## Kinematic Equations: Explanation, Review, and Examples

- The Albert Team
- Last Updated On: April 29, 2022

Now that you’ve learned about displacement, velocity, and acceleration, you’re well on your way to being able to describe just about any motion you could observe around you with physics. All that’s left is to learn how these values really play into each other. We know a few ways to move between them, but they’re all pretty limited. What happens if you need to find displacement, but only know acceleration and time? We don’t have a way to combine all of those values yet. Enter the four kinematic equations.

What We Review

## The Kinematic Equations

The following four kinematic equations come up throughout physics from the earliest high school class to the highest level college course:

v=v_{0}+at \Delta x=\dfrac{v+v_{0}}{2} t \Delta x=v_{0}t+\frac{1}{2}at^{2} v^{2}=v_{0}^{2}+2a\Delta x |

Don’t let all of these numbers and symbols intimidate you. We’ll talk through each one – what they mean and when we use them. By the end of this post, you’ll be a master of understanding and implementing each of these physics equations. Let’s start with defining what all of those symbols mean.

## The First Kinematic Equation

v=v_{0}+at |

This physics equation would be read as “the final velocity is equal to the initial velocity plus acceleration times time”. All it means is that if you have constant acceleration for some amount of time, you can find the final velocity. You’ll use this one whenever you’re looking at changing velocities with a constant acceleration.

## The Second Kinematic Equation

\Delta x=\dfrac{v+v_{0}}{2} t |

This one is read as “displacement equals final velocity plus initial velocity divided by two times time”. You’ll use this one whenever you don’t have an acceleration to work with but you need to relate a changing velocity to a displacement.

## The Third Kinematic Equation

\Delta x=v_{0}t+\frac{1}{2}at^{2} |

This one may look a bit scarier as it is longer than the others, but it is read as “displacement equals initial velocity times time plus one half acceleration times time squared”. All it means is that our displacement can be related to our initial velocity and a constant acceleration without having to find the final velocity. You’ll use this one when final velocity is the only value you don’t know yet.

It is worth noting that this kinematic equation has another popular form: x=x_{0}+v_{0}t+\frac{1}{2}at^{2} . While that may seem even more intimidating, it’s actually exactly the same. The only difference here is that we have split up \Delta x into x-x_{0} and then solved to get x on its own. This version can be particularly helpful if you’re looking specifically for a final or initial position rather than just an overall displacement.

## The Fourth Kinematic Equation

v^{2}=v_{0}^{2}+2a\Delta x |

Our last kinematic equation is read as “final velocity squared equals initial velocity squared plus two times acceleration times displacement”. It’s worth noting that this is the only kinematic equation without time in it. Many starting physicists have been stumped by reaching a problem without a value for time. While staring at an equation sheet riddled with letters and numbers can be overwhelming, remembering you have this one equation without time will come up again and again throughout your physics career.

It may be worth noting that all of these are kinematic equations for constant acceleration. While this may seem like a limitation, we learned before that high school physics courses generally utilize constant acceleration so we don’t need to worry about it changing yet. If you do find yourself in a more advanced course, new physics equations will be introduced at the appropriate times.

## How to Approach a Kinematics Problem

So now that we have all of these different kinematic equations, how do we know when to use them? How can we look at a physics word problem and know which of these equations to apply? You must use problem-solving steps. Follow these few steps when trying to solve any complex problems, and you won’t have a problem.

## Step 1: Identify What You Know

This one probably seems obvious, but skipping it can be disastrous to any problem-solving endeavor. In physics problems, this just means pulling out values and directions. If you can add the symbol to go with the value (writing t=5\text{ s} instead of just 5\text{ s} , for example), even better. It’ll save time and make future steps even easier.

## Step 2: Identify the Goal

In physics, this means figuring out what question you’re actually being asked. Does the question want you to find the displacement? The acceleration? How long did the movement take? Figure out what you’re being asked to do and then write down the symbol of the value you’re solving for with a question mark next to it ( t=\text{?} , for example). Again, this feels obvious, but it’s also a vital step.

## Step 3: Gather Your Tools

Generally, this means a calculator and an equation. You’ll want to look at all of the symbols you wrote down and pick the physics equation for all of them, including the unknown value. Writing everything down beforehand will make it easier to pull a relevant equation than having to remember what values you need while searching for the right equation. You can use the latter method, but you’re far more likely to make a mistake and feel frustrated that way.

## Step 4: Put it all Together

Plug your values into your equation and solve for the unknown value. This will usually be your last step, though you may find yourself having to repeat it a few times for exceptionally complex problems. That probably won’t come up for quite a while, though. After you’ve found your answer, it’s generally a good idea to circle it to make it obvious. That way, whoever is grading you can find it easily and you can easily keep track of which problems you’ve already completed while flipping through your work.

## Kinematic Equation 1: Review and Examples

To learn how to solve problems with these new, longer equations, we’ll start with v=v_{0}+at . This kinematic equation shows a relationship between final velocity, initial velocity, constant acceleration, and time. We will explore this equation as it relates to physics word problems. This equation is set up to solve for velocity, but it can be rearranged to solve for any of the values it contains. For this physics equation and the ones following, we will look at one example finding the variable that has already been isolated and one where a new variable needs to be isolated using the steps we just outlined. So, let’s jump into applying this kinematic equation to a real-world problem.

A car sits at rest waiting to merge onto a highway. When they have a chance, they accelerate at 4\text{ m/s}^2 for 7\text{ s} . What is the car’s final velocity?

We have a clearly stated acceleration and time, but there’s no clearly defined initial velocity here. Instead, we have to take this from context. We know that the car “sits at rest” before it starts moving. This means that our initial velocity in this situation is zero. Other context clues for an object starting at rest is if it is “dropped” or if it “falls”. Our other known values will be even easier to pull as we were actually given numerical values. Now it’s time to put everything into a list.

- v_{0}=0\text{ m/s}
- a=4\text{ m/s}^2
- t=7\text{ s}

Our goal here was clearly stated: find the final velocity. We’ll still want to list that out so we can see exactly what symbols we have to work with on this problem.

We already know which of the kinematic equations we’re using, but if we didn’t, this would be where we search our equation sheet for the right one. Regardless, we’ll want to write that down too.

## Step 4: Put it All Together

At this point, we’ll plug all of our values into our kinematic equation. If you’re working on paper, there’s no need to repeat anything we’ve put above. That being said, for the purposes of digital organization and so you can see the full problem in one spot, we will be rewriting things here.

Now let’s get a bit trickier with a problem that will require us to rearrange our kinematic equation.

A ball rolls toward a hill at 3\text{ m/s} . It rolls down the hill for 5\text{ s} and has a final velocity of 18\text{ m/s} . What was the ball’s acceleration as it rolled down the hill?

Just like before, we’ll make a list of our known values:

- v_{0}=3\text{ m/s}
- t=5\text{ s}
- v=18\text{ m/s}

Again, our goal was clearly stated, so let’s add it to our list:

We already know which equation we’re using, but let’s pretend we didn’t. We know that we need to solve for acceleration, but if you look at our original list of kinematic equations, there isn’t one that’s set up to solve for acceleration:

This begs the question, how to find acceleration (or any value) that hasn’t already been solved for? The answer is to rearrange an equation. First, though, we need to pick the right one. We start by getting rid of the second equation in this list as it doesn’t contain acceleration at all. Our options are now:

- \Delta x=v_{0}t+\dfrac{1}{2}at^{2}
- v^{2}=v_{0}^{2}+2a\Delta x

Now we’ll need to look at the first list we made of what we know. We know the initial velocity, time, and final velocity. There’s only one equation that has all the values we’re looking for and all of the values we know with none that we don’t. This is the first kinematic equation:

In this case, we knew the kinematic equation coming in so this process of elimination wasn’t necessary, but that won’t often be the case in the future. You’ll likely have to find the correct equation far more often than you’ll have it handed to you. It’s best to practice finding it now while we only have a few equations to work with.

Like before, we’ll be rewriting all of our relevant information below, but you won’t need to if you’re working on paper.

Although you can plug in values before rearranging the equation, in physics, you’ll usually see the equation be rearranged before values are added. This is mainly done to help keep units where they’re supposed to be and to avoid any mistakes that could come from moving numbers and units rather than just a variable. We’ll be taking the latter approach here. Follow the standard PEMDAS rules for rearranging the equation and then write it with the variable we’ve isolated on the left. While that last part isn’t necessary, it is a helpful organizational practice:

For a review of solving literal equations, visit this post ! Now we can plug in those known values and solve:

## Kinematic Equation 2: Review and Examples

Next up in our four kinematics equations is \Delta x=\dfrac{v+v_{0}}{2} t . This one relates an object’s displacement to its average velocity and time. The right-hand side shows the final velocity plus the initial velocity divided by two – the sum of some values divided by the number of values, or the average. Although this equation doesn’t directly show a constant acceleration, it still assumes it. Applying this equation when acceleration isn’t constant can result in some error so best not to apply it if a changing acceleration is mentioned.

A car starts out moving at 10\text{ m/s} and accelerates to a velocity of 24\text{ m/s} . What displacement does the car cover during this velocity change if it occurs over 10\text{ s} ?

- v_{0}=10\text{ m/s}
- v=24\text{ m/s}
- t=10\text{ s}
- \Delta x=\text{?}
- \Delta x=\dfrac{v+v_{0}}{2} t

This time around we won’t repeat everything here. Instead, We’ll jump straight into plugging in our values and solving our problem:

A ball slows down from 15\text{ m/s} to 3\text{ m/s} over a distance of 36\text{ m} . How long did this take?

- v_{0}=15\text{ m/s}
- v=3\text{ m/s}
- \Delta x=36\text{ m}

We don’t have a kinematic equation for time specifically, but we learned before that we can rearrange certain equations to solve for different variables. So, we’ll pull the equation that has all of the values we need and isolate the variable we want later:

Again, we won’t be rewriting anything, but we will begin by rearranging our equation to solve for time:

Now we can plug in our known values and solve for time.

## Kinematic Equation 3: Review and Examples

Our next kinematic equation is \Delta x=v_{0}t+\frac{1}{2}at^{2} . This time we are relating our displacement to our initial velocity, time, and acceleration. The only odd thing you may notice is that it doesn’t include our final velocity, only the initial. This equation will come in handy when you don’t have a final velocity that was stated either directly as a number or by a phrase indicating the object came to rest. Just like before, we’ll use this equation first to find a displacement, and then we’ll rearrange it to find a different value.

A rocket is cruising through space with a velocity of 50\text{ m/s} and burns some fuel to create a constant acceleration of 10\text{ m/s}^2 . How far will it have traveled after 5\text{ s} ?

- v_{0}=50\text{ m/s}
- a=10\text{ m/s}^2
- \Delta x=v_{0}t+\frac{1}{2}at^{2}

At this point, it appears that these problems seem to be quite long and take several steps. While that is an inherent part of physics in many ways, it will start to seem simpler as time goes on. This problem presents the perfect example. While it may have been easy to combine lines 4 and 5 mathematically, they were shown separately here to make sure the process was as clear as possible. While you should always show all of the major steps of your problem-solving process, you may find that you are able to combine some of the smaller steps after some time of working with these kinematic equations.

Later in its journey, the rocket is moving along at 20\text{ m/s} when it has to fire its thrusters again. This time it covers a distance of 500\text{ m} in 10\text{ s} . What was the rocket’s acceleration during this thruster burn?

- v_{0}=20\text{ m/s}
- \Delta x=500\text{ m}

As usual, we’ll begin by rearranging the equation, this time to solve for acceleration.

Now we can plug in our known values to find the value of our acceleration.

## Kinematic Equation 4: Review and Examples

The last of the kinematic equations that we will look at is v^{2}=v_{0}^{2}+2a\Delta x . This one is generally the most complicated looking, but it’s also incredibly important as it is our only kinematic equation that does not involve time. It relates final velocity, initial velocity, acceleration, and displacement without needing a time over which a given motion occurred. For this equation, as with the others, let’s solve it as is and then rearrange it to solve for a different variable.

A car exiting the highway begins with a speed of 25\text{ m/s} and travels down a 100\text{ m} long exit ramp with a deceleration (negative acceleration) of 3\text{ m/s}^2 . What is the car’s velocity at the end of the exit ramp?

- v_{0}=25\text{ m/s}
- \Delta x=100\text{ m}
- a=-3\text{ m/s}^2

Note that our acceleration here is a negative value. That is because our problem statement gave us a deceleration instead of an acceleration. Whenever you have a deceleration, you’ll make the value negative to use it as an acceleration in your problem-solving. This also tells us that our final velocity should be less than our initial velocity so we can add that to the list of what we know as well.

- Final velocity will be less than initial.

Being able to know something to help check your answer at the end is what makes this subject a bit easier than mathematics for some students.

While we generally try to not have any operations going on for the isolated variable, sometimes it’s actually easier that way. Having your isolated variable raised to a power is generally a time to solve before simplifying. This may seem like an arbitrary rule, and in some ways it is, but as you continue through your physics journey you’ll come up with your own practices for making problem-solving easier.

Now that we have both sides simplified, we’ll take the square root to eliminate the exponent on the left-hand side:

If we remember back at the beginning, we said that our final velocity would have to be less than our initial velocity because the problem statement told us that we were decelerating. Our initial velocity was 25\text{ m/s} which is, indeed, greater than 5\text{ m/s} so our answer checks out.

A ghost is sliding a wrench across a table to terrify the mortal onlooker. The wrench starts with a velocity of 2\text{ m/s} and accelerates to a velocity of 5\text{ m/s} over a distance of 7\text{ m} . What acceleration did the ghost move the wrench with?

- v_{0}=2\text{ m/s}
- v=5\text{ m/s}
- \Delta x=7\text{ m}

We can also make an inference about our acceleration here – that it will be positive. Not every problem will tell you clearly the direction of the acceleration, but if your final velocity is greater than your initial velocity, you can be sure that your acceleration will be positive.

- Positive acceleration

You’ll get better at picking up on subtle hints like this as you continue your physics journey and your brain starts naturally picking up on some patterns. You’ll likely find this skill more and more helpful as it develops and as problems get more difficult.

We’ll start by rearranging our equation to solve for acceleration.

As usual, now that we’ve rearranged our equation, we can plug in our values.

Again, we can go back to the beginning when we said our acceleration would be a positive number and confirm that it is.

## Problem-Solving Strategies

At this point, you’re likely getting the sense that physics will be a lot of complex problem-solving. If so, your senses are correct. In many ways, physics is the science of explaining nature with mathematical equations. There’s a lot that goes into developing and applying these equations, but at this point in your physics career, you’ll find that the majority of your time will likely be spent on applying equations to word problems. If you feel that your problem-solving skills could still use some honing, check out more examples and strategies from this post by the Physics Classroom or through this video-guided tutorial from Khan Academy.

That was a lot of equations and examples to take in. Eventually, whether you’re figuring out how to find a constant acceleration or how to solve velocity when you don’t have a value for time, you’ll know exactly which of the four kinematic equations to apply and how. Just keep the problem-solving steps we’ve used here in mind, and you’ll be able to get through your physics course without any unsolvable problems.

## Interested in a school license?

Popular posts.

## AP® Score Calculators

Simulate how different MCQ and FRQ scores translate into AP® scores

## AP® Review Guides

The ultimate review guides for AP® subjects to help you plan and structure your prep.

## Core Subject Review Guides

Review the most important topics in Physics and Algebra 1 .

## SAT® Score Calculator

See how scores on each section impacts your overall SAT® score

## ACT® Score Calculator

See how scores on each section impacts your overall ACT® score

## Grammar Review Hub

Comprehensive review of grammar skills

## AP® Posters

Download updated posters summarizing the main topics and structure for each AP® exam.

## 2.6 Problem-Solving Basics for One-Dimensional Kinematics

Learning objectives.

By the end of this section, you will be able to:

- Apply problem-solving steps and strategies to solve problems of one-dimensional kinematics.
- Apply strategies to determine whether or not the result of a problem is reasonable, and if not, determine the cause.

Problem-solving skills are obviously essential to success in a quantitative course in physics. More importantly, the ability to apply broad physical principles, usually represented by equations, to specific situations is a very powerful form of knowledge. It is much more powerful than memorizing a list of facts. Analytical skills and problem-solving abilities can be applied to new situations, whereas a list of facts cannot be made long enough to contain every possible circumstance. Such analytical skills are useful both for solving problems in this text and for applying physics in everyday and professional life.

## Problem-Solving Steps

While there is no simple step-by-step method that works for every problem, the following general procedures facilitate problem solving and make it more meaningful. A certain amount of creativity and insight is required as well.

Examine the situation to determine which physical principles are involved . It often helps to draw a simple sketch at the outset. You will also need to decide which direction is positive and note that on your sketch. Once you have identified the physical principles, it is much easier to find and apply the equations representing those principles. Although finding the correct equation is essential, keep in mind that equations represent physical principles, laws of nature, and relationships among physical quantities. Without a conceptual understanding of a problem, a numerical solution is meaningless.

Make a list of what is given or can be inferred from the problem as stated (identify the knowns) . Many problems are stated very succinctly and require some inspection to determine what is known. A sketch can also be very useful at this point. Formally identifying the knowns is of particular importance in applying physics to real-world situations. Remember, “stopped” means velocity is zero, and we often can take initial time and position as zero.

Identify exactly what needs to be determined in the problem (identify the unknowns) . In complex problems, especially, it is not always obvious what needs to be found or in what sequence. Making a list can help.

Find an equation or set of equations that can help you solve the problem . Your list of knowns and unknowns can help here. It is easiest if you can find equations that contain only one unknown—that is, all of the other variables are known, so you can easily solve for the unknown. If the equation contains more than one unknown, then an additional equation is needed to solve the problem. In some problems, several unknowns must be determined to get at the one needed most. In such problems it is especially important to keep physical principles in mind to avoid going astray in a sea of equations. You may have to use two (or more) different equations to get the final answer.

Substitute the knowns along with their units into the appropriate equation, and obtain numerical solutions complete with units . This step produces the numerical answer; it also provides a check on units that can help you find errors. If the units of the answer are incorrect, then an error has been made. However, be warned that correct units do not guarantee that the numerical part of the answer is also correct.

Check the answer to see if it is reasonable: Does it make sense? This final step is extremely important—the goal of physics is to accurately describe nature. To see if the answer is reasonable, check both its magnitude and its sign, in addition to its units. Your judgment will improve as you solve more and more physics problems, and it will become possible for you to make finer and finer judgments regarding whether nature is adequately described by the answer to a problem. This step brings the problem back to its conceptual meaning. If you can judge whether the answer is reasonable, you have a deeper understanding of physics than just being able to mechanically solve a problem.

When solving problems, we often perform these steps in different order, and we also tend to do several steps simultaneously. There is no rigid procedure that will work every time. Creativity and insight grow with experience, and the basics of problem solving become almost automatic. One way to get practice is to work out the text’s examples for yourself as you read. Another is to work as many end-of-section problems as possible, starting with the easiest to build confidence and progressing to the more difficult. Once you become involved in physics, you will see it all around you, and you can begin to apply it to situations you encounter outside the classroom, just as is done in many of the applications in this text.

## Unreasonable Results

Physics must describe nature accurately. Some problems have results that are unreasonable because one premise is unreasonable or because certain premises are inconsistent with one another. The physical principle applied correctly then produces an unreasonable result. For example, if a person starting a foot race accelerates at 0 . 40 m/s 2 0 . 40 m/s 2 for 100 s, his final speed will be 40 m/s (about 150 km/h)—clearly unreasonable because the time of 100 s is an unreasonable premise. The physics is correct in a sense, but there is more to describing nature than just manipulating equations correctly. Checking the result of a problem to see if it is reasonable does more than help uncover errors in problem solving—it also builds intuition in judging whether nature is being accurately described.

Use the following strategies to determine whether an answer is reasonable and, if it is not, to determine what is the cause.

Solve the problem using strategies as outlined and in the format followed in the worked examples in the text . In the example given in the preceding paragraph, you would identify the givens as the acceleration and time and use the equation below to find the unknown final velocity. That is,

Check to see if the answer is reasonable . Is it too large or too small, or does it have the wrong sign, improper units, …? In this case, you may need to convert meters per second into a more familiar unit, such as miles per hour.

This velocity is about four times greater than a person can run—so it is too large.

If the answer is unreasonable, look for what specifically could cause the identified difficulty . In the example of the runner, there are only two assumptions that are suspect. The acceleration could be too great or the time too long. First look at the acceleration and think about what the number means. If someone accelerates at 0 . 40 m/s 2 0 . 40 m/s 2 , their velocity is increasing by 0.4 m/s each second. Does this seem reasonable? If so, the time must be too long. It is not possible for someone to accelerate at a constant rate of 0 . 40 m/s 2 0 . 40 m/s 2 for 100 s (almost two minutes).

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/college-physics-2e/pages/1-introduction-to-science-and-the-realm-of-physics-physical-quantities-and-units

- Authors: Paul Peter Urone, Roger Hinrichs
- Publisher/website: OpenStax
- Book title: College Physics 2e
- Publication date: Jul 13, 2022
- Location: Houston, Texas
- Book URL: https://openstax.org/books/college-physics-2e/pages/1-introduction-to-science-and-the-realm-of-physics-physical-quantities-and-units
- Section URL: https://openstax.org/books/college-physics-2e/pages/2-6-problem-solving-basics-for-one-dimensional-kinematics

© Jan 19, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

## Module 1 Problem-Solving for Basic Kinematics

Applications.

There are four kinematic equations that describe the motion of objects without consideration of its causes.

## Learning Objectives

Choose which kinematics equation to use in problems in which the initial starting position is equal to zero

## Key Takeaways

- The four kinematic equations involve five kinematic variables: [latex]\text{d}[/latex], [latex]\text{v}[/latex], [latex]\text{v}_0[/latex], [latex]\text{a}[/latex], and [latex]\text{t}[/latex].
- Each equation contains only four of the five variables and has a different one missing.
- It is important to choose the equation that contains the three known variables and one unknown variable for each specific situation.
- kinematics : The branch of physics concerned with objects in motion.

Kinematics is the branch of classical mechanics that describes the motion of points, bodies (objects), and systems of bodies (groups of objects) without consideration of the causes of motion. There are four kinematic equations when the initial starting position is the origin, and the acceleration is constant:

- [latex]\text{v} = \text{v}_0 + \text{at}[/latex]
- [latex]\text{d} = \frac{1}{2}(\text{v}_0 + \text{v})\text{t}[/latex] or alternatively [latex]\text{v}_{\text{average}} = \frac{\text{d}}{\text{t}}[/latex]
- [latex]\text{d} = \text{v}_0\text{t} + (\frac{\text{at}^2}{2})[/latex]
- [latex]\text{v}^2 = \text{v}_0^2 + 2\text{ad}[/latex]

Notice that the four kinematic equations involve five kinematic variables: [latex]\text{d}[/latex] , [latex]\text{v}[/latex] , [latex]\text{v}_0[/latex] , [latex]\text{a}[/latex] , and [latex]\text{t}[/latex]. Each of these equations contains only four of the five variables and has a different one missing. This tells us that we need the values of three variables to obtain the value of the fourth and we need to choose the equation that contains the three known variables and one unknown variable for each specific situation.

Here the basic problem solving steps to use these equations:

Step one – Identify exactly what needs to be determined in the problem (identify the unknowns).

Step two – Find an equation or set of equations that can help you solve the problem.

Step three – Substitute the knowns along with their units into the appropriate equation, and obtain numerical solutions complete with units.

Step four – Check the answer to see if it is reasonable: Does it make sense?

Problem-solving skills are obviously essential to success in a quantitative course in physics. More importantly, the ability to apply broad physical principles, usually represented by equations, to specific situations is a very powerful form of knowledge. It is much more powerful than memorizing a list of facts. Analytical skills and problem-solving abilities can be applied to new situations, whereas a list of facts cannot be made long enough to contain every possible circumstance. Such analytical skills are useful both for solving problems in a physics class and for applying physics in everyday and professional life.

- Curation and Revision. Provided by : Boundless.com. License : CC BY-SA: Attribution-ShareAlike
- OpenStax College, College Physics. September 17, 2013. Provided by : OpenStax CNX. Located at : http://cnx.org/content/m42125/latest/?collection=col11406/1.7 . License : CC BY: Attribution
- kinematics. Provided by : Wiktionary. Located at : http://en.wiktionary.org/wiki/kinematics . License : CC BY-SA: Attribution-ShareAlike
- Motion diagram. Provided by : Wikipedia. Located at : http://en.wikipedia.org/wiki/Motion_diagram . License : CC BY-SA: Attribution-ShareAlike
- motion. Provided by : Wiktionary. Located at : http://en.wiktionary.org/wiki/motion . License : CC BY-SA: Attribution-ShareAlike
- diagram. Provided by : Wiktionary. Located at : http://en.wiktionary.org/wiki/diagram . License : CC BY-SA: Attribution-ShareAlike
- stroboscopic. Provided by : Wikipedia. Located at : http://en.wikipedia.org/wiki/stroboscopic . License : CC BY-SA: Attribution-ShareAlike
- Boundless. Provided by : Amazon Web Services. Located at : http://s3.amazonaws.com/figures.boundless.com/51129b2ee4b0c14bf464ce1b/1.jpg . License : CC BY: Attribution
- Provided by : Wikimedia. Located at : http://upload.wikimedia.org/wikipedia/commons/3/3c/Bouncing_ball_strobe_edit.jpg . License : CC BY: Attribution

Privacy Policy

Syllabus Edition

First teaching 2023

First exams 2025

## Solving Problems with Kinematic Equations ( CIE A Level Physics )

Revision note.

Physics Project Lead

## Solving Problems with Kinematic Equations

- Solving problems with kinematic equations can be broken down into simple steps
- e.g. for vertical motion a = ± 9.81 m s –2 , an object which starts or finishes at rest will have u = 0 or v = 0
- e.g. the equation that links s, u, a and t is s = ut + ½at 2
- Step 3: Convert any units to SI units and then insert the quantities into the equation and rearrange algebraically to determine the answer

## Worked example

The diagram shows an arrangement to stop trains that are travelling too fast.

Trains coming from the left travel at a speed of 50 ms -1 .

At marker 1, the driver must apply the brakes so that the train decelerates uniformly in order to pass marker 2 at no more than 10 ms -1 . The train carries a detector that notes the times when the train passes each marker and will apply an emergency brake if the time between passing marker 1 and marker 2 is less than 20 s.

How far from marker 2 should marker 1 be placed?

Answer: Step 1: List the known quantities

- u = 50 m s –1
- v = 10 m s –1

Step 2: State the appropriate equation

- The equation that links u , v , t and s are:

Step 3: Substitute in the values

This is arguably the most important section of this topic, you can always be sure there will be one, or more, questions in the exam about solving problems with the kinematic equations. Make sure you've correctly selected the final and initial velocity.

## You've read 0 of your 0 free revision notes

Get unlimited access.

to absolutely everything:

- Downloadable PDFs
- Unlimited Revision Notes
- Topic Questions
- Past Papers
- Model Answers
- Videos (Maths and Science)

## Join the 100,000 + Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

## Author: Ashika

Ashika graduated with a first-class Physics degree from Manchester University and, having worked as a software engineer, focused on Physics education, creating engaging content to help students across all levels. Now an experienced GCSE and A Level Physics and Maths tutor, Ashika helps to grow and improve our Physics resources.

Immaculate I.

## Problem Solving with Kinematics Equation 1

An object increases its velocity from 22 m/s to 36 m/s in 5 s. What is the acceleration of the

## 1 Expert Answer

John B. answered • 10/14/20

Licensed Physics Instructor with Industry Experience

Acceleration is the rate of change of velocity.

The object changed its velocity from 22 m/s to 36 m/s which is an increase of 14 m/s

This occurred in 5 seconds so the acceleration is 14/5 = 2.8 m/s^2

## Still looking for help? Get the right answer, fast.

Get a free answer to a quick problem. Most questions answered within 4 hours.

Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.

## RELATED TOPICS

Related questions, physics question (too big to fit in this box).

Answers · 3

## I have a physics question

Answers · 10

## physics buoyant

Answers · 6

## how many days are in 2 million seconds?

Answers · 5

## how does surface area affect rate of active transport?

Recommended tutors.

## find an online tutor

- Physics tutors
- AP Physics tutors
- AP Physics C tutors
- Science tutors
- Fluid Mechanics tutors
- Thermodynamics tutors
- Statics tutors
- ACT Science tutors

## related lessons

- Physics Help
- States Of Matter
- Units And Measurements
- Conversation Exercises
- ACT Science Test Format and Strategies
- Friction and Inclines

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

## Unit 1: One-dimensional motion

About this unit.

This unit is part of the Physics library. Browse videos, articles, and exercises by topic.

## Introduction to physics

- Introduction to physics (Opens a modal)
- What is physics? (Opens a modal)
- Preparing to study physics (Opens a modal)

## Displacement, velocity, and time

- Intro to vectors and scalars (Opens a modal)
- Introduction to reference frames (Opens a modal)
- What is displacement? (Opens a modal)
- Calculating average velocity or speed (Opens a modal)
- Solving for time (Opens a modal)
- Displacement from time and velocity example (Opens a modal)
- Instantaneous speed and velocity (Opens a modal)
- What is velocity? (Opens a modal)
- Position vs. time graphs (Opens a modal)
- What are position vs. time graphs? (Opens a modal)
- Average velocity and average speed from graphs Get 3 of 4 questions to level up!
- Instantaneous velocity and instantaneous speed from graphs Get 3 of 4 questions to level up!

## Acceleration

- Acceleration (Opens a modal)
- What is acceleration? (Opens a modal)
- Airbus A380 take-off time (Opens a modal)
- Airbus A380 take-off distance (Opens a modal)
- Why distance is area under velocity-time line (Opens a modal)
- What are velocity vs. time graphs? (Opens a modal)
- Acceleration vs. time graphs (Opens a modal)
- What are acceleration vs. time graphs? (Opens a modal)
- Acceleration and velocity Get 5 of 7 questions to level up!

## Kinematic formulas and projectile motion

- Average velocity for constant acceleration (Opens a modal)
- Acceleration of aircraft carrier take-off (Opens a modal)
- Deriving displacement as a function of time, acceleration, and initial velocity (Opens a modal)
- Plotting projectile displacement, acceleration, and velocity (Opens a modal)
- Projectile height given time (Opens a modal)
- Deriving max projectile displacement given time (Opens a modal)
- Impact velocity from given height (Opens a modal)
- Viewing g as the value of Earth's gravitational field near the surface (Opens a modal)
- The kinematic equations (Opens a modal)
- Setting up problems with constant acceleration Get 5 of 7 questions to level up!
- Kinematic formulas in one-dimension Get 5 of 7 questions to level up!

## Old videos on projectile motion

- Projectile motion (part 1) (Opens a modal)
- Projectile motion (part 2) (Opens a modal)
- Projectile motion (part 3) (Opens a modal)
- Projectile motion (part 4) (Opens a modal)
- Projectile motion (part 5) (Opens a modal)

Informative

Conversion Calculator

menu_lang.Categorie

Follow Us On:

## Kinematics Calculator

Select the parameters and write the required ones against them. The calculator will readily calculate results by employing kinematics equations.

Add this calculator to your site

## What is Kinematics?

What are kinematics formulas, few manual examples where you can use the kinematics calculator:, how to use this online kinematics calculator.

- First of all, choose which two variables you want to find from the dropdown menu.
- Then, enter the data in all the fields according to the selected option.
- Lastly hit the calculate button.
- Initial Velocity.
- Final Velocity.
- Displacement
- Acceleration
- Formulas that are used.

## Frequently Ask Questions (FAQ's):

How do i find average acceleration in kinematics, is time a kinematic variable, references:.

Free Fall Calculator

Frictional Force Calculator

Kinetic Energy Calculator

Projectile Motion Calculator

Potential Energy Calculator

Constant of Proportionality Calculator

Amplitude and Period Calculator

Put this calculator on your website to increase visitor engagement.

Just copy a given code & paste it right now into your website HTML (source) for suitable page.

Give Us Your Feedback

Get the ease of calculating anything from the source of calculator online

Email us at

© Copyrights 2024 by Calculator-Online.net

- TPC and eLearning
- What's NEW at TPC?
- Read Watch Interact
- Practice Review Test
- Teacher-Tools
- Subscription Selection
- Seat Calculator
- Ad Free Account
- Edit Profile Settings
- Classes (Version 2)
- Student Progress Edit
- Task Properties
- Export Student Progress
- Task, Activities, and Scores
- Metric Conversions Questions
- Metric System Questions
- Metric Estimation Questions
- Significant Digits Questions
- Proportional Reasoning
- Acceleration
- Distance-Displacement
- Dots and Graphs
- Graph That Motion
- Match That Graph
- Name That Motion
- Motion Diagrams
- Pos'n Time Graphs Numerical
- Pos'n Time Graphs Conceptual
- Up And Down - Questions
- Balanced vs. Unbalanced Forces
- Change of State
- Force and Motion
- Mass and Weight
- Match That Free-Body Diagram
- Net Force (and Acceleration) Ranking Tasks
- Newton's Second Law
- Normal Force Card Sort
- Recognizing Forces
- Air Resistance and Skydiving
- Solve It! with Newton's Second Law
- Which One Doesn't Belong?
- Component Addition Questions
- Head-to-Tail Vector Addition
- Projectile Mathematics
- Trajectory - Angle Launched Projectiles
- Trajectory - Horizontally Launched Projectiles
- Vector Addition
- Vector Direction
- Which One Doesn't Belong? Projectile Motion
- Forces in 2-Dimensions
- Being Impulsive About Momentum
- Explosions - Law Breakers
- Hit and Stick Collisions - Law Breakers
- Case Studies: Impulse and Force
- Impulse-Momentum Change Table
- Keeping Track of Momentum - Hit and Stick
- Keeping Track of Momentum - Hit and Bounce
- What's Up (and Down) with KE and PE?
- Energy Conservation Questions
- Energy Dissipation Questions
- Energy Ranking Tasks
- LOL Charts (a.k.a., Energy Bar Charts)
- Match That Bar Chart
- Words and Charts Questions
- Name That Energy
- Stepping Up with PE and KE Questions
- Case Studies - Circular Motion
- Circular Logic
- Forces and Free-Body Diagrams in Circular Motion
- Gravitational Field Strength
- Universal Gravitation
- Angular Position and Displacement
- Linear and Angular Velocity
- Angular Acceleration
- Rotational Inertia
- Balanced vs. Unbalanced Torques
- Getting a Handle on Torque
- Torque-ing About Rotation
- Properties of Matter
- Fluid Pressure
- Buoyant Force
- Sinking, Floating, and Hanging
- Pascal's Principle
- Flow Velocity
- Bernoulli's Principle
- Balloon Interactions
- Charge and Charging
- Charge Interactions
- Charging by Induction
- Conductors and Insulators
- Coulombs Law
- Electric Field
- Electric Field Intensity
- Polarization
- Case Studies: Electric Power
- Know Your Potential
- Light Bulb Anatomy
- I = ∆V/R Equations as a Guide to Thinking
- Parallel Circuits - ∆V = I•R Calculations
- Resistance Ranking Tasks
- Series Circuits - ∆V = I•R Calculations
- Series vs. Parallel Circuits
- Equivalent Resistance
- Period and Frequency of a Pendulum
- Pendulum Motion: Velocity and Force
- Energy of a Pendulum
- Period and Frequency of a Mass on a Spring
- Horizontal Springs: Velocity and Force
- Vertical Springs: Velocity and Force
- Energy of a Mass on a Spring
- Decibel Scale
- Frequency and Period
- Closed-End Air Columns
- Name That Harmonic: Strings
- Rocking the Boat
- Wave Basics
- Matching Pairs: Wave Characteristics
- Wave Interference
- Waves - Case Studies
- Color Addition and Subtraction
- Color Filters
- If This, Then That: Color Subtraction
- Light Intensity
- Color Pigments
- Converging Lenses
- Curved Mirror Images
- Law of Reflection
- Refraction and Lenses
- Total Internal Reflection
- Who Can See Who?
- Formulas and Atom Counting
- Atomic Models
- Bond Polarity
- Entropy Questions
- Cell Voltage Questions
- Heat of Formation Questions
- Reduction Potential Questions
- Oxidation States Questions
- Measuring the Quantity of Heat
- Hess's Law
- Oxidation-Reduction Questions
- Galvanic Cells Questions
- Thermal Stoichiometry
- Molecular Polarity
- Quantum Mechanics
- Balancing Chemical Equations
- Bronsted-Lowry Model of Acids and Bases
- Classification of Matter
- Collision Model of Reaction Rates
- Density Ranking Tasks
- Dissociation Reactions
- Complete Electron Configurations
- Elemental Measures
- Enthalpy Change Questions
- Equilibrium Concept
- Equilibrium Constant Expression
- Equilibrium Calculations - Questions
- Equilibrium ICE Table
- Intermolecular Forces Questions
- Ionic Bonding
- Lewis Electron Dot Structures
- Limiting Reactants
- Line Spectra Questions
- Mass Stoichiometry
- Measurement and Numbers
- Metals, Nonmetals, and Metalloids
- Metric Estimations
- Metric System
- Molarity Ranking Tasks
- Mole Conversions
- Name That Element
- Names to Formulas
- Names to Formulas 2
- Nuclear Decay
- Particles, Words, and Formulas
- Periodic Trends
- Precipitation Reactions and Net Ionic Equations
- Pressure Concepts
- Pressure-Temperature Gas Law
- Pressure-Volume Gas Law
- Chemical Reaction Types
- Significant Digits and Measurement
- States Of Matter Exercise
- Stoichiometry Law Breakers
- Stoichiometry - Math Relationships
- Subatomic Particles
- Spontaneity and Driving Forces
- Gibbs Free Energy
- Volume-Temperature Gas Law
- Acid-Base Properties
- Energy and Chemical Reactions
- Chemical and Physical Properties
- Valence Shell Electron Pair Repulsion Theory
- Writing Balanced Chemical Equations
- Mission CG1
- Mission CG10
- Mission CG2
- Mission CG3
- Mission CG4
- Mission CG5
- Mission CG6
- Mission CG7
- Mission CG8
- Mission CG9
- Mission EC1
- Mission EC10
- Mission EC11
- Mission EC12
- Mission EC2
- Mission EC3
- Mission EC4
- Mission EC5
- Mission EC6
- Mission EC7
- Mission EC8
- Mission EC9
- Mission RL1
- Mission RL2
- Mission RL3
- Mission RL4
- Mission RL5
- Mission RL6
- Mission KG7
- Mission RL8
- Mission KG9
- Mission RL10
- Mission RL11
- Mission RM1
- Mission RM2
- Mission RM3
- Mission RM4
- Mission RM5
- Mission RM6
- Mission RM8
- Mission RM10
- Mission LC1
- Mission RM11
- Mission LC2
- Mission LC3
- Mission LC4
- Mission LC5
- Mission LC6
- Mission LC8
- Mission SM1
- Mission SM2
- Mission SM3
- Mission SM4
- Mission SM5
- Mission SM6
- Mission SM8
- Mission SM10
- Mission KG10
- Mission SM11
- Mission KG2
- Mission KG3
- Mission KG4
- Mission KG5
- Mission KG6
- Mission KG8
- Mission KG11
- Mission F2D1
- Mission F2D2
- Mission F2D3
- Mission F2D4
- Mission F2D5
- Mission F2D6
- Mission KC1
- Mission KC2
- Mission KC3
- Mission KC4
- Mission KC5
- Mission KC6
- Mission KC7
- Mission KC8
- Mission AAA
- Mission SM9
- Mission LC7
- Mission LC9
- Mission NL1
- Mission NL2
- Mission NL3
- Mission NL4
- Mission NL5
- Mission NL6
- Mission NL7
- Mission NL8
- Mission NL9
- Mission NL10
- Mission NL11
- Mission NL12
- Mission MC1
- Mission MC10
- Mission MC2
- Mission MC3
- Mission MC4
- Mission MC5
- Mission MC6
- Mission MC7
- Mission MC8
- Mission MC9
- Mission RM7
- Mission RM9
- Mission RL7
- Mission RL9
- Mission SM7
- Mission SE1
- Mission SE10
- Mission SE11
- Mission SE12
- Mission SE2
- Mission SE3
- Mission SE4
- Mission SE5
- Mission SE6
- Mission SE7
- Mission SE8
- Mission SE9
- Mission VP1
- Mission VP10
- Mission VP2
- Mission VP3
- Mission VP4
- Mission VP5
- Mission VP6
- Mission VP7
- Mission VP8
- Mission VP9
- Mission WM1
- Mission WM2
- Mission WM3
- Mission WM4
- Mission WM5
- Mission WM6
- Mission WM7
- Mission WM8
- Mission WE1
- Mission WE10
- Mission WE2
- Mission WE3
- Mission WE4
- Mission WE5
- Mission WE6
- Mission WE7
- Mission WE8
- Mission WE9
- Vector Walk Interactive
- Name That Motion Interactive
- Kinematic Graphing 1 Concept Checker
- Kinematic Graphing 2 Concept Checker
- Graph That Motion Interactive
- Two Stage Rocket Interactive
- Rocket Sled Concept Checker
- Force Concept Checker
- Free-Body Diagrams Concept Checker
- Free-Body Diagrams The Sequel Concept Checker
- Skydiving Concept Checker
- Elevator Ride Concept Checker
- Vector Addition Concept Checker
- Vector Walk in Two Dimensions Interactive
- Name That Vector Interactive
- River Boat Simulator Concept Checker
- Projectile Simulator 2 Concept Checker
- Projectile Simulator 3 Concept Checker
- Hit the Target Interactive
- Turd the Target 1 Interactive
- Turd the Target 2 Interactive
- Balance It Interactive
- Go For The Gold Interactive
- Egg Drop Concept Checker
- Fish Catch Concept Checker
- Exploding Carts Concept Checker
- Collision Carts - Inelastic Collisions Concept Checker
- Its All Uphill Concept Checker
- Stopping Distance Concept Checker
- Chart That Motion Interactive
- Roller Coaster Model Concept Checker
- Uniform Circular Motion Concept Checker
- Horizontal Circle Simulation Concept Checker
- Vertical Circle Simulation Concept Checker
- Race Track Concept Checker
- Gravitational Fields Concept Checker
- Orbital Motion Concept Checker
- Angular Acceleration Concept Checker
- Balance Beam Concept Checker
- Torque Balancer Concept Checker
- Aluminum Can Polarization Concept Checker
- Charging Concept Checker
- Name That Charge Simulation
- Coulomb's Law Concept Checker
- Electric Field Lines Concept Checker
- Put the Charge in the Goal Concept Checker
- Circuit Builder Concept Checker (Series Circuits)
- Circuit Builder Concept Checker (Parallel Circuits)
- Circuit Builder Concept Checker (∆V-I-R)
- Circuit Builder Concept Checker (Voltage Drop)
- Equivalent Resistance Interactive
- Pendulum Motion Simulation Concept Checker
- Mass on a Spring Simulation Concept Checker
- Particle Wave Simulation Concept Checker
- Boundary Behavior Simulation Concept Checker
- Slinky Wave Simulator Concept Checker
- Simple Wave Simulator Concept Checker
- Wave Addition Simulation Concept Checker
- Standing Wave Maker Simulation Concept Checker
- Color Addition Concept Checker
- Painting With CMY Concept Checker
- Stage Lighting Concept Checker
- Filtering Away Concept Checker
- InterferencePatterns Concept Checker
- Young's Experiment Interactive
- Plane Mirror Images Interactive
- Who Can See Who Concept Checker
- Optics Bench (Mirrors) Concept Checker
- Name That Image (Mirrors) Interactive
- Refraction Concept Checker
- Total Internal Reflection Concept Checker
- Optics Bench (Lenses) Concept Checker
- Kinematics Preview
- Velocity Time Graphs Preview
- Moving Cart on an Inclined Plane Preview
- Stopping Distance Preview
- Cart, Bricks, and Bands Preview
- Fan Cart Study Preview
- Friction Preview
- Coffee Filter Lab Preview
- Friction, Speed, and Stopping Distance Preview
- Up and Down Preview
- Projectile Range Preview
- Ballistics Preview
- Juggling Preview
- Marshmallow Launcher Preview
- Air Bag Safety Preview
- Colliding Carts Preview
- Collisions Preview
- Engineering Safer Helmets Preview
- Push the Plow Preview
- Its All Uphill Preview
- Energy on an Incline Preview
- Modeling Roller Coasters Preview
- Hot Wheels Stopping Distance Preview
- Ball Bat Collision Preview
- Energy in Fields Preview
- Weightlessness Training Preview
- Roller Coaster Loops Preview
- Universal Gravitation Preview
- Keplers Laws Preview
- Kepler's Third Law Preview
- Charge Interactions Preview
- Sticky Tape Experiments Preview
- Wire Gauge Preview
- Voltage, Current, and Resistance Preview
- Light Bulb Resistance Preview
- Series and Parallel Circuits Preview
- Thermal Equilibrium Preview
- Linear Expansion Preview
- Heating Curves Preview
- Electricity and Magnetism - Part 1 Preview
- Electricity and Magnetism - Part 2 Preview
- Vibrating Mass on a Spring Preview
- Period of a Pendulum Preview
- Wave Speed Preview
- Slinky-Experiments Preview
- Standing Waves in a Rope Preview
- Sound as a Pressure Wave Preview
- DeciBel Scale Preview
- DeciBels, Phons, and Sones Preview
- Sound of Music Preview
- Shedding Light on Light Bulbs Preview
- Models of Light Preview
- Electromagnetic Radiation Preview
- Electromagnetic Spectrum Preview
- EM Wave Communication Preview
- Digitized Data Preview
- Light Intensity Preview
- Concave Mirrors Preview
- Object Image Relations Preview
- Snells Law Preview
- Reflection vs. Transmission Preview
- Magnification Lab Preview
- Reactivity Preview
- Ions and the Periodic Table Preview
- Periodic Trends Preview
- Chemical Reactions Preview
- Intermolecular Forces Preview
- Melting Points and Boiling Points Preview
- Bond Energy and Reactions Preview
- Reaction Rates Preview
- Ammonia Factory Preview
- Stoichiometry Preview
- Nuclear Chemistry Preview
- Gaining Teacher Access
- Algebra Based Physics Course
- Tasks and Classes
- Tasks - Classic
- Subscription
- Subscription Locator
- 1-D Kinematics
- Newton's Laws
- Vectors - Motion and Forces in Two Dimensions
- Momentum and Its Conservation
- Work and Energy
- Circular Motion and Satellite Motion
- Thermal Physics
- Static Electricity
- Electric Circuits
- Vibrations and Waves
- Sound Waves and Music
- Light and Color
- Reflection and Mirrors
- About the Physics Interactives
- Task Tracker
- Usage Policy
- Newtons Laws
- Vectors and Projectiles
- Forces in 2D
- Momentum and Collisions
- Circular and Satellite Motion
- Balance and Rotation
- Electromagnetism
- Waves and Sound
- Atomic Physics
- Forces in Two Dimensions
- Work, Energy, and Power
- Circular Motion and Gravitation
- Sound Waves
- 1-Dimensional Kinematics
- Circular, Satellite, and Rotational Motion
- Einstein's Theory of Special Relativity
- Waves, Sound and Light
- QuickTime Movies
- About the Concept Builders
- Pricing For Schools
- Directions for Version 2
- Measurement and Units
- Relationships and Graphs
- Rotation and Balance
- Vibrational Motion
- Reflection and Refraction
- Teacher Accounts
- Task Tracker Directions
- Kinematic Concepts
- Kinematic Graphing
- Wave Motion
- Sound and Music
- About CalcPad
- 1D Kinematics
- Vectors and Forces in 2D
- Simple Harmonic Motion
- Rotational Kinematics
- Rotation and Torque
- Rotational Dynamics
- Electric Fields, Potential, and Capacitance
- Transient RC Circuits
- Light Waves
- Units and Measurement
- Stoichiometry
- Molarity and Solutions
- Thermal Chemistry
- Acids and Bases
- Kinetics and Equilibrium
- Solution Equilibria
- Oxidation-Reduction
- Nuclear Chemistry
- Newton's Laws of Motion
- Work and Energy Packet
- Static Electricity Review
- NGSS Alignments
- 1D-Kinematics
- Projectiles
- Circular Motion
- Magnetism and Electromagnetism
- Graphing Practice
- About the ACT
- ACT Preparation
- For Teachers
- Other Resources
- Solutions Guide
- Solutions Guide Digital Download
- Motion in One Dimension
- Work, Energy and Power
- Algebra Based Physics
- Honors Physics
- Conceptual Physics
- Other Tools
- Frequently Asked Questions
- Purchasing the Download
- Purchasing the CD
- Purchasing the Digital Download
- About the NGSS Corner
- NGSS Search
- Force and Motion DCIs - High School
- Energy DCIs - High School
- Wave Applications DCIs - High School
- Force and Motion PEs - High School
- Energy PEs - High School
- Wave Applications PEs - High School
- Crosscutting Concepts
- The Practices
- Physics Topics
- NGSS Corner: Activity List
- NGSS Corner: Infographics
- About the Toolkits
- Position-Velocity-Acceleration
- Position-Time Graphs
- Velocity-Time Graphs
- Newton's First Law
- Newton's Second Law
- Newton's Third Law
- Terminal Velocity
- Projectile Motion
- Forces in 2 Dimensions
- Impulse and Momentum Change
- Momentum Conservation
- Work-Energy Fundamentals
- Work-Energy Relationship
- Roller Coaster Physics
- Satellite Motion
- Electric Fields
- Circuit Concepts
- Series Circuits
- Parallel Circuits
- Describing-Waves
- Wave Behavior Toolkit
- Standing Wave Patterns
- Resonating Air Columns
- Wave Model of Light
- Plane Mirrors
- Curved Mirrors
- Teacher Guide
- Using Lab Notebooks
- Current Electricity
- Light Waves and Color
- Reflection and Ray Model of Light
- Refraction and Ray Model of Light
- Classes (Legacy)
- Teacher Resources
- Subscriptions

- Newton's Laws
- Einstein's Theory of Special Relativity
- About Concept Checkers
- School Pricing
- Newton's Laws of Motion
- Newton's First Law
- Newton's Third Law

## Using the Kinematic Equations - Part 1 Video Tutorial

View video tutorial, help us help you.

## IMAGES

## VIDEO

## COMMENTS

A useful problem-solving strategy was presented for use with these equations and two examples were given that illustrated the use of the strategy. Then, the application of the kinematic equations and the problem-solving strategy to free-fall motion was discussed and illustrated. In this part of Lesson 6, several sample problems will be presented.

Solution: This is a basic kinematics problem, so we will explain the steps in detail. Step 1: Since all these problems are in one dimension, draw a horizontal axis (like the positive x x axis), and place the object on it, so that its motion matches the direction of the axis. Step 2: Specify the known and wanted information.

d = vi • t + ½ • a • t2. Once the equation is identified and written down, the next step of the strategy involves substituting known values into the equation and using proper algebraic steps to solve for the unknown information. This step is shown below. d = (0 m/s) • (4.1 s) + ½ • (6.00 m/s 2) • (4.10 s) 2.

If we know three of these five kinematic variables for an object undergoing constant acceleration, we can use a kinematic equation to solve for one of the unknown variables. The kinematic equations are listed below. 1. v = v 0 + a t. 2. Δ x = ( v + v 0 2) t. 3. Δ x = v 0 t + 1 2 a t 2. 4. v 2 = v 0 2 + 2 a Δ x.

Kinematic Equation 1: Review and Examples. To learn how to solve problems with these new, longer equations, we'll start with v=v_{0}+at. This kinematic equation shows a relationship between final velocity, initial velocity, constant acceleration, and time. We will explore this equation as it relates to physics word problems.

The kinematic equations are a set of four equations that can be utilized to predict unknown information about an object's motion if other information is known. The equations can be utilized for any motion that can be described as being either a constant velocity motion (an acceleration of 0 m/s/s) or a constant acceleration motion.

Apply problem-solving steps and strategies to solve problems of one-dimensional kinematics. ... Find an equation or set of equations that can help you solve the problem. Your list of knowns and unknowns can help here. ... Step 1. Solve the problem using strategies as outlined and in the format followed in the worked examples in the text. In the ...

Step one - Identify exactly what needs to be determined in the problem (identify the unknowns). Step two - Find an equation or set of equations that can help you solve the problem. Step three - Substitute the knowns along with their units into the appropriate equation, and obtain numerical solutions complete with units.

In kinematic problems, one should specify two points and apply the kinematic equation of motion to those. (a) Label the bottom of the cliff asOc . Therefore, given the initial velocity and the height of the cliff, one can use the following kinematic equation which relates those to the fall time. y −y 0 = 1 2 a yt 2 + v 0yt yO c −y 0 = 1 2 ...

This video tutorial lesson is the second of three lessons on the Kinematic Equations. The purpose of this video is to demonstrate through three examples an e...

Here the basic problem solving steps to use these equations: Step one - Identify exactly what needs to be determined in the problem (identify the unknowns). Step two - Find an equation or set of equations that can help you solve the problem. Step three - Substitute the knowns along with their units into the appropriate equation, and ...

If we know three of these five kinematic variables for an object undergoing constant acceleration, we can use a kinematic equation to solve for one of the unknown variables. The kinematic equations are listed below. 1. v = v 0 + a t. 2. Δ x = ( v + v 0 2) t. 3. Δ x = v 0 t + 1 2 a t 2. 4. v 2 = v 0 2 + 2 a Δ x.

A squirrel drops an acorn onto the head of an unsuspecting dog. The acorn falls 4.0 m before it lands on the dog. We can ignore air resistance. How many seconds did the acorn fall? Round the answer to two significant digits. Answer using a coordinate system where upward is positive. Learn for free about math, art, computer programming ...

This physics video tutorial focuses on kinematics in one dimension. It explains how to solve one-dimensional motion problems using kinematic equations and f... AP Physics 1: Algebra-Based

Kinematic equations relate the variables of motion to one another. Each equation contains four variables. The variables include acceleration (a), time (t), displacement (d), final velocity (vf), and initial velocity (vi). If values of three variables are known, then the others can be calculated using the equations. This page describes how this can be done for situations involving free fall motion.

Solving problems with kinematic equations can be broken down into simple steps; Step 1: Write out the variables that are given in the question, both known and unknown, and use the context of the question to deduce any quantities that aren't explicitly given e.g. for vertical motion a = ± 9.81 m s -2, an object which starts or finishes at rest will have u = 0 or v = 0

Licensed Physics Instructor with Industry Experience. About this tutor ›. Acceleration is the rate of change of velocity. The object changed its velocity from 22 m/s to 36 m/s which is an increase of 14 m/s. This occurred in 5 seconds so the acceleration is 14/5 = 2.8 m/s^2. Upvote • 0 Downvote.

The kinematic equations (Opens a modal) Practice. Setting up problems with constant acceleration Get 5 of 7 questions to level up! Kinematic formulas in one-dimension Get 5 of 7 questions to level up! Quiz 2. Level up on the above skills and collect up to 160 Mastery points Start quiz.

There are three key kinematic equations. If you carefully select the equation which most directly describes the situation in your problem, you will not only solve the problem in fewer steps but also understand it better. The three equations, written for motion in the x-direction, are: x = x 0 + v 0 Δt + ½ a (Δt) 2 (relates position and time)

Step one - Identify exactly what needs to be determined in the problem (identify the unknowns). Step two - Find an equation or set of equations that can help you solve the problem. Step three - Substitute the knowns along with their units into the appropriate equation, and obtain numerical solutions complete with units.

The calculator will readily calculate results by employing kinematics equations. This kinematics calculator will help you solve the uniform acceleration problems by using kinematics equations of physics. You can use our free kinematic equations solver to solve the equations that is used for motion in a straight line with constant acceleration.

The Using the Kinematic Equations - Part 1 Video Tutorial is the second of three lessons on the Kinematic Equations. The purpose of this video is to demonstrate through three examples an effective strategy for solving physics word problems using the kinematic equations. The video ends with a Learning Action Plan that will help make the learning ...