How to Write a Scientific Essay

How to write a scientific essay

When writing any essay it’s important to always keep the end goal in mind. You want to produce a document that is detailed, factual, about the subject matter and most importantly to the point.

Writing scientific essays will always be slightly different to when you write an essay for say English Literature . You need to be more analytical and precise when answering your questions. To help achieve this, you need to keep three golden rules in mind.

  • Analysing the question, so that you know exactly what you have to do

Planning your answer

  • Writing the essay

Now, let’s look at these steps in more detail to help you fully understand how to apply the three golden rules.

Analysing the question

  • Start by looking at the instruction. Essays need to be written out in continuous prose. You shouldn’t be using bullet points or writing in note form.
  • If it helps to make a particular point, however, you can use a diagram providing it is relevant and adequately explained.
  • Look at the topic you are required to write about. The wording of the essay title tells you what you should confine your answer to – there is no place for interesting facts about other areas.

The next step is to plan your answer. What we are going to try to do is show you how to produce an effective plan in a very short time. You need a framework to show your knowledge otherwise it is too easy to concentrate on only a few aspects.

For example, when writing an essay on biology we can divide the topic up in a number of different ways. So, if you have to answer a question like ‘Outline the main properties of life and system reproduction’

The steps for planning are simple. Firstly, define the main terms within the question that need to be addressed. Then list the properties asked for and lastly, roughly assess how many words of your word count you are going to allocate to each term.

Writing the Essay

The final step (you’re almost there), now you have your plan in place for the essay, it’s time to get it all down in black and white. Follow your plan for answering the question, making sure you stick to the word count, check your spelling and grammar and give credit where credit’s (always reference your sources).

How Tutors Breakdown Essays

An exceptional essay

  • reflects the detail that could be expected from a comprehensive knowledge and understanding of relevant parts of the specification
  • is free from fundamental errors
  • maintains appropriate depth and accuracy throughout
  • includes two or more paragraphs of material that indicates greater depth or breadth of study

A good essay

An average essay

  • contains a significant amount of material that reflects the detail that could be expected from a knowledge and understanding of relevant parts of the specification.

In practice this will amount to about half the essay.

  • is likely to reflect limited knowledge of some areas and to be patchy in quality
  • demonstrates a good understanding of basic principles with some errors and evidence of misunderstanding

A poor essay

  • contains much material which is below the level expected of a candidate who has completed the course
  • Contains fundamental errors reflecting a poor grasp of basic principles and concepts

how to write an scientific essay

Privacy Overview

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • CAREER FEATURE
  • 28 February 2018
  • Correction 16 March 2018

How to write a first-class paper

  • Virginia Gewin 0

Virginia Gewin is a freelance writer in Portland, Oregon.

You can also search for this author in PubMed   Google Scholar

Manuscripts may have a rigidly defined structure, but there’s still room to tell a compelling story — one that clearly communicates the science and is a pleasure to read. Scientist-authors and editors debate the importance and meaning of creativity and offer tips on how to write a top paper.

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 51 print issues and online access

185,98 € per year

only 3,65 € per issue

Rent or buy this article

Prices vary by article type

Prices may be subject to local taxes which are calculated during checkout

Nature 555 , 129-130 (2018)

doi: https://doi.org/10.1038/d41586-018-02404-4

Interviews have been edited for clarity and length.

Updates & Corrections

Correction 16 March 2018 : This article should have made clear that Altmetric is part of Digital Science, a company owned by Holtzbrinck Publishing Group, which is also the majority shareholder in Nature’s publisher, Springer Nature. Nature Research Editing Services is also owned by Springer Nature.

Related Articles

how to write an scientific essay

How I fled bombed Aleppo to continue my career in science

Career Feature 08 MAY 24

Illuminating ‘the ugly side of science’: fresh incentives for reporting negative results

Illuminating ‘the ugly side of science’: fresh incentives for reporting negative results

Hunger on campus: why US PhD students are fighting over food

Hunger on campus: why US PhD students are fighting over food

Career Feature 03 MAY 24

Mount Etna’s spectacular smoke rings and more — April’s best science images

Mount Etna’s spectacular smoke rings and more — April’s best science images

News 03 MAY 24

Plagiarism in peer-review reports could be the ‘tip of the iceberg’

Plagiarism in peer-review reports could be the ‘tip of the iceberg’

Nature Index 01 MAY 24

Research Positions in China Spallation Neutron Source

We are seeking 23 researchers with a proven track record of conducting advanced research and demonstrating outstanding academic achievements.

Dongguan, Guangdong, China

Spallation Neutron Source Science Center

how to write an scientific essay

Postdoctoral Associate- Electrophysiology

Houston, Texas (US)

Baylor College of Medicine (BCM)

how to write an scientific essay

Postdoctoral Scholar - Clinical Pharmacy & Translational Science

Memphis, Tennessee

The University of Tennessee Health Science Center (UTHSC)

how to write an scientific essay

Postdoctoral Scholar - Pathology

how to write an scientific essay

Faculty Positions in School of Engineering, Westlake University

The School of Engineering (SOE) at Westlake University is seeking to fill multiple tenured or tenure-track faculty positions in all ranks.

Hangzhou, Zhejiang, China

Westlake University

how to write an scientific essay

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

how to write an scientific essay

Writing the Scientific Paper

When you write about scientific topics to specialists in a particular scientific field, we call that scientific writing. (When you write to non-specialists about scientific topics, we call that science writing.)

The scientific paper has developed over the past three centuries into a tool to communicate the results of scientific inquiry. The main audience for scientific papers is extremely specialized. The purpose of these papers is twofold: to present information so that it is easy to retrieve, and to present enough information that the reader can duplicate the scientific study. A standard format with six main part helps readers to find expected information and analysis:

  • Title--subject and what aspect of the subject was studied.
  • Abstract--summary of paper: The main reason for the study, the primary results, the main conclusions
  • Introduction-- why the study was undertaken
  • Methods and Materials-- how the study was undertaken
  • Results-- what was found
  • Discussion-- why these results could be significant (what the reasons might be for the patterns found or not found)

There are many ways to approach the writing of a scientific paper, and no one way is right. Many people, however, find that drafting chunks in this order works best: Results, Discussion, Introduction, Materials & Methods, Abstract, and, finally, Title.

The title should be very limited and specific. Really, it should be a pithy summary of the article's main focus.

  • "Renal disease susceptibility and hypertension are under independent genetic control in the fawn hooded rat"
  • "Territory size in Lincoln's Sparrows ( Melospiza lincolnii )"
  • "Replacement of deciduous first premolars and dental eruption in archaeocete whales"
  • "The Radio-Frequency Single-Electron Transistor (RF-SET): A Fast and Ultrasensitive Electrometer"

This is a summary of your article. Generally between 50-100 words, it should state the goals, results, and the main conclusions of your study. You should list the parameters of your study (when and where was it conducted, if applicable; your sample size; the specific species, proteins, genes, etc., studied). Think of the process of writing the abstract as taking one or two sentences from each of your sections (an introductory sentence, a sentence stating the specific question addressed, a sentence listing your main techniques or procedures, two or three sentences describing your results, and one sentence describing your main conclusion).

Example One

Hypertension, diabetes and hyperlipidemia are risk factors for life-threatening complications such as end-stage renal disease, coronary artery disease and stroke. Why some patients develop complications is unclear, but only susceptibility genes may be involved. To test this notion, we studied crosses involving the fawn-hooded rat, an animal model of hypertension that develops chronic renal failure. Here, we report the localization of two genes, Rf-1 and Rf-2 , responsible for about half of the genetic variation in key indices of renal impairment. In addition, we localize a gene, Bpfh-1 , responsible for about 26% of the genetic variation in blood pressure. Rf-1 strongly affects the risk of renal impairment, but has no significant effect on blood pressure. Our results show that susceptibility to a complication of hypertension is under at least partially independent genetic control from susceptibility to hypertension itself.

Brown, Donna M, A.P. Provoost, M.J. Daly, E.S. Lander, & H.J. Jacob. 1996. "Renal disease susceptibility and hypertension are under indpendent genetic control in the faun-hooded rat." Nature Genetics , 12(1):44-51.

Example Two

We studied survival of 220 calves of radiocollared moose ( Alces alces ) from parturition to the end of July in southcentral Alaska from 1994 to 1997. Prior studies established that predation by brown bears ( Ursus arctos ) was the primary cause of mortality of moose calves in the region. Our objectives were to characterize vulnerability of moose calves to predation as influenced by age, date, snow depths, and previous reproductive success of the mother. We also tested the hypothesis that survival of twin moose calves was independent and identical to that of single calves. Survival of moose calves from parturition through July was 0.27 ± 0.03 SE, and their daily rate of mortality declined at a near constant rate with age in that period. Mean annual survival was 0.22 ± 0.03 SE. Previous winter's snow depths or survival of the mother's previous calf was not related to neonatal survival. Selection for early parturition was evidenced in the 4 years of study by a 6.3% increase in the hazard of death with each daily increase in parturition date. Although there was no significant difference in survival of twin and single moose calves, most twins that died disappeared together during the first 15 days after birth and independently thereafter, suggesting that predators usually killed both when encountered up to that age.

Key words: Alaska, Alces alces , calf survival, moose, Nelchina, parturition synchrony, predation

Testa, J.W., E.F. Becker, & G.R. Lee. 2000. "Temporal patterns in the survival of twin and single moose ( alces alces ) calves in southcentral Alaska." Journal of Mammalogy , 81(1):162-168.

Example Three

We monitored breeding phenology and population levels of Rana yavapaiensis by use of repeated egg mass censuses and visual encounter surveys at Agua Caliente Canyon near Tucson, Arizona, from 1994 to 1996. Adult counts fluctuated erratically within each year of the study but annual means remained similar. Juvenile counts peaked during the fall recruitment season and fell to near zero by early spring. Rana yavapaiensis deposited eggs in two distinct annual episodes, one in spring (March-May) and a much smaller one in fall (September-October). Larvae from the spring deposition period completed metamorphosis in earlv summer. Over the two years of study, 96.6% of egg masses successfully produced larvae. Egg masses were deposited during periods of predictable, moderate stream flow, but not during seasonal periods when flash flooding or drought were likely to affect eggs or larvae. Breeding phenology of Rana yavapaiensis is particularly well suited for life in desert streams with natural flow regimes which include frequent flash flooding and drought at predictable times. The exotic predators of R. yavapaiensis are less able to cope with fluctuating conditions. Unaltered stream flow regimes that allow natural fluctuations in stream discharge may provide refugia for this declining ranid frog from exotic predators by excluding those exotic species that are unable to cope with brief flash flooding and habitat drying.

Sartorius, Shawn S., and Philip C. Rosen. 2000. "Breeding phenology of the lowland leopard frog ( Rana yavepaiensis )." Southwestern Naturalist , 45(3): 267-273.

Introduction

The introduction is where you sketch out the background of your study, including why you have investigated the question that you have and how it relates to earlier research that has been done in the field. It may help to think of an introduction as a telescoping focus, where you begin with the broader context and gradually narrow to the specific problem addressed by the report. A typical (and very useful) construction of an introduction proceeds as follows:

"Echimyid rodents of the genus Proechimys (spiny rats) often are the most abundant and widespread lowland forest rodents throughout much of their range in the Neotropics (Eisenberg 1989). Recent studies suggested that these rodents play an important role in forest dynamics through their activities as seed predators and dispersers of seeds (Adler and Kestrell 1998; Asquith et al 1997; Forget 1991; Hoch and Adler 1997)." (Lambert and Adler, p. 70)

"Our laboratory has been involved in the analysis of the HLA class II genes and their association with autoimmune disorders such as insulin-dependent diabetes mellitus. As part of this work, the laboratory handles a large number of blood samples. In an effort to minimize the expense and urgency of transportation of frozen or liquid blood samples, we have designed a protocol that will preserve the integrity of lymphocyte DNA and enable the transport and storage of samples at ambient temperatures." (Torrance, MacLeod & Hache, p. 64)

"Despite the ubiquity and abundance of P. semispinosus , only two previous studies have assessed habitat use, with both showing a generalized habitat use. [brief summary of these studies]." (Lambert and Adler, p. 70)

"Although very good results have been obtained using polymerase chain reaction (PCR) amplification of DNA extracted from dried blood spots on filter paper (1,4,5,8,9), this preservation method yields limited amounts of DNA and is susceptible to contamination." (Torrance, MacLeod & Hache, p. 64)

"No attempt has been made to quantitatively describe microhabitat characteristics with which this species may be associated. Thus, specific structural features of secondary forests that may promote abundance of spiny rats remains unknown. Such information is essential to understand the role of spiny rats in Neotropical forests, particularly with regard to forest regeneration via interactions with seeds." (Lambert and Adler, p. 71)

"As an alternative, we have been investigating the use of lyophilization ("freeze-drying") of whole blood as a method to preserve sufficient amounts of genomic DNA to perform PCR and Southern Blot analysis." (Torrance, MacLeod & Hache, p. 64)

"We present an analysis of microhabitat use by P. semispinosus in tropical moist forests in central Panama." (Lambert and Adler, p. 71)

"In this report, we summarize our analysis of genomic DNA extracted from lyophilized whole blood." (Torrance, MacLeod & Hache, p. 64)

Methods and Materials

In this section you describe how you performed your study. You need to provide enough information here for the reader to duplicate your experiment. However, be reasonable about who the reader is. Assume that he or she is someone familiar with the basic practices of your field.

It's helpful to both writer and reader to organize this section chronologically: that is, describe each procedure in the order it was performed. For example, DNA-extraction, purification, amplification, assay, detection. Or, study area, study population, sampling technique, variables studied, analysis method.

Include in this section:

  • study design: procedures should be listed and described, or the reader should be referred to papers that have already described the used procedure
  • particular techniques used and why, if relevant
  • modifications of any techniques; be sure to describe the modification
  • specialized equipment, including brand-names
  • temporal, spatial, and historical description of study area and studied population
  • assumptions underlying the study
  • statistical methods, including software programs

Example description of activity

Chromosomal DNA was denatured for the first cycle by incubating the slides in 70% deionized formamide; 2x standard saline citrate (SSC) at 70ºC for 2 min, followed by 70% ethanol at -20ºC and then 90% and 100% ethanol at room temperature, followed by air drying. (Rouwendal et al ., p. 79)

Example description of assumptions

We considered seeds left in the petri dish to be unharvested and those scattered singly on the surface of a tile to be scattered and also unharvested. We considered seeds in cheek pouches to be harvested but not cached, those stored in the nestbox to be larderhoarded, and those buried in caching sites within the arena to be scatterhoarded. (Krupa and Geluso, p. 99)

Examples of use of specialized equipment

  • Oligonucleotide primers were prepared using the Applied Biosystems Model 318A (Foster City, CA) DNA Synthesizer according to the manufacturers' instructions. (Rouwendal et al ., p.78)
  • We first visually reviewed the complete song sample of an individual using spectrograms produced on a Princeton Applied Research Real Time Spectrum Analyzer (model 4512). (Peters et al ., p. 937)

Example of use of a certain technique

Frogs were monitored using visual encounter transects (Crump and Scott, 1994). (Sartorius and Rosen, p. 269)

Example description of statistical analysis

We used Wilcox rank-sum tests for all comparisons of pre-experimental scores and for all comparisons of hue, saturation, and brightness scores between various groups of birds ... All P -values are two-tailed unless otherwise noted. (Brawner et al ., p. 955)

This section presents the facts--what was found in the course of this investigation. Detailed data--measurements, counts, percentages, patterns--usually appear in tables, figures, and graphs, and the text of the section draws attention to the key data and relationships among data. Three rules of thumb will help you with this section:

  • present results clearly and logically
  • avoid excess verbiage
  • consider providing a one-sentence summary at the beginning of each paragraph if you think it will help your reader understand your data

Remember to use table and figures effectively. But don't expect these to stand alone.

Some examples of well-organized and easy-to-follow results:

  • Size of the aquatic habitat at Agua Caliente Canyon varied dramatically throughout the year. The site contained three rockbound tinajas (bedrock pools) that did not dry during this study. During periods of high stream discharge seven more seasonal pools and intermittent stretches of riffle became available. Perennial and seasonal pool levels remained stable from late February through early May. Between mid-May and mid-July seasonal pools dried until they disappeared. Perennial pools shrank in surface area from a range of 30-60 m² to 3-5- M². (Sartorius and Rosen, Sept. 2000: 269)

Notice how the second sample points out what is important in the accompanying figure. It makes us aware of relationships that we may not have noticed quickly otherwise and that will be important to the discussion.

A similar test result is obtained with a primer derived from the human ß-satellite... This primer (AGTGCAGAGATATGTCACAATG-CCCC: Oligo 435) labels 6 sites in the PRINS reaction: the chromosomes 1, one pair of acrocentrics and, more weakly, the chromosomes 9 (Fig. 2a). After 10 cycles of PCR-IS, the number of sites labeled has doubled (Fig. 2b); after 20 cycles, the number of sites labeled is the same but the signals are stronger (Fig. 2c) (Rouwendal et al ., July 93:80).

Related Information: Use Tables and Figures Effectively

Do not repeat all of the information in the text that appears in a table, but do summarize it. For example, if you present a table of temperature measurements taken at various times, describe the general pattern of temperature change and refer to the table.

"The temperature of the solution increased rapidly at first, going from 50º to 80º in the first three minutes (Table 1)."

You don't want to list every single measurement in the text ("After one minute, the temperature had risen to 55º. After two minutes, it had risen to 58º," etc.). There is no hard and fast rule about when to report all measurements in the text and when to put the measurements in a table and refer to them, but use your common sense. Remember that readers have all that data in the accompanying tables and figures, so your task in this section is to highlight key data, changes, or relationships.

In this section you discuss your results. What aspect you choose to focus on depends on your results and on the main questions addressed by them. For example, if you were testing a new technique, you will want to discuss how useful this technique is: how well did it work, what are the benefits and drawbacks, etc. If you are presenting data that appear to refute or support earlier research, you will want to analyze both your own data and the earlier data--what conditions are different? how much difference is due to a change in the study design, and how much to a new property in the study subject? You may discuss the implication of your research--particularly if it has a direct bearing on a practical issue, such as conservation or public health.

This section centers on speculation . However, this does not free you to present wild and haphazard guesses. Focus your discussion around a particular question or hypothesis. Use subheadings to organize your thoughts, if necessary.

This section depends on a logical organization so readers can see the connection between your study question and your results. One typical approach is to make a list of all the ideas that you will discuss and to work out the logical relationships between them--what idea is most important? or, what point is most clearly made by your data? what ideas are subordinate to the main idea? what are the connections between ideas?

Achieving the Scientific Voice

Eight tips will help you match your style for most scientific publications.

  • Develop a precise vocabulary: read the literature to become fluent, or at least familiar with, the sort of language that is standard to describe what you're trying to describe.
  • Once you've labeled an activity, a condition, or a period of time, use that label consistently throughout the paper. Consistency is more important than creativity.
  • Define your terms and your assumptions.
  • Include all the information the reader needs to interpret your data.
  • Remember, the key to all scientific discourse is that it be reproducible . Have you presented enough information clearly enough that the reader could reproduce your experiment, your research, or your investigation?
  • When describing an activity, break it down into elements that can be described and labeled, and then present them in the order they occurred.
  • When you use numbers, use them effectively. Don't present them so that they cause more work for the reader.
  • Include details before conclusions, but only include those details you have been able to observe by the methods you have described. Do not include your feelings, attitudes, impressions, or opinions.
  • Research your format and citations: do these match what have been used in current relevant journals?
  • Run a spellcheck and proofread carefully. Read your paper out loud, and/ or have a friend look over it for misspelled words, missing words, etc.

Applying the Principles, Example 1

The following example needs more precise information. Look at the original and revised paragraphs to see how revising with these guidelines in mind can make the text clearer and more informative:

Before: Each male sang a definite number of songs while singing. They start with a whistle and then go from there. Each new song is always different, but made up an overall repertoire that was completed before starting over again. In 16 cases (84%), no new songs were sung after the first 20, even though we counted about 44 songs for each bird.
After: Each male used a discrete number of song types in his singing. Each song began with an introductory whistle, followed by a distinctive, complex series of fluty warbles (Fig. 1). Successive songs were always different, and five of the 19 males presented their entire song repertoire before repeating any of their song types (i.e., the first IO recorded songs revealed the entire repertoire of 10 song types). Each song type recurred in long sequences of singing, so that we could be confident that we had recorded the entire repertoire of commonly used songs by each male. For 16 of the 19 males, no new song types were encountered after the first 20 songs, even though we analyzed and average of 44 songs/male (range 30-59).

Applying the Principles, Example 2

In this set of examples, even a few changes in wording result in a more precise second version. Look at the original and revised paragraphs to see how revising with these guidelines in mind can make the text clearer and more informative:

Before: The study area was on Mt. Cain and Maquilla Peak in British Columbia, Canada. The study area is about 12,000 ha of coastal montane forest. The area is both managed and unmanaged and ranges from 600-1650m. The most common trees present are mountain hemlock ( Tsuga mertensiana ), western hemlock ( Tsuga heterophylla ), yellow cedar ( Chamaecyparis nootkatensis ), and amabilis fir ( Abies amabilis ).
After: The study took place on Mt. Cain and Maquilla Peak (50'1 3'N, 126'1 8'W), Vancouver Island, British Columbia. The study area encompassed 11,800 ha of coastal montane forest. The landscape consisted of managed and unmanaged stands of coastal montane forest, 600-1650 m in elevation. The dominant tree species included mountain hemlock ( Tsuga mertensiana ), western hemlock ( Tsuga heterophylla ), yellow cedar ( Chamaecyparis nootkatensis ), and amabilis fir ( Abies amabilis ).

Two Tips for Sentence Clarity

Although you will want to consider more detailed stylistic revisions as you become more comfortable with scientific writing, two tips can get you started:

First, the verb should follow the subject as soon as possible.

Really Hard to Read : "The smallest of the URF's (URFA6L), a 207-nucleotide (nt) reading frame overlapping out of phase the NH2- terminal portion of the adenosinetriphosphatase (ATPase) subunit 6 gene has been identified as the animal equivalent of the recently discovered yeast H+-ATPase subunit gene."

Less Hard to Read : "The smallest of the UR-F's is URFA6L, a 207-nucleotide (nt) reading frame overlapping out of phase the NH2-terminal portion of the adenosinetriphosphatase (ATPase) subunit 6 gene; it has been identified as the animal equivalent of the recently discovered yeast H+-ATPase subunit 8 gene."

Second, place familiar information first in a clause, a sentence, or a paragraph, and put the new and unfamiliar information later.

More confusing : The epidermis, the dermis, and the subcutaneous layer are the three layers of the skin. A layer of dead skin cells makes up the epidermis, which forms the body's shield against the world. Blood vessels, carrying nourishment, and nerve endings, which relay information about the outside world, are found in the dermis. Sweat glands and fat cells make up the third layer, the subcutaneous layer.

Less confusing : The skin consists of three layers: the epidermis, the dermis, and the subcutaneous layer. The epidermis is made up of dead skin cells, and forms a protective shield between the body and the world. The dermis contains the blood vessels and nerve endings that nourish the skin and make it receptive to outside stimuli. The subcutaneous layer contains the sweat glands and fat cells which perform other functions of the skin.

Bibliography

  • Scientific Writing for Graduate Students . F. P. Woodford. Bethesda, MD: Council of Biology Editors, 1968. [A manual on the teaching of writing to graduate students--very clear and direct.]
  • Scientific Style and Format . Council of Biology Editors. Cambridge: Cambridge University Press, 1994.
  • "The science of scientific writing." George Gopen and Judith Swann. The American Scientist , Vol. 78, Nov.-Dec. 1990. Pp 550-558.
  • "What's right about scientific writing." Alan Gross and Joseph Harmon. The Scientist , Dec. 6 1999. Pp. 20-21.
  • "A Quick Fix for Figure Legends and Table Headings." Donald Kroodsma. The Auk , 117 (4): 1081-1083, 2000.

Wortman-Wunder, Emily, & Kate Kiefer. (1998). Writing the Scientific Paper. Writing@CSU . Colorado State University. https://writing.colostate.edu/resources/writing/guides/.

Writing an Introduction for a Scientific Paper

Dr. michelle harris, dr. janet batzli, biocore.

This section provides guidelines on how to construct a solid introduction to a scientific paper including background information, study question , biological rationale, hypothesis , and general approach . If the Introduction is done well, there should be no question in the reader’s mind why and on what basis you have posed a specific hypothesis.

Broad Question : based on an initial observation (e.g., “I see a lot of guppies close to the shore. Do guppies like living in shallow water?”). This observation of the natural world may inspire you to investigate background literature or your observation could be based on previous research by others or your own pilot study. Broad questions are not always included in your written text, but are essential for establishing the direction of your research.

Background Information : key issues, concepts, terminology, and definitions needed to understand the biological rationale for the experiment. It often includes a summary of findings from previous, relevant studies. Remember to cite references, be concise, and only include relevant information given your audience and your experimental design. Concisely summarized background information leads to the identification of specific scientific knowledge gaps that still exist. (e.g., “No studies to date have examined whether guppies do indeed spend more time in shallow water.”)

Testable Question : these questions are much more focused than the initial broad question, are specific to the knowledge gap identified, and can be addressed with data. (e.g., “Do guppies spend different amounts of time in water <1 meter deep as compared to their time in water that is >1 meter deep?”)

Biological Rationale : describes the purpose of your experiment distilling what is known and what is not known that defines the knowledge gap that you are addressing. The “BR” provides the logic for your hypothesis and experimental approach, describing the biological mechanism and assumptions that explain why your hypothesis should be true.

The biological rationale is based on your interpretation of the scientific literature, your personal observations, and the underlying assumptions you are making about how you think the system works. If you have written your biological rationale, your reader should see your hypothesis in your introduction section and say to themselves, “Of course, this hypothesis seems very logical based on the rationale presented.”

  • A thorough rationale defines your assumptions about the system that have not been revealed in scientific literature or from previous systematic observation. These assumptions drive the direction of your specific hypothesis or general predictions.
  • Defining the rationale is probably the most critical task for a writer, as it tells your reader why your research is biologically meaningful. It may help to think about the rationale as an answer to the questions— how is this investigation related to what we know, what assumptions am I making about what we don’t yet know, AND how will this experiment add to our knowledge? *There may or may not be broader implications for your study; be careful not to overstate these (see note on social justifications below).
  • Expect to spend time and mental effort on this. You may have to do considerable digging into the scientific literature to define how your experiment fits into what is already known and why it is relevant to pursue.
  • Be open to the possibility that as you work with and think about your data, you may develop a deeper, more accurate understanding of the experimental system. You may find the original rationale needs to be revised to reflect your new, more sophisticated understanding.
  • As you progress through Biocore and upper level biology courses, your rationale should become more focused and matched with the level of study e ., cellular, biochemical, or physiological mechanisms that underlie the rationale. Achieving this type of understanding takes effort, but it will lead to better communication of your science.

***Special note on avoiding social justifications: You should not overemphasize the relevance of your experiment and the possible connections to large-scale processes. Be realistic and logical —do not overgeneralize or state grand implications that are not sensible given the structure of your experimental system. Not all science is easily applied to improving the human condition. Performing an investigation just for the sake of adding to our scientific knowledge (“pure or basic science”) is just as important as applied science. In fact, basic science often provides the foundation for applied studies.

Hypothesis / Predictions : specific prediction(s) that you will test during your experiment. For manipulative experiments, the hypothesis should include the independent variable (what you manipulate), the dependent variable(s) (what you measure), the organism or system , the direction of your results, and comparison to be made.

If you are doing a systematic observation , your hypothesis presents a variable or set of variables that you predict are important for helping you characterize the system as a whole, or predict differences between components/areas of the system that help you explain how the system functions or changes over time.

Experimental Approach : Briefly gives the reader a general sense of the experiment, the type of data it will yield, and the kind of conclusions you expect to obtain from the data. Do not confuse the experimental approach with the experimental protocol . The experimental protocol consists of the detailed step-by-step procedures and techniques used during the experiment that are to be reported in the Methods and Materials section.

Some Final Tips on Writing an Introduction

  • As you progress through the Biocore sequence, for instance, from organismal level of Biocore 301/302 to the cellular level in Biocore 303/304, we expect the contents of your “Introduction” paragraphs to reflect the level of your coursework and previous writing experience. For example, in Biocore 304 (Cell Biology Lab) biological rationale should draw upon assumptions we are making about cellular and biochemical processes.
  • Be Concise yet Specific: Remember to be concise and only include relevant information given your audience and your experimental design. As you write, keep asking, “Is this necessary information or is this irrelevant detail?” For example, if you are writing a paper claiming that a certain compound is a competitive inhibitor to the enzyme alkaline phosphatase and acts by binding to the active site, you need to explain (briefly) Michaelis-Menton kinetics and the meaning and significance of Km and Vmax. This explanation is not necessary if you are reporting the dependence of enzyme activity on pH because you do not need to measure Km and Vmax to get an estimate of enzyme activity.
  • Another example: if you are writing a paper reporting an increase in Daphnia magna heart rate upon exposure to caffeine you need not describe the reproductive cycle of magna unless it is germane to your results and discussion. Be specific and concrete, especially when making introductory or summary statements.

Where Do You Discuss Pilot Studies? Many times it is important to do pilot studies to help you get familiar with your experimental system or to improve your experimental design. If your pilot study influences your biological rationale or hypothesis, you need to describe it in your Introduction. If your pilot study simply informs the logistics or techniques, but does not influence your rationale, then the description of your pilot study belongs in the Materials and Methods section.  

How will introductions be evaluated? The following is part of the rubric we will be using to evaluate your papers.

Scientific Writing: Structuring a scientific article

  • Resume/Cover letter
  • Structuring a scientific article
  • AMA Citation Style This link opens in a new window
  • APA Citation Style This link opens in a new window
  • Scholarly Publishing This link opens in a new window

How to Structure a Scientific Article

Many scientific articles include the following elements:

I. Abstract: The abstract should briefly summarize the contents of your article. Be sure to include a quick overview of the focus, results and conclusion of your study.

II. Introduction:  The introduction should include any relevant background information and articulate the idea that is being investigated. Why is this study unique? If others have performed research on the topic, include a literature review. 

III. Methods and Materials:  The methods and materials section should provide information on how the study was conducted and what materials were included. Other researchers should be able to reproduce your study based on the information found in this section. 

IV. Results:  The results sections includes the data produced by your study. It should reflect an unbiased account of the study's findings. 

V.  Discussion and Conclusion:  The discussion section provides information on what researches felt was significant and analyzes the data. You may also want to provide final thoughts and ideas for further research in the conclusion section. 

For more information, see How to Read a Scientific Paper.  

Scientific Article Infographic

  • Structure of a Scientific Article
  • << Previous: Resume/Cover letter
  • Next: AMA Citation Style >>

Creative Commons License

  • Last Updated: Jan 23, 2023 11:48 AM
  • URL: https://guides.himmelfarb.gwu.edu/scientific-writing

GW logo

  • Himmelfarb Intranet
  • Privacy Notice
  • Terms of Use
  • GW is committed to digital accessibility. If you experience a barrier that affects your ability to access content on this page, let us know via the Accessibility Feedback Form .
  • Himmelfarb Health Sciences Library
  • 2300 Eye St., NW, Washington, DC 20037
  • Phone: (202) 994-2850
  • [email protected]
  • https://himmelfarb.gwu.edu
  • For Authors
  • Collaboration
  • Privacy Policy

Atlas of Science

  • Conferences & Symposiums

Tools & Methods

How to successfully write a scientific essay.

Posted by Cody Rhodes

If you are undertaking a course which relates to science, you are more or less apt to write an essay on science. You need to know how to write a science essay irrespective of whether your professor gives you a topic or you come up with one. Additionally, you need to have an end objective in mind. Writing a science essay necessitates that you produce an article which has all the details and facts about the subject matter and it ought to be to the point. Also, you need to know and understand that science essays are more or less different from other types of essays. They require you to be analytical and precise when answering questions. Hence, this can be quite challenging and tiresome. However, that should not deter you from learning how to write your paper. You can always inquire for pre-written research papers for sale from writing services like EssayZoo.

Also, you can read other people’s articles and find out how they produce and develop unique and high-quality papers. Moreover, this will help you understand how to approach your essays in different ways. Nonetheless, if you want to learn how to write a scientific paper in a successful manner, consider the following tips.

How to successfully write a scientific essay

Select a topic for your article Like any other type of essay, you need to have a topic before you start the actual writing process. Your professor or instructor may give you a science essay topic to write about or ask you to come up with yours. When selecting a topic for your paper, ensure that you choose one you can write about. Do not pick a complex topic which can make the writing process boring and infuriating for you. Instead, choose one that you are familiar with. Select a topic you will not struggle gathering information about. Also, you need to have an interest in it. If you are unable to come up with a good topic, trying reading other people’s articles. This will help you develop a topic with ease.

Draft a plan After selecting a topic, the next step is drafting a plan or an outline. An outline is fundamental in writing a scientific essay as it is the foundation on which your paper is built. Additionally, it acts as a road map for your article. Hence, you need to incorporate all the thoughts and ideas you will include in your essay in the outline. You need to know what you will include in the introduction, the body, and the conclusion. Drafting a plan helps you save a lot of time when writing your paper. Also, it helps you to keep track of the primary objective of your article.

Start writing the article After drafting a plan, you can begin the writing process. Writing your paper will be smooth and easier as you have an outline which helps simplify the writing process. When writing your article, begin with a strong hook for your introduction. Dictate the direction your paper will take. Provide some background information and state the issue you will discuss as well as the solutions you have come up with. Arrange the body of your article according to the essay structure you will use to guide you. Also, ensure that you use transitory sentences to show the relationship between the paragraphs of your article. Conclude your essay by summarizing all the key points. Also, highlight the practical potential of our findings and their impacts.

Proofread and check for errors in the paper Before submitting or forwarding your article, it is fundamental that you proofread and correct all the errors that you come across. Delivering a paper that is full of mistakes can affect your overall performance in a negative manner. Thus, it is essential you revise your paper and check for errors. Correct all of them. Ask a friend to proofread your paper. He or she may spot some of the mistakes you did not come across.

In conclusion, writing a scientific essay differs from writing other types of papers. A scientific essay requires you to produce an article which has all the information and facts about the subject matter and it ought to be to the point. Nonetheless, the scientific essay formats similar to the format of any other essay: introduction, body, and conclusion. You need to use your outline to guide you through the writing process. To learn how to write a scientific essay in a successful manner, consider the tips above.

Download PDF

Related Articles:

2 responses to how to successfully write a scientific essay.

' src=

Hai…you have posted great article, it really helpful to us.. I will refer this page to my friends; I hope you will like to read – scientific research paper writing service

' src=

Nice concentration on education blogs. Such a great work regarding education and online study to gain knowledge and time.

Leave a Reply Cancel reply

You must be logged in to post a comment.

Top Keywords

Diabetes | Alzheimer’s disease Cancer | Breast cancer | Tumor Blood pressure | Heart Brain | Kidney | Liver | Lung Stress | Pain | Therapy Infection | Inflammation | Injury DNA | RNA | Receptor | Nanoparticles Bacteria | Virus | Plant

See more …

how to write an scientific essay

Proofread or Perish: Editing your scientific writing for successful publication

how to write an scientific essay

Lab Leader makes software applications for experiment design in life science

how to write an scientific essay

Cyagen Biosciences – Helping you choose the right animal model for your research

Labcollector lims and eln for improving productivity in the lab.

how to write an scientific essay

Image Cytometer – NucleoCounter® NC-3000™

Recent posts.

  • Does UV-B radiation modify gene expression?
  • Ferrate technology: an innovative solution for sustainable sewer and wastewater management
  • Sleep abnormalities in different clinical stages of psychosis
  • A compact high yield isotope enrichment system
  • Late second trimester miscarriages

Facebook

Science Essay

Betty P.

Learn How to Write an A+ Science Essay

11 min read

science essay

People also read

150+ Engaging Science Essay Topics To Hook Your Readers

8 Impressive Science Essay Examples for Students

Science Fiction Essay: Examples & Easy Steps Guide

Essay About Science and Technology| Tips & Examples

Essay About Science in Everyday Life - Samples & Writing Tips

Check Out 5 Impressive Essay About Science Fair Examples

Did you ever imagine that essay writing was just for students in the Humanities? Well, think again! 

For science students, tackling a science essay might seem challenging, as it not only demands a deep understanding of the subject but also strong writing skills. 

However, fret not because we've got your back!

With the right steps and tips, you can write an engaging and informative science essay easily!

This blog will take you through all the important steps of writing a science essay, from choosing a topic to presenting the final work.

So, let's get into it!

Arrow Down

  • 1. What Is a Science Essay?
  • 2. How To Write a Science Essay?
  • 3. How to Structure a Science Essay?
  • 4. Science Essay Examples
  • 5. How to Choose the Right Science Essay Topic
  • 6. Science Essay Topics
  • 7. Science Essay Writing Tips

What Is a Science Essay?

A science essay is an academic paper focusing on a scientific topic from physics, chemistry, biology, or any other scientific field.

Science essays are mostly expository. That is, they require you to explain your chosen topic in detail. However, they can also be descriptive and exploratory.

A descriptive science essay aims to describe a certain scientific phenomenon according to established knowledge.

On the other hand, the exploratory science essay requires you to go beyond the current theories and explore new interpretations.

So before you set out to write your essay, always check out the instructions given by your instructor. Whether a science essay is expository or exploratory must be clear from the start. Or, if you face any difficulty, you can take help from a science essay writer as well. 

Moreover, check out this video to understand scientific writing in detail.

Now that you know what it is, let's look at the steps you need to take to write a science essay. 

Order Essay

Paper Due? Why Suffer? That's our Job!

How To Write a Science Essay?

Writing a science essay is not as complex as it may seem. All you need to do is follow the right steps to create an impressive piece of work that meets the assigned criteria.

Here's what you need to do:

Choose Your Topic

A good topic forms the foundation for an engaging and well-written essay. Therefore, you should ensure that you pick something interesting or relevant to your field of study. 

To choose a good topic, you can brainstorm ideas relating to the subject matter. You may also find inspiration from other science essays or articles about the same topic.

Conduct Research

Once you have chosen your topic, start researching it thoroughly to develop a strong argument or discussion in your essay. 

Make sure you use reliable sources and cite them properly . You should also make notes while conducting your research so that you can reference them easily when writing the essay. Or, you can get expert assistance from an essay writing service to manage your citations. 

Create an Outline

A good essay outline helps to organize the ideas in your paper. It serves as a guide throughout the writing process and ensures you don’t miss out on important points.

An outline makes it easier to write a well-structured paper that flows logically. It should be detailed enough to guide you through the entire writing process.

However, your outline should be flexible, and it's sometimes better to change it along the way to improve your structure.

Start Writing

Once you have a good outline, start writing the essay by following your plan.

The first step in writing any essay is to draft it. This means putting your thoughts down on paper in a rough form without worrying about grammar or spelling mistakes.

So begin your essay by introducing the topic, then carefully explain it using evidence and examples to support your argument.

Don't worry if your first draft isn't perfect - it's just the starting point!

Proofread & Edit

After finishing your first draft, take time to proofread and edit it for grammar and spelling mistakes.

Proofreading is the process of checking for grammatical mistakes. It should be done after you have finished writing your essay.

Editing, on the other hand, involves reviewing the structure and organization of your essay and its content. It should be done before you submit your final work.

Both proofreading and editing are essential for producing a high-quality essay. Make sure to give yourself enough time to do them properly!

After revising the essay, you should format it according to the guidelines given by your instructor. This could involve using a specific font size, page margins, or citation style.

Most science essays are written in Times New Roman font with 12-point size and double spacing. The margins should be 1 inch on all sides, and the text should be justified.

In addition, you must cite your sources properly using a recognized citation style such as APA , Chicago , or Harvard . Make sure to follow the guidelines closely so that your essay looks professional.

Following these steps will help you create an informative and well-structured science essay that meets the given criteria.

Tough Essay Due? Hire Tough Writers!

How to Structure a Science Essay?

A basic science essay structure includes an introduction, body, and conclusion. 

Let's look at each of these briefly.

  • Introduction

Your essay introduction should introduce your topic and provide a brief overview of what you will discuss in the essay. It should also state your thesis or main argument.

For instance, a thesis statement for a science essay could be, 

"The human body is capable of incredible feats, as evidenced by the many athletes who have competed in the Olympic games."

The body of your essay will contain the bulk of your argument or discussion. It should be divided into paragraphs, each discussing a different point.

For instance, imagine you were writing about sports and the human body. 

Your first paragraph can discuss the physical capabilities of the human body. 

The second paragraph may be about the physical benefits of competing in sports. 

Similarly, in the third paragraph, you can present one or two case studies of specific athletes to support your point. 

Once you have explained all your points in the body, it’s time to conclude the essay.

Your essay conclusion should summarize the main points of your essay and leave the reader with a sense of closure.

In the conclusion, you reiterate your thesis and sum up your arguments. You can also suggest implications or potential applications of the ideas discussed in the essay. 

By following this structure, you will create a well-organized essay.

Check out a few example essays to see this structure in practice.

Science Essay Examples

A great way to get inspired when writing a science essay is to look at other examples of successful essays written by others. 

Here are some examples that will give you an idea of how to write your essay.

Science Essay About Genetics - Science Essay Example

Environmental Science Essay Example | PDF Sample

The Science of Nanotechnology

Science, Non-Science, and Pseudo-Science

The Science Of Science Education

Science in our Daily Lives

Short Science Essay Example

Let’s take a look at a short science essay: 

Want to read more essay examples? Here, you can find more science essay examples to learn from.

How to Choose the Right Science Essay Topic

Choosing the right science essay topic is a critical first step in crafting a compelling and engaging essay. Here's a concise guide on how to make this decision wisely:

  • Consider Your Interests: Start by reflecting on your personal interests within the realm of science. Selecting a topic that genuinely fascinates you will make the research and writing process more enjoyable and motivated.
  • Relevance to the Course: Ensure that your chosen topic aligns with your course or assignment requirements. Read the assignment guidelines carefully to understand the scope and focus expected by your instructor.
  • Current Trends and Issues: Stay updated with the latest scientific developments and trends. Opting for a topic that addresses contemporary issues not only makes your essay relevant but also demonstrates your awareness of current events in the field.
  • Narrow Down the Scope: Science is vast, so narrow your topic to a manageable scope. Instead of a broad subject like "Climate Change," consider a more specific angle like "The Impact of Melting Arctic Ice on Global Sea Levels."
  • Available Resources: Ensure that there are sufficient credible sources and research materials available for your chosen topic. A lack of resources can hinder your research efforts.
  • Discuss with Your Instructor: If you're uncertain about your topic choice, don't hesitate to consult your instructor or professor. They can provide valuable guidance and may even suggest specific topics based on your academic goals.

Science Essay Topics

Choosing an appropriate topic for a science essay is one of the first steps in writing a successful paper.

Here are a few science essay topics to get you started:

  • How space exploration affects our daily lives?
  • How has technology changed our understanding of medicine?
  • Are there ethical considerations to consider when conducting scientific research?
  • How does climate change affect the biodiversity of different parts of the world?
  • How can artificial intelligence be used in medicine?
  • What impact have vaccines had on global health?
  • What is the future of renewable energy?
  • How do we ensure that genetically modified organisms are safe for humans and the environment?
  • The influence of social media on human behavior: A social science perspective
  • What are the potential risks and benefits of stem cell therapy?

Important science topics can cover anything from space exploration to chemistry and biology. So you can choose any topic according to your interests!

Need more topics? We have gathered 100+ science essay topics to help you find a great topic!

Continue reading to find some tips to help you write a successful science essay. 

Science Essay Writing Tips

Once you have chosen a topic and looked at examples, it's time to start writing the science essay.

Here are some key tips for a successful essay:

  • Research thoroughly

Make sure you do extensive research before you begin writing your paper. This will ensure that the facts and figures you include are accurate and supported by reliable sources.

  • Use clear language

Avoid using jargon or overly technical language when writing your essay. Plain language is easier to understand and more engaging for readers.

  • Referencing

Always provide references for any information you include in your essay. This will demonstrate that you acknowledge other people's work and show that the evidence you use is credible.

Make sure to follow the basic structure of an essay and organize your thoughts into clear sections. This will improve the flow and make your essay easier to read.

  • Ask someone to proofread

It’s also a good idea to get someone else to proofread your work as they may spot mistakes that you have missed.

These few tips will help ensure that your science essay is well-written and informative!

You've learned the steps to writing a successful science essay and looked at some examples and topics to get you started. 

Make sure you thoroughly research, use clear language, structure your thoughts, and proofread your essay. With these tips, you’re sure to write a great science essay! 

Do you still need expert help writing a science essay? Our science essay writing service is here to help. With our team of professional writers, you can rest assured that your essay will be written to the highest standards.

Contact our essay service now to get started!

Also, do not forget to try our essay typer tool for quick and cost-free aid with your essays!

AI Essay Bot

Write Essay Within 60 Seconds!

Betty P.

Betty is a freelance writer and researcher. She has a Masters in literature and enjoys providing writing services to her clients. Betty is an avid reader and loves learning new things. She has provided writing services to clients from all academic levels and related academic fields.

Get Help

Paper Due? Why Suffer? That’s our Job!

Keep reading

science essay topics

UCI Libraries Mobile Site

  • Langson Library
  • Science Library
  • Grunigen Medical Library
  • Law Library
  • Connect From Off-Campus
  • Accessibility
  • Gateway Study Center

Libaries home page

Email this link

Writing a scientific paper.

  • Writing a lab report

What is a "good" title?

"title checklist" from: how to write a good scientific paper. chris a. mack. spie. 2018., other hints for writing a title.

  • INTRODUCTION
  • LITERATURE CITED
  • Bibliography of guides to scientific writing and presenting
  • Peer Review
  • Presentations
  • Lab Report Writing Guides on the Web

The title will be read by many people. Only a few will read the entire paper, therefore all words in the title should be chosen with care. Too short a title is not helpful to the potential reader. However too long a title can sometimes be even less meaningful. Remember a title is not an abstract. Also a title is not a sentence.

Goals: • Fewest possible words that describe the contents of the paper. • Avoid waste words like "Studies on", or "Investigations on" • Use specific terms rather than general • Watch your word order and syntax • Avoid abbreviations and jargon

 The title should be clear and informative, and should reflect the aim and approach of the work.

 The title should be as specific as possible while still describing the full range of the work. Does the title, seen in isolation, give a full yet concise and specific indication of the work reported?

 Do not mention results or conclusions in the title.

 Avoid: overly clever or punny titles that will not fare well with search engines or international audiences; titles that are too short to be descriptive or too long to be read; jargon, acronyms, or trademarked terms. 

  • Whenever possible, use a declarative rather than a neutral title
  • Don't end your title with a question mark?
  • Begin with the keywords
  • Use verbs instead of abstract nouns
  • Avoid abbrev. in the title

From: How to Write and Illustrate a Scientific Paper (2008)

  • << Previous: Writing a lab report
  • Next: ABSTRACT >>
  • Last Updated: Aug 4, 2023 9:33 AM
  • URL: https://guides.lib.uci.edu/scientificwriting

Off-campus? Please use the Software VPN and choose the group UCIFull to access licensed content. For more information, please Click here

Software VPN is not available for guests, so they may not have access to some content when connecting from off-campus.

  • The Scientist University

How to Write a Good Introduction Section

A strong narrative is as integral a part of science writing as it is for any other form of communication..

Nathan Ni, PhD Headshot

Nathan Ni holds a PhD from Queens University. He is a science editor for The Scientist’s Creative Services Team who strives to better understand and communicate the relationships between health and disease.

View full profile.

Learn about our editorial policies.

A person sitting at a laboratory bench, typing on a laptop while looking at notes on a clipboard.

First impressions are important. Scientists need to make their work stand out among a sea of others. However, many mistakenly believe that first impressions are formed based only on titles and abstracts. In actuality, the introduction section is critical to making a real impression on the audience. The introduction is where authors outline their research topic and describe their study. It is where they provide background information and showcase their writing and argumentation styles. For these reasons, the introduction engages the audience in a deeper way than the formalities and rigidities of the title and abstract can afford. To use a fishing analogy: if the title and the abstract serve as the hook and the bait, then the introduction is the process of actually reeling the fish into the boat.

Good Introductions Are Important Guides

In contrast to the constraints placed on the title and abstract, the introduction is the first real opportunity for the scientist to engage with their audience and showcase and convey their passions and motivations for the study in question. This opportunity is somewhat of a double-edged sword. Study authors inevitably have a treasure trove of knowledge and expertise when it comes to their projects and their fields. However, they must remember that the audience does not necessarily have this background information—and that they are only engaging with their audience for a finite amount of time. Despite the urge to excitedly write about all of the different aspects and intricacies of the project, it is very important that authors keep their introductions simple and well organized. 

Therefore, the introduction should move from broad scopes to narrow focuses as the audience reads further. The author should direct the reader along this journey, focusing on topics with direct relevance to what was investigated in the study. A broad fact introduced early on should be linked or paired with a more specific fact along the same lines of thought, eventually culminating in how this information led to the motivation behind the study itself. It is vital to not go off on tangents or talk about things that are too esoteric. A confused audience is an audience that tends not to read further.

Applying Common Principles Across Well-Known and Niche Subjects

Writers can apply these principles in more specialized manuscripts focusing on a single entity rather than a well-known pathology. Consider the following example from a manuscript by cell biologist Luis R. Cruz-Vera’s research team from the University of Alabama in Huntsville, published in the Journal of Biological Chemistry. 1

Here, they divide the opening paragraph of their introduction into four distinct sections. First, they explain what ribosome arresting peptides (RAPs) are and what they do.

Ribosome arresting peptides (RAPs) are nascent polypeptides that act in cis on the translating ribosome to control the expression of genes by inducing ribosome arrest during translation elongation or termination. RAPs commonly sense external forces or low molecular weight compounds in the environment that spatially and temporally contribute to the expression of genes. 

Then they introduce the two different types of RAPs.

RAPs such as SecM that sense external forces on the ribosome are typically large, because these nascent peptides have a domain that functions outside of the ribosome. In contrast, those that sense small molecules inside of the ribosome, such as TnaC are smaller. 

They describe how each type works via a different mechanism.

Typically, larger RAPs interact with cellular factors that can control their capacity for arresting ribosomes. Because of their size and proximity to ribosomal components, large RAPs clearly show two structural domains, a sensor domain and an arresting domain. At the moment of the arrest for the large RAPs, the sensor domain is located outside the ribosome exit tunnel, whereas the arresting domain remains inside the tunnel. The short RAPs currently characterized interact with the compounds that they sense by using the ribosome exit tunnel as a binding surface. For these short RAPs, it has been determined that conserved amino acid residues are necessary to induce arrest by either directly binding the effector molecule or by acting at the peptidyl-transferase center (PTC) during ribosome arrest. 

And finally, they conclude by highlighting a knowledge gap in how small RAPs operate versus what is already known about large RAPs.

However, because the size of short RAPs ranges from only a few to a couple of dozen amino acids, as in the case of TnaC, it has remained unclear whether short RAPs are constituted by the two independent sensor and stalling domains, as it has been observed with larger RAPs.

In this way, the authors make a natural progression from “why this topic is important” to “what is known about this topic,” setting the stage for “what is unknown about this topic and why it should be studied.” 

Gradually Moving from Broad to Narrow

A three-step funnel explaining how the introduction guides the reader from summary to specific. The first phase should lay out the question that needs to be answered. The second phase should delve deeper into that question, and the final phase should tie what is already known with what is explored in this study.

These principles can be further transferred towards the introductory section as a whole. The first paragraph should serve as an introduction to the field and the topic. The middle paragraph(s) provide exposition and detail regarding what is known and unknown, and what has already been done and still remains to do, and the final paragraph outlines the study and its principle findings, providing a transition into either the materials and methods or the results section. 

For example, this work by radiation oncologist Eric Deutsch’s group at Université Paris-Saclay, published in PLoS One , 2 opens by succinctly explaining a scientific problem: “ the threat of extensive dispersion of radioactive isotopes within populated areas that would have an unfortunate effect on human health has increased drastically .” It then offers the call to action necessitated by this problem: “ the development of a decorporating agent capable of effectively mitigating the effects of a wide range of isotopes is critical .”

In the next two paragraphs, the study authors provide information on how and why dispersion of radioactive isotopes are a problem—“ the FDA has approved only three compounds (only one of which is used as a preventative therapy) for the treatment of exposure to specific radioactive elements ”—and highlights the strengths and weaknesses of what is currently available. They then introduce the focal point of their own work, chitosan@DOTAGA, within this context, explaining its potential as a solution to the problem they previously introduced: “ After oral administration to rodents over several days, no signs of acute or chronic toxicity were observed, and DOTAGA did not enter the blood stream and was fully eliminated from the gastrointestinal tract within 24 hours of administration. ”

Finally, the introduction concludes by listing the study objective—“ explore the potential of this polymer for use in the decorporation of a wide range of radioactive isotopes ”—and the motivations and rationale behind the study objective—“ there are no suitable countermeasures available for uranium poisoning. […] This innovative approach aims to directly chelate the radioactive cations, specifically uranium, within the gastrointestinal tract prior to their systemic absorption, which ensures their prompt elimination and mitigation of the associated toxicities. ”

The Introduction Engages with the Reader

The introduction section is often overlooked in favor of the title and the abstract, but it serves two important functions. First, it gives the audience all of the information that it needs to contextualize the yet-to-be-presented data within the context of the problem that needs to be solved or the scientific question that needs to be addressed. Second, and more importantly, it justifies the importance of the study, of its initiative, rationale, and purpose. The introduction is the author’s best—and arguably only real—opportunity to convince the audience that their study is worth reading.  

Looking for more information on scientific writing? Check out  The Scientist’s   TS SciComm  section. Looking for some help putting together a manuscript, a figure, a poster, or anything else?    The Scientist’s   Scientific Services  may have the professional help that you need.

  • Judd HNG, et al. Functional domains of a ribosome arresting peptide are affected by surrounding nonconserved residues . J Biol Chem . 2024;300(3):105780.
  • Durand A, et al. Enhancing radioprotection: A chitosan-based chelating polymer is a versatile radioprotective agent for prophylactic and therapeutic interventions against radionuclide contamination . PLoS One . 2024;19(4):e0292414.

Related community Research Resources

A bookshelf in a library filled with old books.

Building a Scientific Narrative

Bacteriologist Melinda Grosser holds the book <em >House of Mirth&nbsp;</em>by Edith Wharton and an agar art plate that recreates the book cover.

Where Books Meet Bacteria

A person sitting in a laboratory writing notes with a pen in a notebook.

The Fundamentals of Academic Science Writing

Purdue Online Writing Lab Purdue OWL® College of Liberal Arts

Welcome to the Purdue Online Writing Lab

OWL logo

Welcome to the Purdue OWL

This page is brought to you by the OWL at Purdue University. When printing this page, you must include the entire legal notice.

Copyright ©1995-2018 by The Writing Lab & The OWL at Purdue and Purdue University. All rights reserved. This material may not be published, reproduced, broadcast, rewritten, or redistributed without permission. Use of this site constitutes acceptance of our terms and conditions of fair use.

The Online Writing Lab at Purdue University houses writing resources and instructional material, and we provide these as a free service of the Writing Lab at Purdue. Students, members of the community, and users worldwide will find information to assist with many writing projects. Teachers and trainers may use this material for in-class and out-of-class instruction.

The Purdue On-Campus Writing Lab and Purdue Online Writing Lab assist clients in their development as writers—no matter what their skill level—with on-campus consultations, online participation, and community engagement. The Purdue Writing Lab serves the Purdue, West Lafayette, campus and coordinates with local literacy initiatives. The Purdue OWL offers global support through online reference materials and services.

A Message From the Assistant Director of Content Development 

The Purdue OWL® is committed to supporting  students, instructors, and writers by offering a wide range of resources that are developed and revised with them in mind. To do this, the OWL team is always exploring possibilties for a better design, allowing accessibility and user experience to guide our process. As the OWL undergoes some changes, we welcome your feedback and suggestions by email at any time.

Please don't hesitate to contact us via our contact page  if you have any questions or comments.

All the best,

Social Media

Facebook twitter.

Featured Clinical Reviews

  • Screening for Atrial Fibrillation: US Preventive Services Task Force Recommendation Statement JAMA Recommendation Statement January 25, 2022
  • Evaluating the Patient With a Pulmonary Nodule: A Review JAMA Review January 18, 2022

Select Your Interests

Customize your JAMA Network experience by selecting one or more topics from the list below.

  • Academic Medicine
  • Acid Base, Electrolytes, Fluids
  • Allergy and Clinical Immunology
  • American Indian or Alaska Natives
  • Anesthesiology
  • Anticoagulation
  • Art and Images in Psychiatry
  • Artificial Intelligence
  • Assisted Reproduction
  • Bleeding and Transfusion
  • Caring for the Critically Ill Patient
  • Challenges in Clinical Electrocardiography
  • Climate and Health
  • Climate Change
  • Clinical Challenge
  • Clinical Decision Support
  • Clinical Implications of Basic Neuroscience
  • Clinical Pharmacy and Pharmacology
  • Complementary and Alternative Medicine
  • Consensus Statements
  • Coronavirus (COVID-19)
  • Critical Care Medicine
  • Cultural Competency
  • Dental Medicine
  • Dermatology
  • Diabetes and Endocrinology
  • Diagnostic Test Interpretation
  • Drug Development
  • Electronic Health Records
  • Emergency Medicine
  • End of Life, Hospice, Palliative Care
  • Environmental Health
  • Equity, Diversity, and Inclusion
  • Facial Plastic Surgery
  • Gastroenterology and Hepatology
  • Genetics and Genomics
  • Genomics and Precision Health
  • Global Health
  • Guide to Statistics and Methods
  • Hair Disorders
  • Health Care Delivery Models
  • Health Care Economics, Insurance, Payment
  • Health Care Quality
  • Health Care Reform
  • Health Care Safety
  • Health Care Workforce
  • Health Disparities
  • Health Inequities
  • Health Policy
  • Health Systems Science
  • History of Medicine
  • Hypertension
  • Images in Neurology
  • Implementation Science
  • Infectious Diseases
  • Innovations in Health Care Delivery
  • JAMA Infographic
  • Law and Medicine
  • Leading Change
  • Less is More
  • LGBTQIA Medicine
  • Lifestyle Behaviors
  • Medical Coding
  • Medical Devices and Equipment
  • Medical Education
  • Medical Education and Training
  • Medical Journals and Publishing
  • Mobile Health and Telemedicine
  • Narrative Medicine
  • Neuroscience and Psychiatry
  • Notable Notes
  • Nutrition, Obesity, Exercise
  • Obstetrics and Gynecology
  • Occupational Health
  • Ophthalmology
  • Orthopedics
  • Otolaryngology
  • Pain Medicine
  • Palliative Care
  • Pathology and Laboratory Medicine
  • Patient Care
  • Patient Information
  • Performance Improvement
  • Performance Measures
  • Perioperative Care and Consultation
  • Pharmacoeconomics
  • Pharmacoepidemiology
  • Pharmacogenetics
  • Pharmacy and Clinical Pharmacology
  • Physical Medicine and Rehabilitation
  • Physical Therapy
  • Physician Leadership
  • Population Health
  • Primary Care
  • Professional Well-being
  • Professionalism
  • Psychiatry and Behavioral Health
  • Public Health
  • Pulmonary Medicine
  • Regulatory Agencies
  • Reproductive Health
  • Research, Methods, Statistics
  • Resuscitation
  • Rheumatology
  • Risk Management
  • Scientific Discovery and the Future of Medicine
  • Shared Decision Making and Communication
  • Sleep Medicine
  • Sports Medicine
  • Stem Cell Transplantation
  • Substance Use and Addiction Medicine
  • Surgical Innovation
  • Surgical Pearls
  • Teachable Moment
  • Technology and Finance
  • The Art of JAMA
  • The Arts and Medicine
  • The Rational Clinical Examination
  • Tobacco and e-Cigarettes
  • Translational Medicine
  • Trauma and Injury
  • Treatment Adherence
  • Ultrasonography
  • Users' Guide to the Medical Literature
  • Vaccination
  • Venous Thromboembolism
  • Veterans Health
  • Women's Health
  • Workflow and Process
  • Wound Care, Infection, Healing
  • Download PDF
  • Share X Facebook Email LinkedIn
  • Permissions

A National Strategy for the “New Normal” of Life With COVID

  • 1 Perelman School of Medicine and The Wharton School, University of Pennsylvania, Philadelphia
  • 2 Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis
  • 3 Grossman School of Medicine, New York University, New York, New York
  • Viewpoint The First 2 Years of COVID-19—Lessons to Improve Preparedness for the Next Pandemic Jennifer B. Nuzzo, DrPH, SM; Lawrence O. Gostin, JD JAMA
  • Viewpoint A National Strategy for COVID-19—Testing, Surveillance, and Mitigation Strategies David Michaels, PhD, MPH; Ezekiel J. Emanuel, MD, PhD; Rick A. Bright, PhD JAMA
  • Viewpoint A National Strategy for COVID-19 Medical Countermeasures Luciana L. Borio, MD; Rick A. Bright, PhD; Ezekiel J. Emanuel, MD, PhD JAMA
  • Viewpoint The Pandemic Preparedness Program Eli Y. Adashi, MD, MS; I. Glenn Cohen, JD JAMA
  • Medical News & Perspectives Former Biden-Harris Transition Advisors Propose a New National Strategy for COVID-19 Jennifer Abbasi JAMA
  • Comment & Response Strategy for the “New Normal” of Life With COVID—Reply Ezekiel J. Emanuel, MD, PhD; Michael Osterholm, PhD, MPH; Céline R. Gounder, MD, ScM JAMA
  • Comment & Response Strategy for the “New Normal” of Life With COVID Afschin Gandjour, MD, PhD, MA JAMA
  • Viewpoint COVID-19 Vaccination—Becoming Part of the New Normal Peter Marks, MD, PhD; Janet Woodcock, MD; Robert Califf, MD JAMA

As the Omicron variant of SARS-CoV-2 demonstrates, COVID-19 is here to stay. In January 2021, President Biden issued the “National Strategy for the COVID-19 Response and Pandemic Preparedness.” As the US moves from crisis to control, this national strategy needs to be updated. Policy makers need to specify the goals and strategies for the “new normal” of life with COVID-19 and communicate them clearly to the public.

SARS-CoV-2 continues to persist, evolve, and surprise. In July 2021, with vaccinations apace and infection rates plummeting, Biden proclaimed that “we’ve gained the upper hand against this virus,” and the Centers for Disease Control and Prevention (CDC) relaxed its guidance for mask wearing and socializing. 1 By September 2021, the Delta variant proved these steps to be premature, and by late November, the Omicron variant created concern about a perpetual state of emergency.

In delineating a national strategy, humility is essential. The precise duration of immunity to SARS-CoV-2 from vaccination or prior infection is unknown. Also unknown is whether SARS-CoV-2 will become a seasonal infection; whether antiviral therapies will prevent long COVID; or whether even more transmissible, immune-evading, or virulent variants will arise after Omicron.

Another part of this humility is recognizing that predictions are necessary but educated guesses, not mathematical certainty. The virus, host response, and data will evolve. Biomedical and public health tools will expand, along with better understanding of their limitations. The incidence of SARS-CoV-2, vaccination rates, hospital capacity, tolerance for risk, and willingness to implement different interventions will vary geographically, and national recommendations will need to be adapted locally.

It is imperative for public health, economic, and social functioning that US leaders establish and communicate specific goals for COVID-19 management, benchmarks for the imposition or relaxation of public health restrictions, investments and reforms needed to prepare for future SARS-CoV-2 variants and other novel viruses, and clear strategies to accomplish all of this.

Redefining the Appropriate National Risk Level

The goal for the “new normal” with COVID-19 does not include eradication or elimination, eg, the “zero COVID” strategy. 2 Neither COVID-19 vaccination nor infection appear to confer lifelong immunity. Current vaccines do not offer sterilizing immunity against SARS-CoV-2 infection. Infectious diseases cannot be eradicated when there is limited long-term immunity following infection or vaccination or nonhuman reservoirs of infection. The majority of SARS-CoV-2 infections are asymptomatic or mildly symptomatic, and the SARS-CoV-2 incubation period is short, preventing the use of targeted strategies like “ring vaccination.” Even “fully” vaccinated individuals are at risk for breakthrough SARS-CoV-2 infection. Consequently, a “new normal with COVID” in January 2022 is not living without COVID-19.

The “new normal” requires recognizing that SARS-CoV-2 is but one of several circulating respiratory viruses that include influenza, respiratory syncytial virus (RSV), and more. COVID-19 must now be considered among the risks posed by all respiratory viral illnesses combined. Many of the measures to reduce transmission of SARS-CoV-2 (eg, ventilation) will also reduce transmission of other respiratory viruses. Thus, policy makers should retire previous public health categorizations, including deaths from pneumonia and influenza or pneumonia, influenza, and COVID-19, and focus on a new category: the aggregate risk of all respiratory virus infections.

What should be the peak risk level for cumulative viral respiratory illnesses for a “normal” week? Even though seasonal influenza, RSV, and other respiratory viruses circulating before SARS-CoV-2 were harmful, the US has not considered them a sufficient threat to impose emergency measures in over a century. People have lived normally with the threats of these viruses, even though more could have been done to reduce their risks.

The appropriate risk threshold should reflect peak weekly deaths, hospitalizations, and community prevalence of viral respiratory illnesses during high-severity years, such as 2017-2018. 3 That year had approximately 41 million symptomatic cases of influenza, 710 000 hospitalizations and 52 000 deaths. 4 In addition, the CDC estimates that each year RSV leads to more than 235 000 hospitalizations and 15 000 deaths in the US. 3 This would translate into a risk threshold of approximately 35 000 hospitalizations and 3000 deaths (<1 death/100 000 population) in the worst week.

Today, the US is far from these thresholds. For the week of December 13, 2021, the CDC reported the US experienced more than 900 000 COVID-19 cases, more than 50 000 new hospitalizations for COVID-19, and more than 7000 deaths. 5 , 6 The tolerance for disease, hospitalization, and death varies widely among individuals and communities. What constitutes appropriate thresholds for hospitalizations and death, at what cost, and with what trade-offs remains undetermined.

This peak week risk threshold serves at least 2 fundamental functions. This risk threshold triggers policy recommendations for emergency implementation of mitigation and other measures. In addition, health systems could rely on this threshold for planning on the bed and workforce capacity they need normally, and when to institute surge measures.

Rebuilding Public Health

To cope with pandemic, and eventually, endemic SARS-CoV-2 and to respond to future public health threats requires deploying real-time information systems, a public health implementation workforce, flexible health systems, trust in government and public health institutions, and belief in the value of collective action for public good. 7 , 8

First, the US needs a comprehensive, digital, real-time, integrated data infrastructure for public health. As Omicron has reemphasized, the US is operating with imprecise estimates of disease spread, limited genomic surveillance, projections based on select reporting sites, and data from other countries that may not be generalizable. These shortcomings are threatening lives and societal function.

The US must establish a modern data infrastructure that includes real-time electronic collection of comprehensive information on respiratory viral infections, hospitalizations, deaths, disease-specific outcomes, and immunizations merged with sociodemographic and other relevant variables. The public health data infrastructure should integrate data from local, state, and national public health units, health care systems, public and commercial laboratories, and academic and research institutions. Using modern technology and analytics, it is also essential to merge nontraditional environmental (air, wastewater) surveillance data, including genomic data, with traditional clinical and epidemiological data to track outbreaks and target containment.

Second, the US needs a permanent public health implementation workforce that has the flexibility and surge capacity to manage persistent problems while simultaneously responding to emergencies. Data collection, analysis, and technical support are necessary, but it takes people to respond to crises. This implementation workforce should include a public health agency–based community health worker system and expanded school nurse system.

A system of community public health workers could augment the health care system by testing and vaccinating for SARS-CoV-2 and other respiratory infections; ensuring adherence to ongoing treatment for tuberculosis, HIV, diabetes, and other chronic conditions; providing health screening and support to pregnant individuals and new parents and their newborns; and delivering various other public health services to vulnerable or homebound populations.

School nurses need to be empowered to address the large unmet public health needs of children and adolescents. As polio vaccination campaigns showed, school health programs are an efficient and effective way to care for children, including preventing and treating mild asthma exacerbations (often caused by viral respiratory infections), ensuring vaccination as a condition for attendance, and addressing adolescents’ mental and sexual health needs. School clinics must be adequately staffed and funded as an essential component of the nation’s public health infrastructure.

Third, because respiratory infections ebb and flow, institutionalizing telemedicine waivers, licensure to practice and enable billing across state lines, and other measures that allow the flow of medical services to severely affected regions should be a priority.

Fourth, it is essential to rebuild trust in public health institutions and a belief in collective action in service of public health. 7 Communities with higher levels of trust and reciprocity, such as Denmark, have experienced lower rates of hospitalization and death from COVID-19. 7 Improving public health data systems and delivering a diverse public health workforce that can respond in real time in communities will be important steps toward building that trust more widely.

Conclusions

After previous infectious disease threats, the US quickly forgot and failed to institute necessary reforms. That pattern must change with the COVID-19 pandemic. Without a strategic plan for the “new normal” with endemic COVID-19, more people in the US will unnecessarily experience morbidity and mortality, health inequities will widen, and trillions will be lost from the US economy. This time, the nation must learn and prepare effectively for the future.

The resources necessary to build and sustain an effective public health infrastructure will be substantial. Policy makers should weigh not only the costs but also the benefits, including fewer deaths and lost productivity from COVID-19 and all viral respiratory illnesses. Indeed, after more than 800 000 deaths from COVID-19, and a projected loss of $8 trillion in gross domestic product through 2030, 8 these interventions will be immensely valuable.

Corresponding Author: Ezekiel J. Emanuel, MD, PhD, Medical Ethics and Health Policy, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Dr, Blockley Hall, Philadelphia, PA 19104 ( [email protected] ).

Published Online: January 6, 2022. doi:10.1001/jama.2021.24282

Conflict of Interest Disclosures: Dr Emanuel reported personal fees, nonfinancial support, or both from companies, organizations, and professional health care meetings and being a venture partner at Oak HC/FT; a partner at Embedded Healthcare LLC, ReCovery Partners LLC, and COVID-19 Recovery Consulting; and an unpaid board member of Village MD and Oncology Analytics. Dr Emanuel owns no stock in pharmaceutical, medical device companies, or health insurers. No other disclosures were reported.

Additional Information: Drs Emanuel, Osterholm, and Gounder were members of the Biden-Harris Transition COVID-19 Advisory Board from November 2020 to January 2021.

See More About

Emanuel EJ , Osterholm M , Gounder CR. A National Strategy for the “New Normal” of Life With COVID. JAMA. 2022;327(3):211–212. doi:10.1001/jama.2021.24282

Manage citations:

© 2024

Artificial Intelligence Resource Center

Cardiology in JAMA : Read the Latest

Browse and subscribe to JAMA Network podcasts!

Others Also Liked

  • Register for email alerts with links to free full-text articles
  • Access PDFs of free articles
  • Manage your interests
  • Save searches and receive search alerts

IMAGES

  1. Complete Guide: How to Write a Scientific Essay

    how to write an scientific essay

  2. Practical Guide: How To Make A Scientific Essay

    how to write an scientific essay

  3. Academic Essay Structure Tips [Writing Guide]

    how to write an scientific essay

  4. Science Essay

    how to write an scientific essay

  5. College Essay Format: Simple Steps to Be Followed

    how to write an scientific essay

  6. (PDF) How to Write a Scientific Article

    how to write an scientific essay

VIDEO

  1. How to write and develop critical essays

  2. Write An Essay On "The Importance Of Scientific Education"

  3. Day 2: Basics of Scientific Research Writing (Batch 18)

  4. How to Write a Scientific Research Paper

  5. How to write an introduction?

  6. How to Write an A+ Essay Introduction in Minutes

COMMENTS

  1. PDF Tutorial Essays for Science Subjects

    This guide is designed to provide help and advice on scientific writing. Although students studying Medical and Life Sciences are most likely to have to write essays for tutorials at Oxford, it is important all scientists learn to write clearly and concisely to present their data and conclusions. The importance of good writing to scientists

  2. Scientific Writing Made Easy: A Step‐by‐Step Guide to Undergraduate

    Scientific writing, while an indispensable step of the scientific process, is often overlooked in undergraduate courses in favor of maximizing class time devoted to scientific concepts. ... Boulder 2016 graduate writing seminar for helpful discussions that greatly enhanced the quality of this essay. Potential Conflicts of Interest. None ...

  3. How to Write a Scientific Essay • Oxford Learning College

    Essays need to be written out in continuous prose. You shouldn't be using bullet points or writing in note form. If it helps to make a particular point, however, you can use a diagram providing it is relevant and adequately explained. Look at the topic you are required to write about.

  4. Successful Scientific Writing and Publishing: A Step-by-Step Approach

    Abstract. Scientific writing and publication are essential to advancing knowledge and practice in public health, but prospective authors face substantial challenges. Authors can overcome barriers, such as lack of understanding about scientific writing and the publishing process, with training and resources. The objective of this article is to ...

  5. PDF WRITING A SCIENTIFIC ESSAY

    of scientific work . 2. State. where your work could be extended or improved . 1. Clear. Citation . 2. Complete. Reference list . 3. Accepted . Style . 4. Accurately . reproduced . Acknowledge . work of other researchers so that readers can see how your point of view developed

  6. Toolkit: How to write a great paper

    Follow: 1. Context — your introduction. 2. Content — your results. 3. Conclusion — your discussion. Plan your paper carefully and decide where each point will sit within the framework before ...

  7. PDF Guide to Scientific Writing

    A Guide to Scientific Writing Neal Lerner Marilee Ogren-Balkama Massachusetts Institute of Technology Introductions What's an Introduction? An introduction is a method to familiarize and orient your readers. The content of an introduction depends on its purpose and the audience. All models share a direct approach.Don't hide your main point or save it until the end of

  8. How to write a first-class paper

    In each paragraph, the first sentence defines the context, the body contains the new idea and the final sentence offers a conclusion. For the whole paper, the introduction sets the context, the ...

  9. Guide: Writing the Scientific Paper

    Generally between 50-100 words, it should state the goals, results, and the main conclusions of your study. You should list the parameters of your study (when and where was it conducted, if applicable; your sample size; the specific species, proteins, genes, etc., studied).

  10. How to Write a Scientific Essay

    Take concise notes while reading, focusing on information relevant to the essay. Identify the most crucial information and examples that support the argument. Begin writing the essay, considering starting with the middle sections for clarity. Circle back to the introduction and conclusion once the main body is outlined.

  11. PDF Strategies for Essay Writing

    Harvard College Writing Center 5 Asking Analytical Questions When you write an essay for a course you are taking, you are being asked not only to create a product (the essay) but, more importantly, to go through a process of thinking more deeply about a question or problem related to the course. By writing about a

  12. Writing an Introduction for a Scientific Paper

    Dr. Michelle Harris, Dr. Janet Batzli,Biocore. This section provides guidelines on how to construct a solid introduction to a scientific paper including background information, study question, biological rationale, hypothesis, and general approach. If the Introduction is done well, there should be no question in the reader's mind why and on ...

  13. Structuring a scientific article

    Many scientific articles include the following elements: I. Abstract: The abstract should briefly summarize the contents of your article. Be sure to include a quick overview of the focus, results and conclusion of your study.

  14. PDF How to write a scientific essay

    Here is one example for how to go about writing a scientific essay: • Introduce the topic to the reader and explain what you are trying to achieve. • Review the relevant literature and introduce different approaches. If you feel confident, don't shy away to make personal statements about your judgement of the issues.

  15. Writing a Research Paper Introduction

    Step 1: Introduce your topic. Step 2: Describe the background. Step 3: Establish your research problem. Step 4: Specify your objective (s) Step 5: Map out your paper. Research paper introduction examples. Frequently asked questions about the research paper introduction.

  16. How to Write a Research Paper

    Understand the assignment. Choose a research paper topic. Conduct preliminary research. Develop a thesis statement. Create a research paper outline. Write a first draft of the research paper. Write the introduction. Write a compelling body of text. Write the conclusion.

  17. How to successfully write a scientific essay

    A scientific essay requires you to produce an article which has all the information and facts about the subject matter and it ought to be to the point. Nonetheless, the scientific essay formats similar to the format of any other essay: introduction, body, and conclusion. You need to use your outline to guide you through the writing process. To ...

  18. How to write the best scientific essay

    📌Sign Up for my Essay Writing Masterclass: https://www.doctorshaene.com/essay-masterclassIn this video I run through how to structure a scientific/medical e...

  19. How to Write a Science Essay

    The body of your essay will contain the bulk of your argument or discussion. It should be divided into paragraphs, each discussing a different point. For instance, imagine you were writing about sports and the human body. Your first paragraph can discuss the physical capabilities of the human body.

  20. PDF ACADEMIC WRITING

    In my writing classes, every time I asked students to write an essay on Hamlet, I wrote one myself—to get a sense of the steps they were going through and ... in academic articles that can be published to the scientific community that needs to know about your work. You've got to be able to write.

  21. TITLE

    However too long a title can sometimes be even less meaningful. Remember a title is not an abstract. Also a title is not a sentence. Goals: • Fewest possible words that describe the contents of the paper. • Avoid waste words like "Studies on", or "Investigations on". • Use specific terms rather than general. • Watch your word order and ...

  22. How to Write a Good Introduction Section

    Nathan Ni holds a PhD from Queens University. He is a science editor for The Scientist's Creative Services Team who strives to better understand and communicate the relationships between health and disease. View full profile. Learn about our editorial policies. First impressions are important ...

  23. PDF Tutorial essays for science subjects

    In 1946 Orwell wrote an essay called "Politics and the English Language", which included six rules for writing clearly and concisely. I want to focus on three of these rules, to show you how they apply to scientific writing: 1. Never use a metaphor, simile or figure of speech which you are used to seeing in print.

  24. Welcome to the Purdue Online Writing Lab

    The Online Writing Lab at Purdue University houses writing resources and instructional material, and we provide these as a free service of the Writing Lab at Purdue. Students, members of the community, and users worldwide will find information to assist with many writing projects. Teachers and trainers may use this material for in-class and out ...

  25. A National Strategy for the "New Normal" of Life With COVID

    To cope with pandemic, and eventually, endemic SARS-CoV-2 and to respond to future public health threats requires deploying real-time information systems, a public health implementation workforce, flexible health systems, trust in government and public health institutions, and belief in the value of collective action for public good. 7,8 First, the US needs a comprehensive, digital, real-time ...