Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Chemistry LibreTexts

1.2: Scientific Approach for Solving Problems

  • Last updated
  • Save as PDF
  • Page ID 358114

Learning Objectives

  • To identify the components of the scientific method

Scientists search for answers to questions and solutions to problems by using a procedure called the scientific method . This procedure consists of making observations, formulating hypotheses, and designing experiments, which in turn lead to additional observations, hypotheses, and experiments in repeated cycles (Figure \(\PageIndex{1}\)).

imageedit_2_5896776795.jpg

Observations can be qualitative or quantitative. Qualitative observations describe properties or occurrences in ways that do not rely on numbers. Examples of qualitative observations include the following: the outside air temperature is cooler during the winter season, table salt is a crystalline solid, sulfur crystals are yellow, and dissolving a penny in dilute nitric acid forms a blue solution and a brown gas. Quantitative observations are measurements, which by definition consist of both a number and a unit. Examples of quantitative observations include the following: the melting point of crystalline sulfur is 115.21 °C, and 35.9 grams of table salt—whose chemical name is sodium chloride—dissolve in 100 grams of water at 20 °C. An example of a quantitative observation was the initial observation leading to the modern theory of the dinosaurs’ extinction: iridium concentrations in sediments dating to 66 million years ago were found to be 20–160 times higher than normal. The development of this theory is a good exemplar of the scientific method in action (see Figure \(\PageIndex{2}\) below).

After deciding to learn more about an observation or a set of observations, scientists generally begin an investigation by forming a hypothesis , a tentative explanation for the observation(s). The hypothesis may not be correct, but it puts the scientist’s understanding of the system being studied into a form that can be tested. For example, the observation that we experience alternating periods of light and darkness corresponding to observed movements of the sun, moon, clouds, and shadows is consistent with either of two hypotheses:

  • Earth rotates on its axis every 24 hours, alternately exposing one side to the sun, or
  • The sun revolves around Earth every 24 hours.

Suitable experiments can be designed to choose between these two alternatives. For the disappearance of the dinosaurs, the hypothesis was that the impact of a large extraterrestrial object caused their extinction. Unfortunately (or perhaps fortunately), this hypothesis does not lend itself to direct testing by any obvious experiment, but scientists collected additional data that either support or refute it.

After a hypothesis has been formed, scientists conduct experiments to test its validity. Experiments are systematic observations or measurements, preferably made under controlled conditions—that is, under conditions in which a single variable changes. For example, in the dinosaur extinction scenario, iridium concentrations were measured worldwide and compared. A properly designed and executed experiment enables a scientist to determine whether the original hypothesis is valid. Experiments often demonstrate that the hypothesis is incorrect or that it must be modified. More experimental data are then collected and analyzed, at which point a scientist may begin to think that the results are sufficiently reproducible (i.e., dependable) to merit being summarized in a law , a verbal or mathematical description of a phenomenon that allows for general predictions. A law simply says what happens; it does not address the question of why.

One example of a law, the Law of Definite Proportions , which was discovered by the French scientist Joseph Proust (1754–1826), states that a chemical substance always contains the same proportions of elements by mass. Thus sodium chloride (table salt) always contains the same proportion by mass of sodium to chlorine, in this case 39.34% sodium and 60.66% chlorine by mass, and sucrose (table sugar) is always 42.11% carbon, 6.48% hydrogen, and 51.41% oxygen by mass. Some solid compounds do not strictly obey the law of definite proportions. The law of definite proportions should seem obvious—we would expect the composition of sodium chloride to be consistent—but the head of the US Patent Office did not accept it as a fact until the early 20th century.

Whereas a law states only what happens, a theory attempts to explain why nature behaves as it does. Laws are unlikely to change greatly over time unless a major experimental error is discovered. In contrast, a theory, by definition, is incomplete and imperfect, evolving with time to explain new facts as they are discovered. The theory developed to explain the extinction of the dinosaurs, for example, is that Earth occasionally encounters small- to medium-sized asteroids, and these encounters may have unfortunate implications for the continued existence of most species. This theory is by no means proven, but it is consistent with the bulk of evidence amassed to date. Figure \(\PageIndex{2}\) summarizes the application of the scientific method in this case.

imageedit_8_3393569312.jpg

Example \(\PageIndex{1}\)

Classify each statement as a law, a theory, an experiment, a hypothesis, a qualitative observation, or a quantitative observation.

  • Ice always floats on liquid water.
  • Birds evolved from dinosaurs.
  • Hot air is less dense than cold air, probably because the components of hot air are moving more rapidly.
  • When 10 g of ice were added to 100 mL of water at 25 °C, the temperature of the water decreased to 15.5 °C after the ice melted.
  • The ingredients of Ivory soap were analyzed to see whether it really is 99.44% pure, as advertised.

Given : components of the scientific method

Asked for : statement classification

Strategy: Refer to the definitions in this section to determine which category best describes each statement.

  • This is a general statement of a relationship between the properties of liquid and solid water, so it is a law.
  • This is a possible explanation for the origin of birds, so it is a hypothesis.
  • This is a statement that tries to explain the relationship between the temperature and the density of air based on fundamental principles, so it is a theory.
  • The temperature is measured before and after a change is made in a system, so these are quantitative observations.
  • This is an analysis designed to test a hypothesis (in this case, the manufacturer’s claim of purity), so it is an experiment.

Exercise \(\PageIndex{1}\)

  • Measured amounts of acid were added to a Rolaids tablet to see whether it really “consumes 47 times its weight in excess stomach acid.”
  • Heat always flows from hot objects to cooler ones, not in the opposite direction.
  • The universe was formed by a massive explosion that propelled matter into a vacuum.
  • Michael Jordan is the greatest pure shooter ever to play professional basketball.
  • Limestone is relatively insoluble in water but dissolves readily in dilute acid with the evolution of a gas.
  • Gas mixtures that contain more than 4% hydrogen in air are potentially explosive.

qualitative observation

quantitative observation

Because scientists can enter the cycle shown in Figure \(\PageIndex{1}\) at any point, the actual application of the scientific method to different topics can take many different forms. For example, a scientist may start with a hypothesis formed by reading about work done by others in the field, rather than by making direct observations.

It is important to remember that scientists have a tendency to formulate hypotheses in familiar terms simply because it is difficult to propose something that has never been encountered or imagined before. As a result, scientists sometimes discount or overlook unexpected findings that disagree with the basic assumptions behind the hypothesis or theory being tested. Fortunately, truly important findings are immediately subject to independent verification by scientists in other laboratories, so science is a self-correcting discipline. When the Alvarezes originally suggested that an extraterrestrial impact caused the extinction of the dinosaurs, the response was almost universal skepticism and scorn. In only 20 years, however, the persuasive nature of the evidence overcame the skepticism of many scientists, and their initial hypothesis has now evolved into a theory that has revolutionized paleontology and geology.

Chemists expand their knowledge by making observations, carrying out experiments, and testing hypotheses to develop laws to summarize their results and theories to explain them. In doing so, they are using the scientific method.

loading

How it works

For Business

Join Mind Tools

Article • 5 min read

Using the Scientific Method to Solve Problems

How the scientific method and reasoning can help simplify processes and solve problems.

By the Mind Tools Content Team

The processes of problem-solving and decision-making can be complicated and drawn out. In this article we look at how the scientific method, along with deductive and inductive reasoning can help simplify these processes.

explore the scientific problem solving process pdf

‘It is a capital mistake to theorize before one has information. Insensibly one begins to twist facts to suit our theories, instead of theories to suit facts.’ Sherlock Holmes

The Scientific Method

The scientific method is a process used to explore observations and answer questions. Originally used by scientists looking to prove new theories, its use has spread into many other areas, including that of problem-solving and decision-making.

The scientific method is designed to eliminate the influences of bias, prejudice and personal beliefs when testing a hypothesis or theory. It has developed alongside science itself, with origins going back to the 13th century. The scientific method is generally described as a series of steps.

  • observations/theory
  • explanation/conclusion

The first step is to develop a theory about the particular area of interest. A theory, in the context of logic or problem-solving, is a conjecture or speculation about something that is not necessarily fact, often based on a series of observations.

Once a theory has been devised, it can be questioned and refined into more specific hypotheses that can be tested. The hypotheses are potential explanations for the theory.

The testing, and subsequent analysis, of these hypotheses will eventually lead to a conclus ion which can prove or disprove the original theory.

Applying the Scientific Method to Problem-Solving

How can the scientific method be used to solve a problem, such as the color printer is not working?

1. Use observations to develop a theory.

In order to solve the problem, it must first be clear what the problem is. Observations made about the problem should be used to develop a theory. In this particular problem the theory might be that the color printer has run out of ink. This theory is developed as the result of observing the increasingly faded output from the printer.

2. Form a hypothesis.

Note down all the possible reasons for the problem. In this situation they might include:

  • The printer is set up as the default printer for all 40 people in the department and so is used more frequently than necessary.
  • There has been increased usage of the printer due to non-work related printing.
  • In an attempt to reduce costs, poor quality ink cartridges with limited amounts of ink in them have been purchased.
  • The printer is faulty.

All these possible reasons are hypotheses.

3. Test the hypothesis.

Once as many hypotheses (or reasons) as possible have been thought of, then each one can be tested to discern if it is the cause of the problem. An appropriate test needs to be devised for each hypothesis. For example, it is fairly quick to ask everyone to check the default settings of the printer on each PC, or to check if the cartridge supplier has changed.

4. Analyze the test results.

Once all the hypotheses have been tested, the results can be analyzed. The type and depth of analysis will be dependant on each individual problem, and the tests appropriate to it. In many cases the analysis will be a very quick thought process. In others, where considerable information has been collated, a more structured approach, such as the use of graphs, tables or spreadsheets, may be required.

5. Draw a conclusion.

Based on the results of the tests, a conclusion can then be drawn about exactly what is causing the problem. The appropriate remedial action can then be taken, such as asking everyone to amend their default print settings, or changing the cartridge supplier.

Inductive and Deductive Reasoning

The scientific method involves the use of two basic types of reasoning, inductive and deductive.

Inductive reasoning makes a conclusion based on a set of empirical results. Empirical results are the product of the collection of evidence from observations. For example:

‘Every time it rains the pavement gets wet, therefore rain must be water’.

There has been no scientific determination in the hypothesis that rain is water, it is purely based on observation. The formation of a hypothesis in this manner is sometimes referred to as an educated guess. An educated guess, whilst not based on hard facts, must still be plausible, and consistent with what we already know, in order to present a reasonable argument.

Deductive reasoning can be thought of most simply in terms of ‘If A and B, then C’. For example:

  • if the window is above the desk, and
  • the desk is above the floor, then
  • the window must be above the floor

It works by building on a series of conclusions, which results in one final answer.

Social Sciences and the Scientific Method

The scientific method can be used to address any situation or problem where a theory can be developed. Although more often associated with natural sciences, it can also be used to develop theories in social sciences (such as psychology, sociology and linguistics), using both quantitative and qualitative methods.

Quantitative information is information that can be measured, and tends to focus on numbers and frequencies. Typically quantitative information might be gathered by experiments, questionnaires or psychometric tests. Qualitative information, on the other hand, is based on information describing meaning, such as human behavior, and the reasons behind it. Qualitative information is gathered by way of interviews and case studies, which are possibly not as statistically accurate as quantitative methods, but provide a more in-depth and rich description.

The resultant information can then be used to prove, or disprove, a hypothesis. Using a mix of quantitative and qualitative information is more likely to produce a rounded result based on the factual, quantitative information enriched and backed up by actual experience and qualitative information.

In terms of problem-solving or decision-making, for example, the qualitative information is that gained by looking at the ‘how’ and ‘why’ , whereas quantitative information would come from the ‘where’, ‘what’ and ‘when’.

It may seem easy to come up with a brilliant idea, or to suspect what the cause of a problem may be. However things can get more complicated when the idea needs to be evaluated, or when there may be more than one potential cause of a problem. In these situations, the use of the scientific method, and its associated reasoning, can help the user come to a decision, or reach a solution, secure in the knowledge that all options have been considered.

Join Mind Tools and get access to exclusive content.

This resource is only available to Mind Tools members.

Already a member? Please Login here

explore the scientific problem solving process pdf

Get 30% off your first year of Mind Tools

Great teams begin with empowered leaders. Our tools and resources offer the support to let you flourish into leadership. Join today!

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Member Extras

Most Popular

Latest Updates

Article aaimtlg

Tips for Dealing with Customers Effectively

Article aafqx8n

Pain Points Podcast - Procrastination

Mind Tools Store

About Mind Tools Content

Discover something new today

Pain points podcast - starting a new job.

How to Hit the Ground Running!

Ten Dos and Don'ts of Career Conversations

How to talk to team members about their career aspirations.

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

Pain points podcast - how do you interview people.

Tips For Running Great Interviews

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Team Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

Member Podcast

Problem Solving and Decision Making

Cite this chapter.

explore the scientific problem solving process pdf

  • Linda Drake Gobbo 3  

Part of the book series: Advances in Group Decision and Negotiation ((AGDN,volume 3))

7562 Accesses

Problem solving and decision making in multicultural work teams are the last of the skill areas to be covered in this book. This topic will be discussed from the cultural, individual, and organizational levels of multicultural team development, building on the frameworks that have been presented in previous chapters. Many theorists consider problem solving and decision making as synonymous-all decisions are made in response to a problem or opportunity. Simply stated, if problem solving is the process used to find a solution to the problem, challenge, or opportunity. However, how one solves problems can be quite varied. An individual can use analytical tools based on logic, deduction, or induction, or intuition based on an understanding of principles, or creative thinking. Problem-solving abilities and approaches may vary considerably, actually using different paradigms or frameworks. In this chapter one approach, with the steps and methods to do problem solving in work teams, will be presented.

There are six steps to the problem-solving model described and demonstrated in this chapter. Several of those steps within the model are used for decisionmaking, and are covered as well. How a team makes the decision, and who on the team makes it are important elements and will also be discussed. As prior chapters have noted, membership of multicultural teams varies greatly. The procedures each member follows, the different value orientations guiding their behavior (Smith et al. 2002), the nature of the tasks they must complete, and the communication tools they employ (face-to-face and/or technology-based) all impact how they approach problem solving and decision making. When done effectively, problem solving, which includes decision making, moves through all the steps described here equally, engaging the knowledge and skills of all team members.

This chapter will first present theoretical frameworks for problem solving, then define the steps that comprise problem solving and decision making within them. This will be followed by a discussion of the cultural variations, and impact of individual styles and societal assumptions on decision-making. Shared mental models and consensus are offered as methods to equalize participation in team decision making, and an overview of other methods provided. The last section will look at ways to coordinate the stages of team development with the variety of problemsolving and decision-making techniques in order to maximize a team’s effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Unable to display preview.  Download preview PDF.

Adler, N.J. (2002). International Dimensions of Organizational Behavior (4th ed.). Cincinnati, OH: South-Western.

Google Scholar  

Cooperrider, D.L., Whitney, D. and Stavros, J.M. (2005). Appreciative Inquiry: The First in a Series of AI Workbooks for Leaders of Change. Brunswick, OH: Crown Custom Publishing.

Enayati, J. (2001). The research: Effective communication and decision-making in diverse groups. In Hemmati, M. (Ed.), Multi-Stakeholder Processes for Governance and Sustainability-Beyond Deadlock and Conflict. London, England: Earthscan.

Gardenswartz, L. and Rowe, A. (2003). In L. Gardenswartz and A. Rowe (Eds.), Diverse Teams at Work: Capitalizing on the Power of Diversity (1st ed.). Alexandria, VA: Society for Human Resource Management.

Halverson, C.B. (2004). Effective Multicultural Teams (5th ed.). Brattleboro, VT: School for International Training.

Harrington-Macklin, D. (1994). The Team Building Tool Kit: Tips, Tactics, and Rules for Effective Workplace Teams. New York: American Management Association.

Hofstede, G. (1980). Culture’s Consequences: International Differences in Work-related Values. Thousand Oaks, CA: Sage.

Janis, I. (1982). Groupthink: Psychological Studies of Policy Decisions and Fiascos (2nd ed.). Boston, MA: Houghton Mifflin.

Jeffery, A.B., Maes, J.D. and Bratton-Jeffery, M.F. (2005). Improving team decision-making performance with collaborative modeling. [Electronic version]. Team Performance Management, 11 (1/2), 40–50. Retrieved December 20, 2005, from the Emerald In sight database.

Article   Google Scholar  

Kayser, T.A. (1994). Building Team Power: How to Unleash the Collaborative Genius of Work Teams. New York: Irwin.

Kelly, K.P. (1994). Team Decision Making Techniques. Irvine, CA: Richard Chang Associates.

Kline, T. (1999). In M. Holt, D. Ullius and P. Berkman (Eds.), Remaking Teams: The Revolutionary Research-based Guide That Puts Theory into Practice. San Francisco, CA: Jossey-Bass/Pfeiffer.

Magruder Watkins, J. and Mohr, B.J. (2001). Appreciative Inquiry, Change at the Speed of Imagination. San Francisco, CA: Jossey-Bass/Pfieffer.

Mathieu, J., Heffner, T., Goodwin, G., Cannon-Bowers, J. and Salas, E. (2005). Scaling the quality of teammates’ mental models: equifinality and normative comparisons. Journal of Organizational Behavior, 26, 37–56.

McFadzean, E. (2002). Developing and supporting creative problem-solving teams: Part 1—a conceptual model. [Electronic version]. Management Decision, 40(5), 463–475. Retrieved December 20, 2005, from the Emerald Insight database.

McFadzean, E. (2002). Developing and supporting creative problem solving teams: Part 2-facili-tator competencies. [Electronic version]. Management Decision, 40(6), 537–551. Retrieved December 20, 2005, from the Emerald Insight database.

McKenna, R.J. and Martin-Smith, B. (2005). Decision making as a simplification process: New conceptual perspectives.[Electronic version]. Management Decision, 43(6), 821–836. Retrieved December 20, 2005, from the Emerald Insight database.

Sagie, A. and Akcan, Z. (2003). A cross-cultural analysis of participative decision-making in organizations. Human Relations, 56(4), 453–473.

Selart, M. (2005). Understanding the role of locus of control in consultative decision-making: A case study. [Electronic version]. Management Decision, 43(3), 397–412. Retrieved December 20, 2005, from the Emerald Insight database.

Simon, T., Pelled, L.H. and Smith, K.A. (1999). Making use of difference: diversity, debate, and decision comprehensiveness in top management teams. Academy of Management Journal, 42 (6), 662–673.

Smith, P.B., Peterson, M.F. and Schwartz, S.H. (2002). Cultural values, sources of guidance, and their relevance to managerial behavior. [Electronic version]. Journal of Cross-Cultural Psychology, 33(2), 188–208.

Tomlinson, S. (1999). Comparison of consensus Japanese style and Quaker style. [Electronic version]. Retrieved July 1, 2006, from http://www.earlham.edu/~consense/scott2.shtml

Watkins, J.M. and Mohr, B.J. (2001). Appreciative Inquiry: Change at the Speed of Imagination. San Francisco, CA: Jossey-Bass/Pfeiffer.

Whitney, D. and Trosten-Bloom, A. (2003). The Power of Appreciative Inquiry: A Practical Guide to Positive Change. San Francisco, CA: Berrett-Koehler.

Download references

Author information

Authors and affiliations.

School for International Training, Brattleboro, VT, USA

Linda Drake Gobbo

You can also search for this author in PubMed   Google Scholar

Editor information

Editors and affiliations.

Claire B. Halverson  & S. Aqeel Tirmizi  & 

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Gobbo, L.D. (2008). Problem Solving and Decision Making. In: Halverson, C.B., Tirmizi, S.A. (eds) Effective Multicultural Teams: Theory and Practice. Advances in Group Decision and Negotiation, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6957-4_9

Download citation

DOI : https://doi.org/10.1007/978-1-4020-6957-4_9

Publisher Name : Springer, Dordrecht

Print ISBN : 978-1-4020-6956-7

Online ISBN : 978-1-4020-6957-4

eBook Packages : Business and Economics Business and Management (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

COMMENTS

  1. PDF Scientific Method How do Scientists Solve problems

    Formulate student's ideas into a chart of steps in the scientific method. Determine with the students how a scientist solves problems. • Arrange students in working groups of 3 or 4. Students are to attempt to discover what is in their mystery box. • The group must decide on a procedure to determine the contents of their box and formulate ...

  2. PDF THIRTEEN PROBLEM-SOLVING MODELS

    The Six-Step method provides a focused procedure for the problem solving (PS) group. It ensures consistency, as everyone understands the approach to be used. By using data, it helps eliminate bias and preconceptions, leading to greater objectivity. It helps to remove divisions and encourages collaborative working.

  3. PDF The Steps in Mathematical and Scientific Problem Solving

    Scientific Problem Solving George E. Hrabovsky MAST Introduction Problem-solving is at the very heart of science and mathematics. All research is built around problems; from the seemingly mundane, such as the desire to solve an equation to complete a model of crop production, to modeling the effects of greenhouse gases, to the quest for

  4. PDF The scientific method is a systematic method to problem solving. The

    The scientific method is a systematic method to problem solving. The seven steps in the scientific method are: (!)STATING THE PROBLEM. (2)GATHER INFORMATION ON THE PROBLEM. A suggested solution is called a HYPOTHESIS. A HYPOTHESIS is sometimes called a "educated guess". (3)FORM A HYPOTHESIS. A suggested solution is called a HYPOTHESIS.

  5. PDF Introduction to Analytical Problem Solving[1]

    Like the. scientific method, the analytical approach can be broken into several steps. 1. Identify and define the problem. 2. Design the experimental plan/procedure. 3. Conduct the experiments to produce data relevant to the problem. 4.

  6. 1.2: Scientific Approach for Solving Problems

    In doing so, they are using the scientific method. 1.2: Scientific Approach for Solving Problems is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts. Chemists expand their knowledge by making observations, carrying out experiments, and testing hypotheses to develop laws to summarize their results and ...

  7. PDF Steps of the Scientific Method

    The scientific method is a process for experimentation that is used to explore observations and answer questions. Scientists use the scientific method to search for cause and effect relationships in nature. In other words, they design an experiment so that changes to one item cause something else to vary in a ...

  8. PDF The Scientific Method: An Overview Identify a problem --Design an

    The Scientific Method: An. Formulate a --A hypothesis hypothe is is a best estimation, based on assumptions, of what the answer must be specific and testable. Collect and analyze --Record the the data data collect from your experiment. to support the hypothesis, hypothesis. If the data show the hypothesis, then you reject Hypotheses can only be ...

  9. PDF Keith J. Holyoak and Robert G. Morrison Scientific Thinking and

    problem solving by world-class researchers in real-world molecular biology labs (Dunbar, 1995). (2) The other category focuses on "general" cognitive processes, but it tends to do so by analyzing people's problem-solving behavior when they are presented with relatively complex situations

  10. Teaching Creativity and Inventive Problem Solving in Science

    Creativity is an essential element of problem solving (Mumford et al., 1991; Runco, 2004) and of critical thinking (Abrami et al., 2008). As such, it is common to think of applications of creativity such as inventiveness and ingenu-ity among the HOCS as defined in Bloom's taxonomy (Crowe et al., 2008). Thus, it should come as no surprise that ...

  11. Scientific Discovery as Problem Solving

    general mechanisms of human problem solving. One of the authors has previously published several papers arguing for the latter posi tion.1 The main evidence adduced in those papers for the thesis that scientific discovery is problem solving was the behavior of some computer programs that, using simple problem-solving heuristics and

  12. Using the Scientific Method to Solve Problems

    The scientific method is a process used to explore observations and answer questions. Originally used by scientists looking to prove new theories, its use has spread into many other areas, including that of problem-solving and decision-making. The scientific method is designed to eliminate the influences of bias, prejudice and personal beliefs ...

  13. How Can We Solve Our Problems? (Science, Technology, and Society)

    The solution requires the best scientific minds and the latest technology, often preceded or followed up by military intervention. Indeed, much of real science is devoted to problem-solving. Natural curiosity, in response to puzzling observations, leads to all sorts of interesting questions about how the world works.

  14. (PDF) The Nature of Problem Solving: Using Research to Inspire 21st

    Problem solving is at the heart of this, the capacity of an indi vidual to engage in. cognitive processing to understand and resolve prob lem situations where a method of solution is. not ...

  15. How we explore, interpret, and solve complex problems: A cross-national

    After we labeled the students' behavior in the exploration phase of the problem-solving process at the beginning of the problem-solving process and used the new dichotomous variables as indicators to describe the effectiveness of strategy for each task and person, the overall reliability of the test scores improved in both cases (α = .921 ...

  16. PDF Creative Problem Solving

    Creative Problem Solving is a proven method for approaching a problem or a challenge in an imaginative and innovative way. It's a process that helps people re-define the problems they think they face, come up with breakthrough ideas and then take action on these new ideas all with the ... • Clarification: Explore the Vision, Collect Data

  17. PDF Scientific Problem Solving

    To do this, they used a process of scientific inquiry similar to the one you read about in Lesson 1. The investigators designed controlled experiments to help them answer questions and test their hypotheses. A controlled experiment is a scientific investigation that tests how one factor affects another.

  18. PDF Step Problem Solving Process

    The Six Step Problem Solving Model Problem solving models are used to address the many challenges that arise in the workplace. While many people regularly solve problems, there are a range of different approaches that can be used to find a solution. Complex challenges for teams, working groups and boards etc., are usually solved more quickly by ...

  19. Using process features to investigate scientific problem-solving in

    This study enriches process features reflecting scientific problem-solving process and competence and sheds important light on how to improve performance in large-scale, online delivered scientific inquiry tasks. Keywords: scientific problem solving, fair test, exhaustive test, preparation time, execution time. Go to: 1.

  20. PDF Chapter 9 Problem Solving and Decision Making

    A Synergistic Approach to Problem Solving There is wide cultural variation in the definition of problem solving as a team or man-agement process. When we look at problem solving as a method for organizational change and development, there are two approaches that are useful for a team to be familiar with, and to be comfortable in using.

  21. PDF The Scientific Method and the Creative Process: Implications for ...

    In science, the scientific method is used to test hypotheses, answer questions, and formulate theories. In the arts, the creative process is employed to create new works, interpret an existing work, and/or find new forms of expressing art. At the heart of both processes is inquiry. Both are most often taught separately.

  22. PDF Problem Solving Six-Step Problem-Solving Process

    Problem Solving. Six-Step Problem-Solving Process (continued) Step Four: Select the Best Solutions. • Establish criteria for selecting a solution. • Evaluate the potential solutions against your criteria. • Once solutions have been selected, ask each other: "What could possibly go wrong if we do this?"

  23. PDF The Effectiveness of the Problem Solving Strategy and the Scientific

    The purpose of this study is to describe the effectiveness of problem solving strategy with the scientific approach on students' abilities in HOTS, namely communication, creativity, problem solving, and mathematical reasoning. METHOD . This study uses quasi experiments, because in education it is not possible to do pure experi mental research