics in networks

Researchers discover molecule that promotes production of cancer cells in triple-negative breast cancer

Mar 28, 2024

recent research topics in networks

Assessing breast cancer risk

Mar 18, 2024

recent research topics in networks

Connecting the dots to find new treatments for breast cancer

Dec 7, 2021

recent research topics in networks

New study offers insight into the development of human triple negative breast cancers

Nov 28, 2022

recent research topics in networks

Deciphering the male breast cancer genome

Mar 4, 2024

recent research topics in networks

Gene Network changes associated with cancer onset and progression identify new candidates for targeted gene therapy

Dec 13, 2021

Recommended for you

recent research topics in networks

New potential avenues for cancer therapies through RNA-binding proteins

5 hours ago

recent research topics in networks

Genetic association study opens up new treatment avenues for Pick's disease, a rare form of early-onset dementia

6 hours ago

recent research topics in networks

Genetics predict type 2 diabetes risk and disparities in childhood cancer survivors

recent research topics in networks

Immune cells on standby are constantly stimulated by healthy tissue, new study finds

8 hours ago

recent research topics in networks

Newly discovered mechanism helps tumor cells evade the immune system early on

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Medical Xpress in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

More From Forbes

Ntt research brings innovation to networking and security.

  • Share to Facebook
  • Share to Twitter
  • Share to Linkedin

NTT Research CEO Kazu Gomi speaks at NTT Upgrade 2024.

Nippon Telegraph and Telephone is a company not widely known in the United States, but I believe that will change soon. Based in Japan, NTT employs more than 300,000 people globally, including 2,000 researchers. The NTT Research subsidiary gets a piece of the parent company’s $3 billion annual research budget to conduct scientific investigations related to optical networking, cybersecurity, AI, sustainability, logistics and manufacturing, healthcare and more.

I recently spent time with executives at NTT Research’s Upgrade event in San Francisco, and I came away with a better understanding of the potential impacts of the company’s efforts as they relate to networking and security. I will dive deeper into each of these areas to highlight what I find most noteworthy.

All-Photonics Network

NTT Research’s All-Photonics Network investigation represents a strategic research focus area for the company. It is decidedly a different approach to optical networking, given that it integrates optics-based technology into every network element, including terminals. Typically, silicon photonics research is directed exclusively at the interconnect level within the transport networks that serve as the backbone for connectivity services. By contrast, NTT’s vision is to bring optical efficiency to the entire network infrastructure layer.

Creating an APN is a big effort that will require a significantly rearchitected approach to how networks are constructed, but the benefits could be tremendous. First, latency could theoretically be eliminated through a vertical integration of optical technology. That would support a host of use cases for the application of real-time analytics and automation. Second, the power efficiency that could be realized is a potential game changer. Optical components are highly efficient, generate less heat than alternatives and are less prone to failure as a result. This will be even more important in years to come because the applications for next-generation AI functionality, including generative AI, are power-hungry, and NTT’s vision for an APN could address concerns related to energy consumption. This is a significant point to highlight, given that nearly every enterprise today is focused on promoting sustainable operations and carbon footprint offset initiatives.

NTT’s Innovative Optical and Wireless Network APN investigation is roughly halfway towards its goal of commercialization by 2030. From my perspective, if it comes even close to its goals of a 100x improvement in energy efficiency and transmission capacity, it could revolutionize networking.

Huawei s Pura 70 Ultra Beats iPhone With Pioneering New Feature

Meet the fintech billionaire making a fortune rewarding home renters, elon musk just got much richer from tesla stock s historic post earnings bump, a different approach to security.

NTT Research is also focused on efforts to reimagine security and data protection. The company uses its Security, Privacy and Integrity Protection Platform to capture its investigations and then productize the results. SPIP aims to incorporate advanced privacy technologies with the goal of simplifying data protection. From my perspective, NTT’s timing is spot-on, given the widespread concerns related to protecting the underlying data used to train large language models that power generative AI applications.

SPIP supports two important elements—attribute-based encryption and multi-party computation. ABE facilitates the ability to segregate data so that users can access only what is needed. NTT Research has made numerous contributions to the ABE standard, including publishing software libraries to allow developers to create commercially available solutions.

Meanwhile, MPC is not a new cryptography concept; its foundation can be traced back to the 1970s. It is designed to allow joint functional computation while maintaining the privacy of inputs through encryption. This is an important consideration, given the challenge of data leakage that results from encryption and decryption schemes. NTT calls its secure computational system San-Shi, and it consists of multiple servers and a client that registers data through a secret sharing process. That might sound ambiguous on the surface, but in dividing the data among multiple servers, no single server can obtain a complete view of the information. The other benefit to NTT’s approach is that there is apparently no tax to performance, as is often associated with encryption; the company says its research indicates that San-Shi’s efficiency is equal to the efficiency of non-encrypted data processing.

Wrapping Up

As I spend more time with NTT, I continue to be impressed by the company’s capabilities and research efforts. The need for more robust forms of networking and security will continue as next-generation applications place pressure on the limits of existing technology infrastructure. NTT’s APN represents the company’s “moonshot,” with SPIP having more immediate impacts today. However, the technology industry needs audacious goals, because these are what often lead to innovation breakthroughs. NTT may be one of the best kept secrets outside of Japan today, but given the company’s deep investments in groundbreaking research, that will likely change soon.

Moor Insights & Strategy provides or has provided paid services to technology companies, like all tech industry research and analyst firms. These services include research, analysis, advising, consulting, benchmarking, acquisition matchmaking and video and speaking sponsorships. Moor Insights & Strategy does not have paid business relationships with any company mentioned in this article.

Will Townsend

  • Editorial Standards
  • Reprints & Permissions

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

5 Networking Tips for Introverts (and Anyone Else)

  • Samantha Dewalt

recent research topics in networks

A new study reveals the make-or-break factors for developing networking skills.

Even if you’re an introvert who dreads the notion of networking, you can develop your skills to get out there and do it. Research by the Lehigh@NasdaqCenter, a partnership between Lehigh University and the Nasdaq Entrepreneurial Center, identified make-or-break factors for developing networking skills. They include: the ability to adapt your thinking swiftly in response to changing situations; combating a tendency to focus more on avoiding errors and negative results and instead striving for positive outcomes; consciously trying to have faith in your networking prowess; being persistent; and focusing more on the future.

Professionals who are extroverts are better equipped than introverts to form social connections, right? After all, they’re outgoing and more comfortable talking with strangers.

recent research topics in networks

  • Willy Das is a research scientist at the Lehigh@NasdaqCenter , an exclusive education-industry partnership between Lehigh University and the Nasdaq Entrepreneurial Center.
  • Samantha Dewalt is managing director of the Lehigh@NasdaqCenter , an exclusive education-industry partnership between Lehigh University and the Nasdaq Entrepreneurial Center.

Partner Center

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

Q&A: How – and why – we’re changing the way we study tech adoption

What share of U.S. adults have high-speed internet at home ? Own a smartphone? Use social media ?

Pew Research Center has long studied tech adoption by interviewing Americans over the phone. But starting with the publications released today, we’ll be reporting on these topics using our National Public Opinion Reference Survey (NPORS) instead. The biggest difference: NPORS participants are invited by postal mail and can respond to the survey via a paper questionnaire or online, rather than by phone.

To explain the thinking behind this change and its implications for our future work, here’s a conversation with Managing Director of Internet and Technology Research Monica Anderson and Research Associate Colleen McClain. This interview has been condensed and edited for clarity.

Pew Research Center has been tracking tech adoption in the United States for decades. Why is this area of study so important?

recent research topics in networks

Anderson: We see this research as foundational to understanding the broader impact that the internet, mobile technology and social media have on our society.

Americans have an array of digital tools that help them with everything from getting news to shopping to finding jobs. Studying how people are going online, which devices they own and which social media sites they use is crucial for understanding how they experience the world around them.

This research also anchors our ongoing work on the digital divide : the gap between those who have access to certain technologies and those who don’t. It shows us where demographic differences exist, if they’ve changed over time, and how factors like age, race and income may contribute.

Our surveys are an important reminder that some technologies, like high-speed internet, remain out of reach for some Americans, particularly those who are less affluent. In fact, our latest survey shows that about four-in-ten Americans living in lower-income households do not subscribe to home broadband.

Why is your team making the switch from phone surveys to the National Public Opinion Reference Survey (NPORS)?

recent research topics in networks

McClain: The internet hasn’t just transformed Americans’ everyday lives – it’s also transformed the way researchers study its impact. The changes we’ve made this year set us up to continue studying tech adoption long into the future.

We began tracking Americans’ tech use back in 2000. At that point, about half of Americans were online, and just 1% had broadband at home. Like much of the survey research world, we relied on telephone polling for these studies, and this approach served us well for decades.

But in more recent years, the share of people who respond to phone polls has plummeted , and these types of polls have become more costly. At the same time, online surveys have become more popular and pollsters’ methods have become more diverse . This transformation in polling is reflected in our online American Trends Panel , which works well for the vast majority of the Center’s U.S. survey work.

But there’s a caveat: Online-only surveys aren’t always the best approach when it comes to measuring certain types of data points. That includes measuring how many people don’t use technology in the first place.

Enter the National Public Opinion Reference Survey, which the Center launched in 2020 to meet these kinds of challenges. By giving people the choice to take our survey on paper or online, it is especially well-suited for hearing from Americans who don’t use the internet, aren’t comfortable with technology or just don’t want to respond online. That makes it a good fit for studying the digital divide. And NPORS achieves a higher response rate than phone polls .  

Shifting our tech adoption studies to NPORS ensures we’re keeping up with the latest advances in the Center’s methods toolkit, with quality at the forefront of this important work.

The internet hasn’t just transformed Americans’ everyday lives – it’s also transformed the way researchers study its impact. The changes we’ve made this year set us up to continue studying tech adoption long into the future. Colleen McClain

Are the old and new approaches comparable?

McClain: We took several steps to make our NPORS findings as comparable as possible with our earlier phone surveys. We knew that it can be tricky, and sometimes impossible, to directly compare the results of surveys that use different modes – that is, methods of interviewing. How a survey is conducted can affect how people answer questions and who responds in the first place. These are known as “mode effects.”

To try to minimize the impact of this change, we started by doing what we do best: gathering data.

Around the same time that we fielded our phone polls about tech adoption in 2019 and 2021, we also fielded some surveys using alternate approaches. We didn’t want to change the mode right away, but rather understand how any changes in our approach might affect the data we were collecting about how Americans use technology.

These test runs helped narrow our options and tweak the NPORS design. Using the 2019 and 2021 phone data we collected as a comparison point, we worked over the next few years to make the respondent experience as similar as possible across modes.

What does your new approach mean for your ability to talk about changes over time?

McClain: We carefully considered the potential for mode effects as we decided how to talk about the changes we saw in our findings this year. Even with all the work we did to make the approaches as comparable as possible, we wanted to be cautious.

For instance, we paid close attention to the size of any changes we observed. In some cases, the figures were fairly similar between 2021 and 2023, and even without the mode shift, we wouldn’t make too much of them.

We gave a thorough look at more striking differences. For example, 21% of Americans said they used TikTok in our 2021 phone survey, and that’s risen to 33% now in our paper/online survey. Going back to our test runs from earlier years helped us conclude it’s unlikely this change was all due to mode. We believe it also reflects real change over time.

While the mode shift makes it trickier than usual to talk about trends, we believe the change in approach is a net positive for the quality of our work. NPORS sets us up well for the future.

How are you communicating this mode shift in your published work?

A line chart showing that most U.S. adults have a smartphone, home broadband.

McClain: It’s important to us that readers can quickly and easily understand the shift and when it took place.

In some cases, we’ll be displaying the findings from our paper/online survey side by side with the data points from prior phone surveys. Trend charts in our reports signal the mode shift with a dotted line to draw attention to the change in approach. In our fact sheets , a vertical line conveys the same thing. In both cases, we also provide information in the footnotes below the chart itself.

In other places in our publications, we’re taking an even more cautious approach and focusing on the new data rather than on trends.

Did you have to change the way you asked survey questions?

McClain: Writing questions that keep up with the ever-changing nature of technology is always a challenge, and the mode shift complicated this further. For example, our previous phone surveys were conducted by interviewers, but taking surveys online or on paper doesn’t involve talking to someone. We needed to adapt our questions to keep the experience as consistent as possible on the new paper and online surveys.

Take who subscribes to home broadband, for example. Knowing we wouldn’t have an interviewer to probe and confirm someone’s response in the new modes, we tested out different options in advance to help us ensure we were collecting quality data.

In this case, we gave people a chance to say they were “not sure” or to write in a different type of internet connection, if the ones we offered didn’t quite fit their situation. We also updated the examples of internet connections in the question to be consistent with evolving technology.

Which findings from your latest survey stand out to you?

Anderson: There are several exciting things in our latest work, but two findings related to social media really stand out.

The first is the rise of TikTok. A third of U.S. adults – including about six-in-ten adults under 30 – use this video-based platform. These figures have significantly jumped since we last asked these questions in 2021. And separate surveys from the Center have found that TikTok is increasingly becoming a news source for Americans , especially young adults.

The second is how dominant Facebook remains. While its use has sharply declined among teens in the U.S. , most adults – about two-thirds – say they use the site. And this share has remained relatively stable over the past decade or so. YouTube is the only platform we asked about in our current survey that is more widely used than Facebook.

These findings reinforce why consistently tracking the use of technology, especially specific sites and apps, is so important. The online landscape can evolve quickly. As researchers who study these platforms, a forward-looking mindset is key. We’ll continue looking for new and emerging platforms while tracking longer-standing sites to see how use changes – or doesn’t – over time.

To learn more about the National Public Opinion Reference Survey, read our NPORS fact sheet . For more on Americans’ use of technology, read our new reports:

  • Americans’ Use of Mobile Technology and Home Broadband
  • Americans’ Social Media Use
  • Internet & Technology
  • Research Explainers
  • Survey Methods
  • Technology Adoption

Anna Jackson is an editorial assistant at Pew Research Center

6 facts about Americans and TikTok

Many americans think generative ai programs should credit the sources they rely on, americans’ use of chatgpt is ticking up, but few trust its election information, whatsapp and facebook dominate the social media landscape in middle-income nations, 5 facts about americans and sports, most popular.

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Age & Generations
  • Coronavirus (COVID-19)
  • Economy & Work
  • Family & Relationships
  • Gender & LGBTQ
  • Immigration & Migration
  • International Affairs
  • Methodological Research
  • News Habits & Media
  • Non-U.S. Governments
  • Other Topics
  • Politics & Policy
  • Race & Ethnicity
  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

Terms & Conditions

Privacy Policy

Cookie Settings

Reprints, Permissions & Use Policy

IMAGES

  1. Latest Research Topics in Computer Networks (Help)

    recent research topics in networks

  2. Top 15+ Latest Research Topics in Networking (Help)

    recent research topics in networks

  3. PPT

    recent research topics in networks

  4. Innovative Computer Networking Project Topics [Research Guidance]

    recent research topics in networks

  5. Trending Top 7 Computer Network Topics for Students [Guidance]

    recent research topics in networks

  6. 15+ Interesting Wireless Network Thesis Topics [Paper Writing Service]

    recent research topics in networks

VIDEO

  1. Trends Lesson 8

  2. Multimedia Streaming in Self-Organized Mesh Networks

  3. Devices and Networking Summit

  4. Latest Research Topics

  5. Kolam FTMD 1: Prof. Nozaki

  6. Network Now 2023: Data is the bedrock of network automation; Is scaling dependable data a challenge?

COMMENTS

  1. 15 Latest Networking Research Topics for Students

    The proposed research topic can be based on securing wireless networks with the help of AAA authentication and WLAN controllers. The use of AAA authentication can be done to set up a login portal for users whilst the WLAN controller can be used for managing all wireless access points connected to the network (Nashwan, 2021).

  2. 25 of today's coolest network and computing research projects

    Ghost-USB-Honeypot project. This effort, focused on nixing malware like Flame that spreads from computer to computer via USB storage drives, got its start based on research from Sebastian Poeplau ...

  3. Intelligent Wireless Networks: Challenges and Future Research Topics

    Recently, artificial intelligence (AI) has become a primary tool of serving science and humanity in all fields. This is due to the significant development in computing. The use of AI and machine learning (ML) has extended to wireless networks that are constantly evolving. This enables better operation and management of networks, through algorithms that learn and utilize available data and ...

  4. Emerging Research Areas in 5G Network Technology

    Global spending on 5G network infrastructure will total 19.1 billion in 2021—up 39% from 2020 according to 5G research. In countries like China, governments are taking some of the strain off operators to fund the upfront costs. But in the United States, mobile operators like AT&T, Verizon, and T-Mobile have greater pressure to sign on ...

  5. Full article: The past, present, and future of network monitoring: A

    The recent proliferation of research in network science has been motivated by an increased awareness of - and appreciation for - the interconnectivity of complex relational systems. ... His research interests lie at the intersection of data science and industrial statistics; his publications span topics including experimental design and A/B ...

  6. Computer Networks

    A survey of data minimisation techniques in blockchain-based healthcare. Rahma Mukta, Hye-young Paik, Qinghua Lu, Salil S. Kanhere. Article 108766. View PDF. Article preview. Read the latest articles of Computer Networks at ScienceDirect.com, Elsevier's leading platform of peer-reviewed scholarly literature.

  7. Research areas in 5G technology

    Topics. Research areas in 5G technology. Research areas in 5G Technology. We are currently on the cusp of 5G rollout. As industry experts predict, 5G deployments will gain momentum, and the accessibility of 5G devices will grow in 2020 and beyond. But as the general public waits for mass-market 5G devices, our understanding of this new ...

  8. Networking

    Our research combines building and deploying novel networking systems at unprecedented scale, with recent work focusing on fundamental questions around data center architecture, cloud virtual networking, and wide-area network interconnects. We helped pioneer the use of Software Defined Networking, the application of ML to networking, and the ...

  9. PUBLICATIONS

    6. Eytan Modiano, "Random Algorithms for Scheduling Multicast Traffic in WDM Broadcast-and-Select Networks," IEEE Transactions on Networking, July, 1999. 5. Eytan Modiano and Richard Barry, "Architectural Considerations in the Design of WDM-based Optical Access Networks," Computer Networks, February 1999.

  10. Intelligent Wireless Networks: Challenges and Future Research Topics

    We discuss ML concepts and put emphasis on how ML can contribute to the development of optimal management solutions of wireless networks. A focus is put on discussion and analysis of recent research trends and challenges that remain open and require further research and exploration.

  11. The top 5 networking technology trends for 2022

    As we step into 2022, the ingenuity of IT will continue to be challenged as many of the changes expected to be temporary have become the new normal. We should expect today's changes to have a lasting effect on networking for years. Next Steps. 6 trends in corporate campus networks. Private 5G, NaaS, automation among top networking trends

  12. Complex networks

    Physical networks, composed of nodes and links that occupy a spatial volume, are hard to study with conventional techniques. A meta-graph approach that elucidates the impact of physicality on ...

  13. 4 Important Networking Trends 2020

    The 4 Most Important Networking Trends in 2020 and Beyond. In today's digital world, networking technology is everything. It's what makes the internet possible. It's how businesses support sprawling multinational footprints. It's even stitching together the appliances in our homes into one, smart, convenient fabric.

  14. Frontiers in Communications and Networks

    B5G & 6G Oriented Optical Wireless Communication and Networking Techniques. Jupeng Ding. Kejun Jia. Jian Song. Jintao Wang. Yalçın Ata. 477 views. An innovative journal that explores the critical branches of contemporary telecommunications in our hyper-connected world, from the physical layer to cross-layer and networking design, performance ...

  15. Computer Networks

    The International Journal of Computer and Telecommunications Networking Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors.

  16. Networking News, Research and Analysis

    Jennifer R. Grandis, University of California, San Francisco. By surveying over 100 people in academic medicine, a researcher found that women are consistently excluded from important networking ...

  17. 290334 PDFs

    Deals with the various aspects and domain of Computer Networks and Communication, Cloud, and Grid Computing | Explore the latest full-text research PDFs, articles, conference papers, preprints and ...

  18. wireless sensor networks Latest Research Papers

    The existence of a mobile sink for gathering data significantly extends wireless sensor networks (WSNs) lifetime. In recent years, a variety of efficient rendezvous points-based sink mobility approaches has been proposed for avoiding the energy sink-holes problem nearby the sink, diminishing buffer overflow of sensors, and reducing the data ...

  19. 5 Computer Networking Trends for 2024 and Beyond

    Network Hubs. ISP. Broadband. Ethernet. Installing & Upgrading. Wi-Fi & Wireless. Computer network technology continues to develop in new and interesting ways. Here are five of the most important areas and trends to watch in the year ahead. 01.

  20. Five networking trends teams should focus on in 2023

    Organizations should focus on five areas in 2023 to ensure their networks can enable the business. 1. Network automation and AIOps. The increase in corporate locations, devices and remote workers has led to an overwhelming number of devices that need to be configured, deployed and managed. Many organizations are already using network automation ...

  21. Top 15+ Latest Research Topics in Networking (Help)

    Generally, networking is defined as the computing devices that exchange information and share ideas among individuals or groups of devices or users using either wired or wireless connection. Let us see the latest topics in networking, Latest Research Topics in Networking. Secure and control sensitive data also in cloud environment (any)

  22. Wireless sensor network security: A recent review based on state-of-the

    Wireless sensor networks (WSNs) is an increasingly valuable foundational technology for the Internet of Things (IoT). 1 WSN is considered an increasingly important fundamental component of the IoT. The WSN market was worth the US $46.76 billion in 2020 and is predicted to be worth US $126.93 billion by 2026, growing at a CAGR of 17.64% between 2021 and 2026. 2-5 As a result, the use of WSNs ...

  23. (PDF) ADVANCES IN NETWORK SECURITY: A COMPREHENSIVE ...

    The report proposes new research directions to advance research. ... In the present research work a review in recent development of network threats and security measures is presented and future ...

  24. Neural networks can mediate between download size and quality

    Chakareski and his team, collaborating with peers from the University of Massachusetts-Amherst, devised a system to make network requests err on the side of smallness and upscale the difference through a neural network running on the receiving hardware.. They call it BONES—Buffer Occupancy-based Neural-Enhanced Streaming—which will be presented at the ACM Sigmetrics conference in Venice ...

  25. Researchers identify novel gene networks associated with aggressive

    Recently, scientists in the Georgia Tech Integrated Cancer Research Center (ICRC) have found that this particular breast cancer displays a unique interactive gene network structure. Using a type ...

  26. NTT Research Brings Innovation To Networking And Security

    NTT Research's All-Photonics Network investigation represents a strategic research focus area for the company. It is decidedly a different approach to optical networking, given that it ...

  27. Potential risks of content, features, and functions: The science of how

    Hypersensitivity to social feedback. Brain development starting at ages 10-13 (i.e., the outset of puberty) until approximately the mid-twenties is linked with hypersensitivity to social feedback/stimuli. iv In other words, youth become especially invested in behaviors that will help them get personalized feedback, praise, or attention from peers.. AI-recommended content has the potential to ...

  28. 5 Networking Tips for Introverts (and Anyone Else)

    Research by the Lehigh@NasdaqCenter, a partnership between Lehigh University and the Nasdaq Entrepreneurial Center, identified make-or-break factors for developing networking skills.

  29. we're changing the way we study tech adoption

    Pew Research Center has long studied tech adoption by interviewing Americans over the phone. But starting with the publications released today, we'll be reporting on these topics using our National Public Opinion Reference Survey (NPORS) instead. The biggest difference: NPORS participants are invited by postal mail and can respond to the ...

  30. Brown's National Labs Day showcases research ties with national labs

    PROVIDENCE, R.I. [Brown University] — Brown University's inaugural National Labs Day brought research collaborations to the forefront for University scientists and the Department of Energy's National Laboratories. Hosted by Brown's Office of the Vice President for Research and the School of Engineering, the daylong conference on Friday, April 19, convened scientists, engineers and ...